Enhanced Product

FEATURES

Low input currents
25 pA maximum input bias current
2 pA maximum input offset current
High CMRR
92 dB CMRR (minimum) to $60 \mathrm{~Hz}, \mathrm{G}=10$
72 dB CMRR (minimum) at $5 \mathrm{kHz}, \mathrm{G}=1$
Excellent ac specifications and low power
1.5 MHz bandwidth ($\mathbf{G}=1$)
$14 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input noise (1 kHz)
Slew rate: $2 \mathrm{~V} / \mu \mathrm{s}$
1 mA maximum quiescent supply current
Versatile
MSOP package
Rail-to-rail output
Input voltage range to below negative supply rail
7 kV ESD HBM protection
4.5 V to 36 V single supply
$\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ dual supply
Gain set with single resistor ($\mathbf{G}=1$ to 1000)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Extended industrial temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

APPLICATIONS

Medical instrumentation
Precision data acquisition
Transducer interfaces

GENERAL DESCRIPTION

The AD8220-EP is the first single-supply, JFET input instrumentation amplifier available in an MSOP package. Designed to meet the needs of high performance, portable instrumentation, the AD8220-EP has a minimum common-mode rejection ratio (CMRR) of 77 dB at dc and a minimum CMRR of 72 dB at 5 kHz for $\mathrm{G}=1$. Maximum input bias current at $25^{\circ} \mathrm{C}$ is 25 pA and remains below 100 nA over the entire extended industrial temperature range. Despite the JFET inputs, the AD8220-EP typically has a noise corner of only 10 Hz .
With the proliferation of mixed-signal processing, the number of power supplies required in each system has grown. The AD8220-EP is designed to alleviate this problem. The AD8220-EP

PIN CONFIGURATION

Figure 2. Input Bias Current and Offset Current vs. Temperature
can operate on a $\pm 18 \mathrm{~V}$ dual supply, as well as on a single 5 V supply. Its rail-to-rail output stage maximizes dynamic range on the low voltage supplies common in portable applications. Its ability to run on a single 5 V supply eliminates the need to use higher voltage, dual supplies. The AD8220-EP draws a maximum of $750 \mu \mathrm{~A}$ of quiescent current at $25^{\circ} \mathrm{C}$, making it ideal for battery powered devices.
Gain is set from 1 to 1000 with a single resistor. Increasing the gain increases the common-mode rejection. Measurements that need higher CMRR when reading small signals benefit when the AD8220-EP is set for large gains.

A reference pin allows the user to offset the output voltage. This feature is useful when interfacing with analog-to-digital converters.
The AD8220-EP is available in an MSOP that takes roughly half the board area of an SOIC. Performance is specified over the extended industrial temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Additional application and technical information can be found in the AD8220 data sheet.

[^0]
TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications 1
General Description 1
Pin Configuration 1
Revision History 2
Specifications 3
REVISION HISTORY
11/2017—Rev. 0 to Rev. A
Changes to Table 1 4
Changes to Input Offset, Vosl, Average TC Parameter, Table 2, 5
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics 9
Outline Dimensions 11
Ordering Guide 11

4/2017—Revision 0: Initial Version

AD8220-EP

SPECIFICATIONS

$+\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {OPR }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,{ }^{1}$ unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)	Topr				
CMRR from DC to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	V CM $= \pm 10 \mathrm{~V}$				
$\mathrm{G}=1$		77			dB
$\mathrm{G}=10$		92			dB
$\mathrm{G}=100$		92			dB
$\mathrm{G}=1000$		92			dB
CMRR at 5 kHz	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$				
$\mathrm{G}=1$		72			dB
$\mathrm{G}=10$		80			dB
$\mathrm{G}=100$		80			dB
$\mathrm{G}=1000$		80			dB
NOISE	Referred to input (RTI) noise $=\sqrt{ }\left(\mathrm{enin}^{2}+\left(\mathrm{e}_{\text {no }} / \mathrm{G}\right)^{2}\right), \mathrm{T}_{\mathrm{A}}$				
Voltage Noise, 1 kHz					
Input Voltage Noise, $\mathrm{e}_{\text {ni }}$	$\mathrm{V}_{1 \times}+\mathrm{V}^{1}-=0 \mathrm{~V}$		14		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Output Voltage Noise, e_{no}	$\mathrm{V}_{\mathbb{N}}+\mathrm{V}^{1 \mathbb{N}^{-}}=0 \mathrm{~V}$		90		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
RTI, 0.1 Hz to 10 Hz					
$\mathrm{G}=1$			5		$\mu \mathrm{V}$ p-p
$\mathrm{G}=1000$			0.8		$\mu \mathrm{V}$ p-p
Current Noise	$\mathrm{f}=1 \mathrm{kHz}$		1		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
VOLTAGE OFFSET	Vos $=$ Vosi + Voso/G				
Input Offset, Vosı	$\mathrm{T}_{\text {A }}$	-250		+250	$\mu \mathrm{V}$
Average Temperature Coefficient (TC)	Topr	-10		+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Offset, Voso	$\mathrm{T}_{\text {A }}$	-750		+750	$\mu \mathrm{V}$
Average TC	Topr	-10		+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset RTI vs. Supply (PSR)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\text {OPR }}$				
$\mathrm{G}=1$		80			dB
$\mathrm{G}=10$		92			dB
$\mathrm{G}=100$		92			dB
$\mathrm{G}=1000$		92			dB
INPUT CURRENT					
Input Bias Current	$\mathrm{T}_{\text {A }}$			25	pA
Over Temperature	Topr			100	nA
Input Offset Current	$\mathrm{T}_{\text {A }}$			2	pA
Over Temperature	Topr			10	nA
DYNAMIC RESPONSE					
Small Signal Bandwidth, -3 dB	T_{A}				
$\mathrm{G}=1$			1500		kHz
$\mathrm{G}=10$			800		kHz
$\mathrm{G}=100$			120		kHz
$\mathrm{G}=1000$			14		kHz
Settling Time 0.01\%	10 V step, T_{A}				
$\mathrm{G}=1$			5		$\mu \mathrm{s}$
$\mathrm{G}=10$			4.3		$\mu \mathrm{s}$
$\mathrm{G}=100$			8.1		$\mu \mathrm{s}$
$\mathrm{G}=1000$			58		$\mu \mathrm{s}$

[^1]$+\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{OPR}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega^{1}$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)	Topr				
CMRR from $D C$ to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 2.5 V				
$\mathrm{G}=1$		77			dB
$\mathrm{G}=10$		92			dB
$\mathrm{G}=100$		92			dB
$\mathrm{G}=1000$		92			dB
CMRR at 5 kHz	$\mathrm{V}_{C M}=0 \mathrm{~V}$ to 2.5 V				
$\mathrm{G}=1$		72			dB
$\mathrm{G}=10$		80			dB
$\mathrm{G}=100$		80			dB
$\mathrm{G}=1000$		80			dB
NOISE	RTI noise $=\sqrt{ }\left(\mathrm{enin}^{2}+\left(\mathrm{e}_{\text {no }} / \mathrm{G}\right)^{2}\right)$, T_{A}				
Voltage Noise, 1 kHz	$\mathrm{V}_{5}= \pm 2.5 \mathrm{~V}$				
Input Voltage Noise, e_{ni}	$\mathrm{V}_{\mathbb{N}+}+\mathrm{V}_{\mathbb{N}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$		14		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Output Voltage Noise, e_{n}	$\mathrm{V}_{\mathbb{N}+}+\mathrm{V}_{\mathbb{N}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$		90		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
RTI, 0.1 Hz to 10 Hz					
$\mathrm{G}=1$			5		$\mu \vee \mathrm{p}-\mathrm{p}$
$\mathrm{G}=1000$			0.8		$\mu \mathrm{V}$ p-p
Current Noise	$\mathrm{f}=1 \mathrm{kHz}$		1		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
VOLTAGE OFFSET	$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {osi }}+\mathrm{V}_{\text {oso }} / \mathrm{G}$				
Input Offset, Vosı	$\mathrm{T}_{\text {A }}$	-300		+300	$\mu \mathrm{V}$
Average TC	Topr	-10		+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Offset, Voso	$\mathrm{T}_{\text {A }}$	-800		+800	$\mu \mathrm{V}$
Average TC	TopR	-10		+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset RTI vs. Supply (PSR)	Topr				
$\mathrm{G}=1$		80			dB
$\mathrm{G}=10$		92			dB
$\mathrm{G}=100$		92			dB
$\mathrm{G}=1000$		92			dB
INPUT CURRENT					
Input Bias Current	$\mathrm{T}_{\text {A }}$			25	pA
Over Temperature	Topr			100	nA
Input Offset Current	T_{A}			2	pA
Over Temperature	TopR			10	nA
DYNAMIC RESPONSE	$\mathrm{T}_{\text {A }}$				
Small Signal Bandwidth, -3 dB					
$\mathrm{G}=1$			1500		kHz
$\mathrm{G}=10$			800		kHz
$\mathrm{G}=100$			120		kHz
$\mathrm{G}=1000$			14		kHz
Settling Time 0.01\%	$\mathrm{T}_{\text {A }}$				
$\mathrm{G}=1$	3 V step		2.5		$\mu \mathrm{s}$
$\mathrm{G}=10$	4 V step		2.5		$\mu \mathrm{s}$
$\mathrm{G}=100$	4 V step		7.5		$\mu \mathrm{s}$
$\mathrm{G}=1000$	4V step		30		$\mu \mathrm{s}$
Settling Time 0.001\%	$\mathrm{T}_{\text {A }}$				
$\mathrm{G}=1$	3 V step		3.5		μs
$\mathrm{G}=10$	4 V step		3.5		$\mu \mathrm{s}$
$\mathrm{G}=100$	4 V step		8.5		$\mu \mathrm{s}$
$\mathrm{G}=1000$	4 V step		37		$\mu \mathrm{s}$

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit	
Slew Rate $G=1 \text { to } 100$	$\mathrm{T}_{\text {A }}$	2			V/ $/ \mathrm{s}$	
GAIN Gain Range Gain Error	$\begin{aligned} & \mathrm{G}=1+\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right), \mathrm{T}_{\text {OPR }} \\ & \mathrm{V} \text { out }=0.3 \mathrm{~V} \text { to } 2.9 \mathrm{~V} \text { for } \mathrm{G}=1, \mathrm{~V}_{\text {out }}=0.3 \mathrm{~V} \text { to } 3.8 \mathrm{~V} \text { for } \\ & \mathrm{G}>1 \end{aligned}$	1		1000	V/V	
$\mathrm{G}=1$		-0.1		+0.1	\%	
$\mathrm{G}=10$		-0.8		+0.8	\%	
$\mathrm{G}=100$		-0.8		+0.8	\%	
$\mathrm{G}=1000$		-0.8		+0.8	\%	
Nonlinearity	$\mathrm{V}_{\text {OUT }}=0.3 \mathrm{~V} \text { to } 2.9 \mathrm{~V} \text { for } \mathrm{G}=1, \mathrm{~V}_{\text {OUT }}=0.3 \mathrm{~V} \text { to } 3.8 \mathrm{~V} \text { for }$ $\mathrm{G}>1, \mathrm{~T}_{\mathrm{A}}$					
$\mathrm{G}=1$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			50	ppm	
$\mathrm{G}=10$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			50	ppm	
$\mathrm{G}=100$	$\mathrm{RL}=10 \mathrm{k} \Omega$			75	ppm	
$\mathrm{G}=1000$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			750	ppm	
$\mathrm{G}=1$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			50	ppm	
$\mathrm{G}=10$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			50	ppm	
$\mathrm{G}=100$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			75	ppm	
Gain vs. Temperature $\begin{aligned} & G=1 \\ & G>10 \end{aligned}$			3	$\begin{aligned} & 10 \\ & -50 \end{aligned}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$	
INPUT						
Impedance (Pin to Ground) ${ }^{2}$	$\mathrm{T}_{\text {A }}$		$10^{4}\| \| 6$		$\mathrm{G} \Omega \\| \mathrm{pF}$	
Input Voltage Range ${ }^{3}$	$\mathrm{T}_{\text {A }}$					
Over Temperature	Topr	-0.1		$\begin{aligned} & +V_{s}- \\ & 2.2 \end{aligned}$	V	
OUTPUT						
Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.15		4.85	V	
Over Temperature	Topr	0.3		4.70	V	
Short-Circuit Current			15		mA	
REFERENCE INPUT	$\mathrm{T}_{\text {A }}$					
Rin			40		k Ω	
1 N	$\mathrm{V}_{\mathbb{N}+}+\mathrm{V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}$			70	$\mu \mathrm{A}$	
Voltage Range		-Vs		$+\mathrm{V}_{\mathrm{s}}$	V	
Gain to Output	$\mathrm{T}_{\text {A }}$		1 ± 0.0001		V/V	
POWER SUPPLY						
Operating Range		4.5		36	V	
Quiescent Current	$\mathrm{T}_{\text {A }}$			750	$\mu \mathrm{A}$	
Over Temperature	TopR			1000	$\mu \mathrm{A}$	
TEMPERATURE RANGE Topr, For Specified Performance	Topr	-55		+125	${ }^{\circ} \mathrm{C}$	

[^2]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation	See Figure 3
Output Short-Circuit Current	Indefinite ${ }^{1}$
Input Voltage (Common Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Reflow Temperature	$260^{\circ} \mathrm{C}$
Junction Temperature	$140^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}\left(4-\right.$ Layer JEDEC Standard Board) ${ }^{2}$	$189^{\circ} \mathrm{C} / \mathrm{W}$
ESD	
\quad Human Body Model	7 kV
Charge Device Model	1.25 kV
\quad Machine Model	0.4 kV

[^3]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the MSOP on a 4-layer JEDEC standard board.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	- IN	Negative Input Terminal (True Differential Input).
2,3	R_{G}	Gain Setting Terminals. Place a resistor across the R_{G} pins.
4	$+\mathbb{I N}$	Positive Input Terminal (True Differential Input).
5	$-V_{S}$	Negative Power Supply Terminal.
6	REF	Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.
7	$V_{\text {out }}$	Output Terminal.
8	$+V_{S}$	Positive Power Supply Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Input Bias Current and Offset Current vs. Temperature, $V_{S}= \pm 15 \mathrm{~V}, V_{\text {REF }}=0 \mathrm{~V}$

Figure 6. Input Bias Current and Offset Current vs. Temperature, $V_{S}=5 \mathrm{~V}, V_{\text {REF }}=2.5 \mathrm{~V}$

Figure 7. CMRR vs. Temperature, $G=1$

Figure 8. Input Voltage Limit vs. Supply Voltage, $G=1, V_{R E F}=0 \mathrm{~V}$

Figure 9. Output Voltage Swing Referred to Supply Voltage vs. Dual Supply Voltage, $R_{L O A D}=2 \mathrm{k} \Omega, G=10, V_{\text {REF }}=0 \mathrm{~V}$

Figure 10. Output Voltage Swing Referred to Supply Voltage vs. Dual Supply Voltage, $R_{\text {LOAD }}=10 \mathrm{k} \Omega, G=10, V_{\text {REF }}=0 \mathrm{~V}$

Figure 11. Output Voltage Swing vs. Load Resistance (RLOAD), $V_{S}= \pm 15 \mathrm{~V}$, $V_{\text {REF }}=O V$

Figure 12. Output Voltage Swing vs. Load Resistance (RLOAD), $V_{s}=5 \mathrm{~V}$, $V_{\text {REF }}=2.5 \mathrm{~V}$

Figure 13. Output Voltage Swing Referred to Supply Voltage vs. Output Current (lout), $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$

Figure 14. Output Voltage Swing Referred to Supply Voltage vs. Output Current (lout), $V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 15. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8220TRMZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	Y6T
AD8220TRMZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP, 7"Tape and Reel	RM-8	Y6T

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADA4254RU-EBZ MCP6N16-001E/MF LT1102IN8\#PBF AD694BRZ-REEL7 LT1101ISW AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BDZ AD524CDZ AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ
AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625JNZ AD625KNZ AD625SD AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694BRZ-REEL AD694JNZ AD8221ARMZ-R7 AD8224BCPZ-WP AD8224HBCPZ-WP AD8226ARMZ-R7 AD8228ARMZ AD8228ARMZ-R7 AD8229HDZ AD8236ARMZ-R7 AD8237ARMZ-R7 AD8253ARMZ AD8293G160BRJZ-R7 AD8293G80BRJZ-R2 AD8553ARMZ AD8553ARMZ-REEL AD8555ACPZ-REEL7 AD8556ACPZ-R2 AD8556ACPZ-REEL7

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 O2017 Analog Devices, Inc. All rights reserved. Technical Support

[^1]: ${ }^{1}$ When the output sinks more than 4 mA , use a 47 pF capacitor in parallel with the load to prevent ringing. Otherwise, use a larger load, such as $10 \mathrm{k} \Omega$.
 ${ }^{2}$ Differential and common-mode input impedance ($Z_{\text {DIFF }}$ and $Z_{\text {CM }}$) can be calculated from the pin impedance ($Z_{\text {PIN }}$): $Z_{\text {DIFF }}=2\left(Z_{\text {PIN }}\right) ; Z_{\text {CM }}=Z_{\text {PIN }} / 2$
 ${ }^{3}$ The AD8220-EP can operate up to a diode drop below the negative supply but the bias current increases sharply. The input voltage range reflects the maximum
 allowable voltage where the input bias current is within the specification.
 ${ }^{4}$ At the minimum supply voltage of $\pm 2.25 \mathrm{~V}$, ensure that the input common-mode voltage is within the input voltage range specification.

[^2]: ${ }^{1}$ When the output sinks more than 4 mA , use a 47 pF capacitor in parallel with the load to prevent ringing. Otherwise, use a larger load, such as $10 \mathrm{k} \Omega$.
 ${ }^{2}$ Differential and common-mode impedance can be calculated from the pin impedance: $Z_{\text {DIFF }}=2\left(Z_{\text {PIN }}\right) ; Z_{\text {cM }}=Z_{\text {PII }} / 2$.
 ${ }^{3}$ The AD8220-EP can operate up to a diode drop below the negative supply but the bias current increases sharply. The input voltage range reflects the maximum allowable voltage where the input bias current is within the specification.

[^3]: ${ }^{1}$ Assumes the load is referenced to midsupply.
 ${ }^{2} \theta_{\mathrm{JA}}$ value is an approximation.

