FEATURES

Specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0.9 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum input offset average TC $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum gain vs. temperature ($\mathbf{G}=1$)
Excellent ac specifications
80 dB minimum CMRR at $10 \mathrm{kHz}(\mathrm{G}=1)$
-3 dB bandwidth: 825 kHz typical $(\mathrm{G}=1)$
$2 \mathrm{~V} / \mu \mathrm{s}$ typical slew rate
Low noise
$8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, at 1 kHz , maximum input voltage noise
$0.25 \mu \mathrm{~V}$ p-p RTI (G = 100 to 1000)
High accuracy dc performance
80 dB minimum CMRR DC to $60 \mathrm{~Hz}(G=1)$
$70 \mu \mathrm{~V}$ maximum input offset voltage
2 nA maximum input bias current
Wide power supply range: $\pm \mathbf{2 . 3} \mathrm{V}$ to $\pm \mathbf{1 8} \mathrm{V}$
Available in space-saving MSOP
Gain set with 1 external resistor (gain range 1 to 1000)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Bridge amplifiers

Precision data acquisition systems
Strain gages
Transducer interfaces

TYPICAL CONNECTION DIAGRAM

GENERAL DESCRIPTION

The AD8221-EP is a gain programmable, high performance instrumentation amplifier that delivers the industry's highest CMRR over frequency in its class. The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz . In contrast, the AD8221-EP maintains a minimum CMRR of 80 dB to 10 kHz at $\mathrm{G}=1$. High CMRR over frequency allows the AD8221-EP to reject wideband interference and line harmonics, greatly simplifying filter requirements.

Possible applications include precision data acquisition, biomedical analysis, and aerospace instrumentation.
Low voltage offset, low offset drift, low gain drift, high gain accuracy, and high CMRR make this device an excellent choice in applications that demand the best dc performance possible, such as bridge signal conditioning.

Programmable gain affords the user design flexibility. A single resistor sets the gain from 1 to 1000. The AD8221-EP operates on both single and dual supplies and is well suited for applications where $\pm 10 \mathrm{~V}$ input voltages are encountered.

The AD8221-EP is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. It is available in an 8 -lead MSOP package.

Additional application and technical information can be found in the AD8221 data sheet.

Figure 2. Typical CMRR vs. Frequency for $G=1$

TABLE OF CONTENTS

Features .. 1
Enhanced Product Features ... 1
Applications.. 1
Typical Connection Diagram.. 1
General Description... 1
Revision History .. 2
Specifications... 3
Absolute Maximum Ratings.. 5
Thermal Characteristics 5
ESD Caution. 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Outline Dimensions 14
Ordering Guide 14

REVISION HISTORY

4/16—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit	
POWER SUPPLY Operating Range Quiescent Current Over Temperature	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	± 2.3	$\begin{aligned} & 0.9 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 1 \\ & 1.2 \end{aligned}$	V mA mA	
DYNAMIC RESPONSE Small Signal -3 dB Bandwidth $\begin{aligned} G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$ Settling Time 0.01\% $\begin{aligned} \mathrm{G} & =1 \text { to } 100 \\ \mathrm{G} & =1000 \end{aligned}$ Settling Time 0.001\% $\begin{aligned} & \mathrm{G}=1 \text { to } 100 \\ & \mathrm{G}=1000 \end{aligned}$ Slew Rate	$\begin{aligned} & 10 \mathrm{~V} \text { step } \\ & 10 \mathrm{~V} \text { step } \\ & \mathrm{G}=1 \\ & \mathrm{G}=5 \text { to } 100 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2 \end{aligned}$	$\begin{aligned} & 825 \\ & 562 \\ & 100 \\ & 14.7 \\ & 10 \\ & 80 \\ & \\ & 13 \\ & 110 \\ & 2 \\ & 2.5 \end{aligned}$		kHz kHz kHz kHz $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ V/us	
GAIN Gain Range Gain Error $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain Nonlinearity $\begin{aligned} & \mathrm{G}=1 \text { to } 10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=1000 \\ & \mathrm{G}=1 \text { to } 100 \end{aligned}$ Gain vs. Temperature $\begin{aligned} & G=1 \\ & G>1^{2} \end{aligned}$	$\begin{aligned} & \mathrm{G}=1+\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ & \text { Vout } \pm 10 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\text {out }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	1	$\begin{aligned} & 5 \\ & 7 \\ & 10 \\ & 15 \\ & 3 \end{aligned}$	1000 0.1 0.3 0.3 0.3 15 20 50 100 10 -50	V/V \% \% \% \% ppm ppm ppm ppm $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
INPUT Input Impedance Differential Common Mode Input Operating Voltage Range ${ }^{3}$ Over Temperature Input Operating Voltage Range Over Temperature	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} -V_{s}+1.9 \\ -V_{s}+2.0 \\ -V_{s}+1.9 \\ -V_{s}+2.0 \\ \hline \end{array}$	$\begin{aligned} & 100\|\mid 2 \\ & 100\|\mid 2 \end{aligned}$	$\begin{aligned} & +V_{s}-1.1 \\ & +V_{s}-1.2 \\ & +V_{s}-1.2 \\ & +V_{s}-1.3 \end{aligned}$	$\mathrm{G} \Omega\|\mid \mathrm{pF}$ $\mathrm{G} \Omega \\| \mathrm{pF}$ V V V V	
OUTPUT Output Swing Over Temperature Output Swing Over Temperature Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -V_{s}+1.1 \\ -V_{s}+1.4 \\ -V_{s}+1.2 \\ -V_{s}+1.6 \end{gathered}$	18	$\begin{aligned} & +V_{s}-1.2 \\ & +V_{s}-1.3 \\ & +V_{s}-1.4 \\ & +V_{s}-1.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & \mathrm{~mA} \end{aligned}$	
TEMPERATURE RANGE Specified Performance		-55		+125	${ }^{\circ} \mathrm{C}$	

[^0]
Enhanced Product

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation	200 mW
Output Short-Circuit Current	Indefinite
Input Voltage (Common-Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond

THERMAL CHARACTERISTICS

Specification for a device in free air.
Table 3.

Package	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
8-Lead MSOP, 4-Layer JEDEC Board	135	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN	Negative Input Terminal.
2,3	R_{G}	Gain Setting Terminal. Place resistor across the R_{G} pins to set the gain. $G=1+\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right)$.
4	+IN	Positive Input Terminal.
5	$-V_{S}$	Negative Power Supply Terminal.
6	REF	Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level-shift the output.
7	$V_{\text {out }}$	Output Terminal.
8	$+V_{S}$	Positive Power Supply Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

Figure 4. Typical Distribution for $C M R(G=1)$

Figure 5. Typical Distribution of Input Offset Voltage

Figure 6. Typical Distribution of Input Bias Current

Figure 7. Typical Distribution of Input Offset Current

Figure 8. Input Common-Mode Voltage vs. Output Voltage, $G=1$

Figure 9. Input Common-Mode Voltage vs. Output Voltage, $G=100$

Figure 10. Input Bias Current ((IBAS) vs. Common-Mode Voltage (CMV)

Figure 11. Change in Input Offset Voltage vs. Warm-Up Time

Figure 12. Input Offset Current and Input Bias Current vs. Temperature

Figure 13. Positive PSRR vs. Frequency, RTI ($G=1$ to 1000)

Figure 14. Negative PSRR vs. Frequency, RTI ($G=1$ to 1000)

FREQUENCY (Hz)

Figure 15. Gain vs. Frequency

Figure 16. CMRR vs. Frequency, RTI

Figure 17. CMRR vs. Frequency, RTI, 1 k Ω Source Imbalance

Figure 18. CMR vs. Temperature

Figure 19. Input Voltage Limit vs. Supply Voltage, $G=1$

Figure 20. Output Voltage Swing vs. Supply Voltage, $G=1$

Figure 21. Output Voltage Swing vs. Load Resistance

Figure 22. Output Voltage Swing vs. Output Current, G=1

Figure 23. Gain Nonlinearity, $G=1, R_{L}=10 \mathrm{k} \Omega$

Figure 24. Gain Nonlinearity, $G=100, R_{L}=10 \mathrm{k} \Omega$

Figure 25. Gain Nonlinearity, $G=1000, R_{L}=10 \mathrm{k} \Omega$

Figure 26. Voltage Noise Spectral Density vs. Frequency ($G=1$ to 1000)

Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise $(G=1)$

Figure 28. 0.1 Hz to 10 Hz RTI Voltage Noise $(G=1000)$

Figure 29. Current Noise Spectral Density vs. Frequency

Figure 30. 0.1 Hz to 10 Hz Current Noise

Figure 31. Large Signal Frequency Response

Figure 32. Large Signal Pulse Response and Settling Time ($G=1$), 0.002\%/DIV

Figure 33. Large Signal Pulse Response and Settling Time $(G=10)$, 0.002\%/DIV

Figure 34. Large Signal Pulse Response and Settling Time ($G=100$), 0.002\%/DIV

Figure 35. Large Signal Pulse Response and Settling Time ($G=1000$), 0.002\%/DIV

Figure 36. Small Signal Response, $G=1, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 37. Small Signal Response, $G=10, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 38. Small Signal Response, $G=100, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 39. Small Signal Response, $G=1000, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Enhanced Product
 AD8221-EP

Figure 40. Settling Time vs. Output Voltage Step Size ($G=1$)

Figure 41. Settling Time vs. Gain for a 10 V Step

AD8221-EP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 42. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8221TRMZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead Mini Small Outline Package [MSOP]	RM-8	Y67
AD8221TRMZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y67

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADA4254RU-EBZ MCP6N16-001E/MF LT1102IN8\#PBF AD694BRZ-REEL7 LT1101ISW AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BDZ AD524CDZ AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ
AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625JNZ AD625KNZ AD625SD AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694BRZ-REEL AD694JNZ AD8221ARMZ-R7 AD8224BCPZ-WP AD8224HBCPZ-WP AD8226ARMZ-R7 AD8228ARMZ AD8228ARMZ-R7 AD8229HDZ AD8236ARMZ-R7 AD8237ARMZ-R7 AD8253ARMZ AD8293G160BRJZ-R7 AD8293G80BRJZ-R2 AD8553ARMZ AD8553ARMZ-REEL AD8555ACPZ-REEL7 AD8556ACPZ-R2 AD8556ACPZ-REEL7

[^0]: ${ }^{1}$ Total RTI Vos $=($ Vosis $)+($ Voso/G $)$.
 ${ }^{2}$ Does not include the effects of external resistor R_{G}.
 ${ }^{3}$ One input grounded. $\mathrm{G}=1$.

