16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier

FEATURES

Resistor programmable gain range: $\mathbf{1 0}^{1}$ to 1000
Supply voltage range: $\pm \mathbf{4 V}$ to $\pm 8 \mathrm{~V}$
Rail-to-rail input and output
Maintains performance over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Excellent ac and dc performance
110 dB minimum CMR @ $\mathbf{6 0 ~ H z}, \mathbf{G}=10$ to 1000
$10 \mu \mathrm{~V}$ maximum offset voltage ($\mathrm{RTI}, \pm 5 \mathrm{~V}$ operation)
$50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ maximum offset drift
20 ppm maximum gain nonlinearity

APPLICATIONS

Pressure measurements

Temperature measurements
Strain measurements
Automotive diagnostics

GENERAL DESCRIPTION

The AD8230 is a low drift, differential sampling, precision instrumentation amplifier. Auto-zeroing reduces offset voltage drift to less than $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. The AD8230 is well-suited for thermocouple and bridge transducer applications. The AD8230's high CMR of 110 dB (minimum) rejects line noise in measurements where the sensor is far from the instrumentation. The 16 V rail-to-rail, common-mode input range is useful for noisy environments where ground potentials vary by several volts. Low frequency noise is kept to a minimal $3 \mu \mathrm{~V}$ p-p, making the AD8230 perfect for applications requiring the utmost dc precision. Moreover, the AD8230 maintains its high performance over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Two external resistors are used to program the gain. By using matched external resistors, the gain stability of the AD8230 is much higher than instrumentation amplifiers that use a single resistor to set the gain. In addition to allowing users to program the gain between 10^{1} and 1000, users can adjust the output offset voltage.

CONNECTION DIAGRAM

Figure 1. 8-Lead SOIC (R-8)

Figure 2. Relative Offset Voltage vs. Temperature

Figure 3. Thermocouple Measurement
The AD8230 is versatile yet simple to use. Its auto-zeroing topology significantly minimizes the input and output transients typical of commutating or chopper instrumentation amplifiers. The AD8230 operates on $\pm 4 \mathrm{~V}$ to $\pm 8 \mathrm{~V}(+8 \mathrm{~V}$ to $+16 \mathrm{~V})$ supplies and is available in an 8 -lead SOIC.

[^0]Rev. B

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Connection Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
Thermal Characteristics 5
ESD Caution 5
Typical Performance Characteristics 6
Theory of Operation 11
Setting the Gain 11
REVISION HISTORY
9/07—Rev. A to Rev. B
Changes to Features and Layout 1
Changes to Table 1 3
Changes to Table 2 4
Changes to Layout 5
Inserted Figure 13, Figure 14, and Figure 15; Renumbered Sequentially 7
Changes to Figure 16 and Figure 19 8
Updated Outline Dimensions 15
Level-Shifting the Output 12
Source Impedance and Input Settling Time 12
Input Voltage Range 13
Input Protection 13
Power Supply Bypassing 13
Power Supply Bypassing for Multiple Channel Systems 13
Layout 14
Applications 14
Outline Dimensions 15
Ordering Guide 15
7/05—Rev. 0 to Rev. A
Changes to Excellent AC and DC Performance 1
Changes to Table 1 3
Changes to Table 2 4
Changes to Figure 7 and Figure 8. 6
Changes to Figure 10 and Figure 11 7
Changes to Level-Shifting the Output Section 11
Changes to Figure 31 11
Inserted Figure 32 and Figure 33; Renumbered Sequentially .. 11Changes to Source Impedance and Input Settling Time Section,Input Protection Section and Power Supply Bypassing forMultiple Channel Systems Section12
Changes to Figure 36 13
Changes to Applications Section 13
10/04—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=202, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, unless otherwise noted $)$.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
VOLTAGE OFFSET RTI Offset, Vosı Offset Drift	$\begin{aligned} & \mathrm{V}_{+\mathbb{N}}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{+1 \mathrm{~N}}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$
COMMON-MODE REJECTION (CMR) CMR to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to +5 V	110	120		dB
VOLTAGE OFFSET RTI vs. SUPPLY (PSR) $\begin{aligned} & \mathrm{G}=2 \\ & \mathrm{G}=202 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GAIN Gain Range Gain Error ${ }^{2}$ $\begin{aligned} & G=2 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain Nonlinearity Gain Drift $\begin{aligned} \mathrm{G} & =2,10,102 \\ \mathrm{G} & =1002 \end{aligned}$	$\mathrm{G}=2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}\right)$	10^{1}	$\begin{aligned} & \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \end{aligned}$	1000 0.04 0.04 0.04 0.05 20 14 60	V/V \% \% \% \% ppm $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
INPUT Input Common-Mode Operating Voltage Range Over Temperature Input Differential Operating Voltage Range Average Input Offset Current ${ }^{3}$ Average Input Bias Current ${ }^{3}$	$\mathrm{T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -V_{s} \\ & -V_{s} \end{aligned}$	$\begin{aligned} & 750 \\ & 33 \\ & 0.15 \end{aligned}$	$\begin{aligned} & +V_{s} \\ & +V_{s} \\ & \\ & 300 \\ & 1 \end{aligned}$	V V mV pA nA
OUTPUT Output Swing Over Temperature Short-Circuit Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & -V_{s}+0.1 \\ & -V_{s}+0.1 \end{aligned}$		$\begin{aligned} & +V_{s}-0.2 \\ & +V_{s}-0.2 \end{aligned}$	V mA
REFERENCE INPUT Voltage Range ${ }^{4}$		$-\mathrm{V}_{s}+3.5$		+V ${ }_{\text {s }}-2.5$	V
NOISE Voltage Noise Density, 1 kHz, RT। Voltage Noise	$\begin{aligned} & V_{\mathbb{I N}+,} V_{\text {IN }-,} \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p
SLEW RATE	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}, \mathrm{G}=10$		2		$\mathrm{V} / \mu \mathrm{s}$
INTERNAL SAMPLE RATE			6		kHz
POWER SUPPLY Operating Range (Dual Supplies) Operating Range (Single Supply) Quiescent Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 4 \\ & 8 \end{aligned}$		$\begin{aligned} & \pm 8 \\ & 16 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$
TEMPERATURE RANGE Specified Performance		-40		+125	${ }^{\circ} \mathrm{C}$

[^1]
AD8230

$\mathrm{V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=202, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, unless otherwise noted).
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
VOLTAGE OFFSET RTI Offset, Vosı Offset Drift	$\begin{aligned} & \mathrm{V}_{\text {+IN }}=\mathrm{V}_{- \text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {+IN }}=\mathrm{V}_{-1 \mathrm{~N}}=0 \mathrm{~V}, \\ & \mathrm{~T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 20 \\ & 50 \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$
COMMON-MODE REJECTION (CMR) CMR to 60 Hz with $1 \mathrm{k} \Omega$ Source Imbalance	$\mathrm{V}_{\text {см }}=-8 \mathrm{~V}$ to +8 V	110	120		dB
VOLTAGE OFFSET RTI vs. SUPPLY (PSR) $\begin{aligned} & G=2 \\ & G=202 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GAIN Gain Range Gain Error ${ }^{2}$ $\begin{aligned} & G=2 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain Nonlinearity Gain Drift $\begin{aligned} & \mathrm{G}=2,10,102 \\ & \mathrm{G}=1002 \end{aligned}$	$\mathrm{G}=2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}\right)$	10^{1}	0.01 0.01 0.01 0.02	1000 0.04 0.04 0.04 0.05 20 14 60	V/V \% \% \% \% ppm $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
INPUT Input Common-Mode Operating Voltage Range Over Temperature Input Differential Operating Voltage Range Average Input Offset Current ${ }^{3}$ Average Input Bias Current ${ }^{3}$	$\mathrm{T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -\mathrm{V}_{\mathrm{s}} \\ & -\mathrm{V}_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & 750 \\ & 33 \\ & 0.15 \end{aligned}$	$\begin{aligned} & +V_{s} \\ & +V_{s} \\ & \\ & 300 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
OUTPUT Output Swing Over Temperature Short-Circuit Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & -V_{s}+0.1 \\ & -V_{s}+0.1 \end{aligned}$	15	$\begin{aligned} & +V_{s}-0.2 \\ & +V_{s}-0.4 \end{aligned}$	V V mA
REFERENCE INPUT Voltage Range ${ }^{4}$		$-\mathrm{V}_{s}+3.5$		$+\mathrm{V}_{5}-2.5$	V
NOISE Voltage Noise Density, 1 kHz, RTI Voltage Noise	$\begin{aligned} & V_{\mathbb{N}_{\mathrm{+}},} \mathrm{~V}_{\mathrm{IN}-,}, \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 240 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ & \mu \mathrm{~V}-\mathrm{p} \end{aligned}$
SLEW RATE	$\mathrm{V}_{\mathrm{I}}=500 \mathrm{mV}, \mathrm{G}=10$		2		$\mathrm{V} / \mu \mathrm{s}$
INTERNAL SAMPLE RATE			6		kHz
POWER SUPPLY Operating Range (Dual Supplies) Operating Range (Single Supply) Quiescent Current	$\mathrm{T}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 4 \\ & 8 \end{aligned}$	3.2	$\begin{aligned} & \pm 8 \\ & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$
TEMPERATURE RANGE Specified Performance		-40		+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ The AD8230 can operate as low as $G=2$. However, since the differential input range is limited to approximately 750 mV , the AD8230 configured at $\mathrm{G}<10$ does not make use of the full output voltage range.
${ }^{2}$ Gain drift is determined by the TC match of the external gain setting resistors.
${ }^{3}$ Differential source resistance less than $10 \mathrm{k} \Omega$ does not result in voltage offset due to input bias current or mismatched series resistors.
${ }^{4}$ For $\mathrm{G}<10$, the reference voltage range is limited to $-\mathrm{V}_{\mathrm{S}}+4.24 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{S}}-2.75 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 8 \mathrm{~V},+16 \mathrm{~V}$
Internal Power Dissipation	304 mW
Output Short-Circuit Current	20 mA
Input Voltage (Common-Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{s}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operational Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Specification is for device in free air SOIC.
Table 4.

Parameter	Value	Unit
$\theta_{\mathrm{JA}}(4-$ Layer JEDEC Board $)$	121	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD8230

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Offset Voltage (RTI) Distribution at $\pm 5 \mathrm{~V}, \mathrm{CM}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 5. Offset Voltage (RTI) Drift Distribution

Figure 6. Offset Voltage (RTI) vs. Temperature

Figure 7. Offset Voltage (RTI) vs. Common-Mode Voltage, $V_{s}= \pm 5 \mathrm{~V}$

Figure 8. Offset Voltage (RTI) vs. Common-Mode Voltage, $V_{s}= \pm 8 \mathrm{~V}$

Figure 9. Offset Voltage (RTI) vs. Source Impedance, 1μ F Across Input Pins

Figure 10. Offset Voltage (RTI) vs. Reference Voltage

Figure 11. Common-Mode Rejection (CMR) vs. Frequency

Figure 12. Common-Mode Rejection (CMR) vs. Source Impedance, 1.1 μ F Across Input Pins

Figure 13. Input Common-Mode Voltage Range vs. Output Voltage, $G=2$

Figure 14. Input Common-Mode Voltage Range vs. Output Voltage, $G=10$

Figure 15. Input Common-Mode Voltage Range vs. Output Voltage, $G=100$

AD8230

Figure 16. Clock Frequency vs. Temperature

Figure 17. Average Input Bias Current vs. Common-Mode Voltage, $-40^{\circ} \mathrm{C}+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

Figure 18. Supply Current vs. Temperature

Figure 19. Gain vs. Frequency, $G=2$

Figure 20. Gain vs. Frequency, $G=10$

Figure 21. Gain Nonlinearity, $G=20$

Figure 22. Gain vs. Frequency, $G=100$

Figure 23. Gain vs. Frequency, $G=1000$

Figure 24. Gain Error vs. Differential Source Impedance

Figure 25. Voltage Noise Spectral Density vs. Frequency

Figure 26. 0.1 Hz to 10 Hz RTI Voltage Noise, $G=100$

Figure 27. Positive PSR vs. Frequency, RTI

AD8230

Figure 28. Negative PSR vs. Frequency, RTI

Figure 29. Output Voltage Swing vs. Output Current, $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

THEORY OF OPERATION

Auto-zeroing is a dynamic offset and drift cancellation technique that reduces input-referred voltage offset to the $\mu \mathrm{V}$ level and voltage offset drift to the $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ level. A further advantage of dynamic offset cancellation is the reduction of low frequency noise, in particular the $1 / \mathrm{f}$ component.
The AD8230 is an instrumentation amplifier that uses an auto-zeroing topology and combines it with high commonmode signal rejection. The internal signal path consists of an active differential sample-and-hold stage (preamp) followed by a differential amplifier (gain amp). Both amplifiers implement auto-zeroing to minimize offset and drift. A fully differential topology increases the immunity of the signals to parasitic noise and temperature effects. Amplifier gain is set by two external resistors for convenient TC matching.
The signal sampling rate is controlled by an on-chip, 6 kHz oscillator and logic to derive the required nonoverlapping clock phases. For simplification of the functional description, two sequential clock phases, A and B, are shown to distinguish the order of internal operation, as depicted in Figure 30 and Figure 31, respectively.

Figure 30. Phase A of the Sampling Phase
During Phase A , the sampling capacitors are connected to the inputs. The input signal's difference voltage, $\mathrm{V}_{\text {DIFF }}$, is stored across the sampling capacitors, Csample. Because the sampling capacitors only retain the difference voltage, the common-mode voltage is rejected. During this period, the gain amplifier is not connected to the preamplifier so its output remains at the level set by the previously sampled input signal held on ChoLD as shown in Figure 30.

Figure 31. Phase B of the Sampling Phase

In Phase B, the differential signal is transferred to the hold capacitors refreshing the value stored on Choгd. The output of the preamplifier is held at a common-mode voltage determined by the reference potential, $\mathrm{V}_{\text {ref. }}$. In this manner, the AD8230 is able to condition the difference signal and set the output voltage level. The gain amplifier conditions the updated signal stored on the hold capacitors, Chold.

SETTING THE GAIN

Two external resistors set the gain of the AD8230. The gain is expressed in the following equation:

$$
\begin{equation*}
\text { Gain }=2\left(1+\frac{R_{F}}{R_{G}}\right) \tag{1}
\end{equation*}
$$

Figure 32. Gain Setting
Table 5. Gains Using Standard 1\% Resistors

Gain	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	Actual Gain
2	0Ω (short)	None	2
10	$8.06 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$	10
50	$12.1 \mathrm{k} \Omega$	499Ω	50.5
100	$9.76 \mathrm{k} \Omega$	200Ω	99.6
200	$10 \mathrm{k} \Omega$	100Ω	202
500	$49.9 \mathrm{k} \Omega$	200Ω	501
1000	$100 \mathrm{k} \Omega$	200Ω	1002

Figure 32 and Table 5 provide an example of some gain settings. As Table 5 shows, the AD8230 accepts a wide range of resistor values. Because the instrumentation amplifier has finite driving capability, ensure that the output load in parallel with the sum of the gain setting resistors is greater than $2 \mathrm{k} \Omega$.

$$
\begin{equation*}
R_{L} \|\left(R_{F}+R_{G}\right)>2 \mathrm{k} \Omega \tag{2}
\end{equation*}
$$

Offset voltage drift at high temperature can be minimized by keeping the value of the feedback resistor, R_{F}, small. This is due to the junction leakage current on the $\mathrm{R}_{\mathrm{G}} \mathrm{pin}$, Pin 7. The effect of the gain setting resistor on offset voltage drift is shown in Figure 33. In addition, experience has shown that wire-wound resistors in the gain feedback loop may degrade the offset voltage performance.

Figure 33. Effect of Feedback Resistor on Offset Voltage Drift

LEVEL-SHIFTING THE OUTPUT

A reference voltage, as shown in Figure 34, can be used to level-shift the output. The reference voltage, V_{R}, is limited to $-\mathrm{V}_{\mathrm{s}}+3.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{s}}-2.5 \mathrm{~V}$. (For $\mathrm{G}<10$, the reference voltage range is limited to $-\mathrm{V}_{\mathrm{s}}+4.24 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{s}}-2.75 \mathrm{~V}$.) Otherwise, it is nominally tied to midsupply. The voltage source used to levelshift the output should have a low output impedance to avoid contributing to gain error. In addition, it should be able to source and sink current. To minimize offset voltage, the $V_{\text {REF }}$ pins should be connected either to the local ground or to a reference voltage source that is connected to the local ground.

Figure 34. Level-Shifting the Output
The output can also be level-shifted by adding a resistor, Ro, as shown in Figure 35. The benefit is that the output can be levelshifted to as low as 100 mV of the negative supply rail and to as high as 200 mV of the positive supply rail, increasing unipolar output swing. This can be useful in applications, such as strain gauges, where the force is only applied in one direction. Another benefit of this configuration is that a supply rail can be used for $\mathrm{V}_{\mathrm{R}^{\prime}}$ eliminating the need to add an additional external reference voltage.
The gain changes with the inclusion of R_{o}. The full expression is
$V_{\text {OUT }}=2\left(\frac{R_{F}}{R_{G} \| R_{O}}+1\right) V_{I N}-\frac{R_{F}}{R_{O}} V_{R^{\prime}}=2\left(\frac{R_{F}\left(R_{G}+R_{O}\right)}{R_{G} R_{O}}+1\right) V_{I N}-\frac{R_{F}}{R_{O}} V_{R^{\prime}}$

The following steps can be taken to set the gain and level-shift the output:

1. Select an R_{F} value. Table 5 shows R_{F} values for various gains.
2. Solve for Ro using Equation 4.

$$
\begin{equation*}
R_{O}=-\frac{V_{R^{\prime}} \times R_{F}}{V_{\text {DESRRED-LEVEL }}} \tag{4}
\end{equation*}
$$

where:
$\mathrm{V}_{\mathrm{R}^{\mathrm{R}}}$ is a voltage source, such as a supply voltage.
$V_{\text {desired-level }}$ is the desired output bias voltage.
3. Solve for R_{G}.

$$
\begin{equation*}
R_{G}=\frac{R_{O}}{\left(\frac{\text { Gain }}{2}-1\right) \frac{R_{O}}{R_{F}}-1} \tag{5}
\end{equation*}
$$

Figure 35. Level-Shifting the Output Without an Additional Voltage Reference

Figure 36. An AD8230 with its Output Biased at -4.8 V ; $G=100 ; V_{\text {DESIRED-LEVEL }}=-4.8 \mathrm{~V}$

SOURCE IMPEDANCE AND INPUT SETTLING TIME

The input stage of the AD8230 consists of two actively driven, differential switched capacitors, as described in Figure 30 and Figure 31. Differential input signals are sampled on Csample such that the associated parasitic capacitances, 70 pF , are balanced between the inputs to achieve high common-mode rejection. On each sample period (approximately $85 \mu \mathrm{~s}$), these parasitic capacitances must be recharged to the common-mode voltage by the signal source impedance ($10 \mathrm{k} \Omega$ maximum). If resistors and capacitors are used at the input of the AD8230, care should be taken to maintain close match to maximize CMRR.

INPUT VOLTAGE RANGE

The input common-mode range of the AD8230 is rail to rail. However, the differential input voltage range is limited to approximately 750 mV . The AD8230 does not phase invert when its inputs are overdriven.

INPUT PROTECTION

The input voltage is limited to within 0.6 V beyond the supply rails by the internal ESD protection diodes. Resistors and low leakage diodes can be used to limit excessive, external voltage and current from damaging the inputs, as shown in Figure 37. Figure 39 shows an overvoltage protection circuit between the thermocouple and the AD8230.

POWER SUPPLY BYPASSING

A regulated dc voltage should be used to power the instrumentation amplifier. Noise on the supply pins can adversely affect performance. Bypass capacitors should be used to decouple the amplifier.

The AD8230 has internal clocked circuitry that requires adequate supply bypassing. A $0.1 \mu \mathrm{~F}$ capacitor should be placed as close to each supply pin as possible. As shown in Figure 32, a $10 \mu \mathrm{~F}$ tantalum capacitor can be used further away from the part.

POWER SUPPLY BYPASSING FOR MULTIPLE CHANNEL SYSTEMS

The best way to prevent clock interference in multichannel systems is to lay out the PCB with a star node for the positive supply and a star node for the negative supply. Using such a technique, crosstalk between clocks is minimized. If laying out star nodes is not feasible, use wide traces to minimize parasitic inductance and decouple frequently along the power supply traces. Examples are shown in Figure 38. Care and forethought go a long way in maximizing performance.

Figure 37. Overvoltage Input Protection

Figure 38. Use Star Nodes for $+V_{s}$ and $-V_{s}$ or Use Thick Traces and Decouple Frequently Along the Supply Lines

AD8230

LAYOUT

The AD8230 has two reference pins: $\mathrm{V}_{\text {Ref }} 1$ and $\mathrm{V}_{\text {Ref }} 2 . \mathrm{V}_{\text {ref }} 1$ draws current to set the internal voltage references. In contrast, $\mathrm{V}_{\text {ref }} 2$ does not draw current. It sets the common mode of the output signal. As such, $\mathrm{V}_{\text {ReF }} 1$ and $\mathrm{V}_{\text {ReF }} 2$ should be star-connected to ground (or to a reference voltage). In addition, to maximize CMR, the trace between $\mathrm{V}_{\text {REF }} 2$ and the gain resistor, R_{G}, should be kept short.

APPLICATIONS

The AD8230 can be used in thermocouple applications, as shown in Figure 3 and Figure 39. Figure 39 is an example of such a circuit for use in an industrial environment. Series resistors and low leakage diodes serve to clamp overload voltages (see the Input Protection section for more information).

Figure 39. Type J Thermocouple with Overvoltage Protection and RFI Filter

An antialiasing filter reduces unwanted high frequency signals. The matched $100 \mathrm{M} \Omega$ resistors serve to provide input bias current to the input transistors and serve as an indicator as to when the thermocouple connection is broken. Well-matched $1 \% 4.99 \mathrm{k} \Omega$ resistors are used to form the antialiasing filter. It is good practice to match the source impedances to ensure high CMR. The circuit is configured for a gain of 193, which provides an overall temperature sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figure 40. Bridge Measurement with Filtered Output
Measuring load cells in industrial environments can be a challenge. Often, the load cell is located some distance away from the instrumentation amplifier. The common-mode potential can be several volts, exceeding the common-mode input range of many 5 V auto-zero instrumentation amplifiers. Fortunately, the wide common-mode input voltage range of the AD8230 spans 16 V , relieving designers of having to worry about the common-mode range.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FO

Figure 41. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8230YRZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
AD8230YRZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, $13^{\prime \prime}$ Tape and Reel	R-8
AD8230YRZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N, 7 " Tape and Reel	R-8
AD8230-EVAL		Evaluation Board	

${ }^{1} Z=$ RoHS Compliant Part.

AD8230

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADA4254RU-EBZ JM38510/13501BGA MCP6N16-001E/MF LT1102IN8\#PBF AD694BRZ-REEL7 LT1101ISW JM38510/13502BGA AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BDZ AD524CDZ AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625JNZ AD625KNZ AD625SD AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694BRZ-REEL AD694JNZ AD8221ARMZ-R7 AD8222HBCPZ-WP AD8224ACPZ-R7 AD8224BCPZ-WP AD8224HBCPZ-WP AD8226ARMZ-R7 AD8228ARMZ AD8228ARMZ-R7 AD8229HDZ AD8236ARMZ-R7 AD8237ARMZ-R7 AD8253ARMZ AD8293G160BRJZ-R7 AD8293G80BRJZ-R2 AD8553ARMZ

[^0]: ${ }^{1}$ The AD8230 can be programmed for a gain as low as 2, but the maximum input voltage is limited to approximately 750 mV .

[^1]: ${ }^{1}$ The AD8230 can operate as low as $G=2$. However, since the differential input range is limited to approximately 750 mV , the AD8230 configured at $\mathrm{G}<10$ does not make use of the full output voltage range.
 ${ }^{2}$ Gain drift is determined by the TC match of the external gain setting resistors.
 ${ }^{3}$ Differential source resistance less than $10 \mathrm{k} \Omega$ does not result in voltage offset due to input bias current or mismatched series resistors.
 ${ }^{4}$ For $\mathrm{G}<10$, the reference voltage range is limited to $-\mathrm{V}_{\mathrm{s}}+4.24 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{s}}-2.75 \mathrm{~V}$.

