FEATURES
High Speed
50 MHz Unity Gain Stable Operation
300 V/ms Slew Rate
120 ns Settling Time
Drives Unlimited Capacitive Loads
Excellent Video Performance
0.04\% Differential Gain @ 4.4 MHz
0.198 Differential Phase @ 4.4 MHz

Good DC Performance
2 mV max Input Offset Voltage
$15 \mathrm{mV} / 8 \mathrm{C}$ Input Offset Voltage Drift
Available in Tape and Reel in Accordance with
EIA-481A Standard
Low Power
Only 10 mA Total Supply Current for Both Amplifiers $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supplies

PRODUCT DESCRIPTION

The AD827 is a dual version of Analog Devices' industrystandard AD847 op amp. Like the AD847, it provides high speed, low power performance at low cost. The AD827 achieves a $300 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 50 MHz unity-gain bandwidth while consuming only 100 mW when operating from ± 5 volt power supplies. Performance is specified for operation using $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ power supplies.
The AD827 offers an open-loop gain of 3,500 V/V into 500Ω loads. It also features a low input voltage noise of $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, and a low input offset voltage of 2 mV maximum. Commonmode rejection ratio is a minimum of 80 dB . Power supply rejection ratio is maintained at better than 20 dB with input frequencies as high as 1 MHz , thus minimizing noise feedthrough from switching power supplies.

The AD827 is also ideal for use in demanding video applications, driving coaxial cables with less than 0.04% differential gain and 0.19° differential phase errors for 643 mV p-p into a 75Ω reverse terminated cable.
The AD827 is also useful in multichannel, high speed data conversion systems where its fast (120 ns to 0.1%) settling time is of importance. In such applications, the AD827 serves as an input buffer for 8-bit to 10 -bit A/D converters and as an output amplifier for high speed D / A converters.

REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

CONNECTION DIAGRAMS

8-Lead Plastic (N) and Cerdip (Q) Packages

20-Lead LCC (E) Package

APPLICATION HIGHLIGHTS

1. Performance is fully specified for operation using $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies.
2. A 0.04% differential gain and 0.19° differential phase error at the 4.4 MHz color subcarrier frequency, together with its low cost, make it ideal for many video applications.
3. The AD827 can drive unlimited capacitive loads, while its 30 mA output current allows 50Ω and 75Ω reverseterminated loads to be driven.
4. The AD827's 50 MHz unity-gain bandwidth makes it an ideal candidate for multistage active filters.
5. The AD827 is available in 8-lead plastic mini-DIP and cerdip, 20-lead LCC, and 16-lead SOIC packages. Chips and MIL-STD-883B processing are also available.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
(@ $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Model	Conditions	$\mathbf{V}_{\mathbf{S}}$	AD827J			AD827A/S			Unit
			Min	Typ	Max	Min	Typ	Max	
OUTPUT RESISTANCE	Open Loop			15				15	Ω
POWER SUPPLY Operating Range Quiescent Current	$\begin{aligned} & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	± 4.5	10 10.5	$\begin{aligned} & \pm 18 \\ & 13 \\ & 16 \\ & 13.5 \\ & 16.5 \end{aligned}$	± 4.5	10 10.5	$\begin{aligned} & \pm 18 \\ & 13 \\ & 16.5 / 17.5 \\ & 13.5 \\ & 17 / 18 \end{aligned}$	V mA mA mA mA
TRANSISTOR COUNT				92			92		

NOTES
${ }^{1}$ Offset voltage for the AD827 is guaranteed after power is applied and the device is fully warmed up. All other specifications are measured using high speed test equipment, approximately 1 second after power is applied.
${ }^{2}$ Full Power Bandwidth $=$ Slew Rate $/ 2 \pi \mathrm{~V}_{\text {PEAK }}$.
${ }^{3}$ Gain $=+1$, rising edge.
All min and max specifications are guaranteed.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . ± 18 V
Internal Power Dissipation ${ }^{2}$
Plastic (N) Package (Derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 1.5 W
Cerdip (Q) Package (Derate at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 1.3 W
Small Outline (R) Package (Derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . . . 1.5 W
LCC (E) Package (Derate at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 1.0 W
Input Common-Mode Voltage . $\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage . 6 V
Output Short Circuit Duration ${ }^{3}$. Indefinite
Storage Temperature Range (N, R) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range (Q) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
AD827J . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AD827A . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD827S . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range
(Soldering to 60 sec)
$300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
${ }^{2}$ Maximum internal power dissipation is specified so that T_{J} does not exceed $175^{\circ} \mathrm{C}$ at an ambient temperature of $25^{\circ} \mathrm{C}$.

Thermal Characteristics:
MiniDIP: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=33^{\circ} \mathrm{C} / \mathrm{W}$
Cerdip: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=30^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead Small Outline Package: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead LCC: $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=35^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{3}$ Indefinite short circuit duration is only permissible as long as the absolute maximum power rating is not exceeded.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD827JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Lead Plastic DIP	$\mathrm{N}-8$
AD827JR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-Lead Plastic SO	$\mathrm{R}-16$
AD827AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Cerdip	$\mathrm{Q}-8$
AD827SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Cerdip	$\mathrm{Q}-8$
AD827SQ/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Cerdip	$\mathrm{Q}-8$
5962-9211701MPA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Cerdip	$\mathrm{Q}-8$
AD827SE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead LCC	$\mathrm{E}-20 \mathrm{~A}$
5962-9211701M2A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead LCC	$\mathrm{E}-20 \mathrm{~A}$
AD827JR-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Tape \& Reel	
AD827JChips	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Die	
AD827SChips	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Die	

METALLIZATION PHOTOGRAPH

Contact factory for latest dimensions.
Dimensions shown in inches and (mm). Substrate is connected to $\mathrm{V}+$.

AD827-Typical Performance Characteristics @ $@+25^{\circ} \mathrm{C} \& \pm 15 \mathrm{~V}$, unless otherwise noteed)

Figure1. InputCommon-Mode
Range vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Quiescent Current vs. Temperature

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Temperature

Figure 8. Short-Circuit
Current Limit vs. Temperature

Figure 3. Output Voltage Swing vs. Load Resistance

Figure 6. Closed-Loop Output Impedance vs. Frequency, Gain = +1

Figure 9. Gain Bandwidth vs. Temperature

Figure 10. Open-Loop Gain and Phase Margin vs. Frequency vs. Load Resistance

Figure 14. Large Signal
Frequency Response

Figure 12. Power Supply Rejection Ratio vs. Frequency

Figure 15. Output Swing and Error vs. Settling Time

Figure 18. Slew Rate vs.
Temperature

Figure 19. Crosstalk vs. Frequency

$\mathrm{F}_{\mathrm{L}}=500 \mathrm{~s} 2 \mathrm{FOR} \pm \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 1 \mathrm{~kL} 2 \mathrm{FOR} \pm \mathrm{V}_{\mathrm{S}}=15 \mathrm{~W}$ USE GROUND PLANE PINOUT SHOWN IS FOR MANIPIP PACKAGE

Figure 20. Crosstalk Test Circuit

INPUT PROTECTION PRECAUTIONS

An input resistor (resistor R_{IN} of Figure 21a) is recommended in circuits where the input common-mode voltage to the AD827 may exceed (on a transient basis) the positive supply voltage. This resistor provides protection for the input transistors by limiting the maximum current that can be forced into their bases.

For high performance circuits, it is recommended that a second resistor (R_{B} in Figures 21a and 22a) be used to reduce biascurrent errors by matching the impedance at each input. This resistor reduces the error caused by offset voltages by more than an order of magnitude.

Figure 21a. Follower Connection

Figure 22a. Inverter Connection

Figure 21b. Follower Large Signal Pulse Response

Figure 22b. Inverter Large Signal Pulse Response

Figure 21c. Follower Small Signal Pulse Response

Figure 22c. Inverter Small Signal Pulse Response

VIDEO LINE DRIVER

The AD827 functions very well as a low cost, high speed line driver for either terminated or unterminated cables. Figure 23 shows the AD827 driving a doubly terminated cable in a follower configuration.

Figure 23. A Video Line Driver
The termination resistor, R_{T}, (when equal to the cable's characteristic impedance) minimizes reflections from the far end of the cable. While operating from $\pm 5 \mathrm{~V}$ supplies, the AD827 maintains a typical slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$, which means it can drive a $\pm 1 \mathrm{~V}, 30 \mathrm{MHz}$ signal into a terminated cable.

Table I. Video Line Driver Performance Summary

$\mathbf{V}_{\text {IN }}{ }^{*}$	$\mathbf{V}_{\text {SUPPLY }}$	$\mathbf{C}_{\mathbf{C}}$	$\mathbf{- 3 ~ d B ~ B}$	Over- shoot
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	20 pF	23 MHz	4%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	15 pF	21 MHz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	0 pF	13 MHz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	20 pF	18 MHz	2%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	15 pF	16 MHz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	0 pF	11 MHz	0%

*-3 dB bandwidth numbers are for the 0 dBm signal input. Overshoot numbers are the percent overshoot of the 1 V step input.
A back-termination resistor (R_{BT}, also equal to the characteristic impedance of the cable) may be placed between the AD827 output and the cable input, in order to damp any reflected signals caused by a mismatch between R_{T} and the cable's characteristic impedance. This will result in a flatter frequency response, although this requires that the op amp supply $\pm 2 \mathrm{~V}$ to the output in order to achieve $a \pm 1 \mathrm{~V}$ swing at resistor R_{T}.

A HIGH SPEED THREE OP AMP INSTRUMENTATION AMPLIFIER CIRCUIT

The instrumentation amplifier circuit shown in Figure 24 can provide a range of gains. Table II details performance.

Figure 24. A High Bandwidth Three Op Amp Instrumentation Amplifier

Table II. Performance Specifications for the Three Op Amp Instrumentation Amplifier

		Small Signal Bandwidth Gain
$\mathbf{R}_{\mathbf{G}}$	1 V p-p Output	

AD827

A TWO-CHIP VOLTAGE-CONTROLLED AMPLIFIER (VCA) WITH EXPONENTIAL RESPONSE

Voltage-controlled amplifiers are often used as building blocks in automatic gain control systems. Figure 25 shows a two-chip VCA built using the AD827 and the AD539, a dual, currentoutput multiplier. As configured, the circuit has its two

Figure 25. A Wide Range Voltage-Controlled Amplifier Circuit
multipliers connected in series. They could also be placed in parallel with an increase in bandwidth and a reduction in gain. The gain of the circuit is controlled by V_{X}, which can range from 0 to 3 V dc. Measurements show that this circuit easily supplies 2 V p-p into a 100Ω load while operating from $\pm 5 \mathrm{~V}$ supplies. The overall bandwidth of the circuit is approximately 7 MHz with 0.5 dB of peaking.
Each half of the AD827 serves as an I/V converter and converts the output current of one of the two multipliers in the AD539 into an output voltage. Each of the AD539's two multipliers contains two internal $6 \mathrm{k} \Omega$ feedback resistors; one is connected
between the CH 1 output and Z 1 , the other between the CH 1 output and W1. Likewise, in the CH2 multiplier, one of the feedback resistors is connected between CH 2 and Z 2 and the other is connected between CH2 and Z2. In Figure 25, Z1 and W1 are tied together, as are Z2 and W2, providing a $3 \mathrm{k} \Omega$ feedback resistor for the op amp. The 2 pF capacitors connected between the AD539's W1 and CH1 and W2 and CH2 pins are in parallel with the feedback resistors and thus reduce peaking in the VCA's frequency response. Increasing the values of C3 and C 4 can further reduce the peaking at the expense of reduced bandwidth. The 1.25 mA full-scale output current of the AD539 and the $3 \mathrm{k} \Omega$ feedback resistor set the full-scale output voltage of each multiplier at 3.25 V p-p.
Current limiting in the AD827 (typically 30 mA) limits the output voltage in this application to about 3 V p-p across a 100Ω load. Driving a 50Ω reverse-terminated load divides this value by two, limiting the maximum signal delivered to a 50Ω load to about 1.5 V p-p, which suffices for video signal levels. The dynamic range of this circuit is approximately 55 dB and is primarily limited by feedthrough at low input levels and by the maximum output voltage at high levels.

Guidelines for Grounding and Bypassing

When designing practical high frequency circuits using the AD 827 , some special precautions are in order. Both short interconnection leads and a large ground plane are needed whenever possible to provide low resistance, low inductance circuit paths. One should remember to minimize the effects of capacitive coupling between circuits. Furthermore, IC sockets should be avoided. Feedback resistors should be of a low enough value that the time constant formed with stray circuit capacitances at the amplifier summing junction will not limit circuit performance. As a rule of thumb, use feedback resistor values that are less than $5 \mathrm{k} \Omega$. If a larger resistor value is necessary, a small ($<10 \mathrm{pF}$) feedback capacitor in parallel with the feedback resistor may be used. The use of $0.1 \mu \mathrm{~F}$ ceramic disc capacitors is recommended for bypassing the op amp's power supply leads.

OUTLINE DIMENSIONS

8-Lead Ceramic DIP-Glass Hermetic Seal Package [CERDIP] (Q-8)
Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20A)
Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Revision History

Location
8/02-Data Sheet changed from REV. B to REV. C.
Updated Outline Dimensions .9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
OPA4187IRUMT OPA202IDGKT 514327X 561681F 647876R 5962-9080901MCA* MAX410CPA MAX44241AUK+T LT6230IS6\#TR LT1112S8\#TR OP227GN\#PBF LT6020IDD-1\#PBF LT6023IDD\#PBF LT6013AIDD\#PBF LT6237IMS8\#PBF LT1124CS8\#TR LT1215CS8\#TRPBF ADA4622-1ARZ-R7 NCS21871SQ3T2G NCS21871SN2T1G NCV21871SQ3T2G NCV21871SN2T1G AD8538WAUJZ-R7 NCS21912DMR2G MCP6V82-EMS MCP6V92-EMS TLC27L7CP TLE2022MD TLV2473CDR MCP6V34-E/ST MCP6V84-EST MCP6V94-EST LT1014DDWR 5962-89641012A 5962-8859301M2A 5962-89801012A 5962-9452101M2A LMC6064IN LT1013DDR TL034ACDR TLC2201AMDG4 TLC274MDRG4 TLE2021QDRG4Q1 TLE2024BMDWG4 AD8691WAUJZ-R7

AD8629TRZ-EP-R7 AD8604ARQZ TS507IYLT MAX4238AUT+T MAX4168EPD

