Data Sheet

FEATURES

Fixed gain of $\mathbf{2 0 ~ d B}$
Operational frequency of 1 MHz to 2.7 GHz
Linear output power up to 9 dBm
Input/output internally matched to 50Ω
Temperature and power supply stable
Noise figure: 5.3 dB
Power supply: 3 V or 5 V

APPLICATIONS

VCO buffers

General Tx/Rx amplification
Power amplifier predrivers
Low power antenna drivers

GENERAL DESCRIPTION

The AD8353 is a broadband, fixed-gain, linear amplifier that operates at frequencies from 1 MHz up to 2.7 GHz . It is intended for use in a wide variety of wireless devices, including cellular, broadband, CATV, and LMDS/MMDS applications.

By taking advantage of Analog Devices, Inc., high performance, complementary Si bipolar process, these gain blocks provide excellent stability over process, temperature, and power supply. This amplifier is single-ended and internally matched to 50Ω with a return loss of greater than 10 dB over the full operating frequency range.

The AD8353 provides linear output power of 9 dBm with 20 dB of gain at 900 MHz when biased at 3 V and an external RF choke is connected between the power supply and the output pin. The dc supply current is 42 mA . At 900 MHz , the output third-order intercept (OIP3) is greater than 23 dBm and is 19 dBm at 2.7 GHz .

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The noise figure is 5.3 dB at 900 MHz . The reverse isolation $\left(\mathrm{S}_{12}\right)$ is -36 dB at 900 MHz and -30 dB at 2.7 GHz .

The AD8353 can also operate with a 5 V power supply; in which case, no external inductor is required. Under these conditions, the AD8353 delivers 8 dBm with 20 dB of gain at 900 MHz . The dc supply current is 42 mA . At 900 MHz , the OIP3 is greater than 22 dBm and is 19 dBm at 2.7 GHz . The noise figure is 5.6 dB at 900 MHz . The reverse isolation $\left(\mathrm{S}_{12}\right)$ is -35 dB .

The AD8353 is fabricated on Analog Devices proprietary, high performance, 25 GHz , Si complementary, bipolar IC process. The AD8353 is available in a chip scale package that uses an exposed paddle for excellent thermal impedance and low impedance electrical connection to ground. It operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range, and an evaluation board is also available.

Rev. F

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications. 3
Absolute Maximum Ratings. 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
REVISION HISTORY
2/2017—Rev. E to Rev. FChanged CP-8-1 to CP-8-23Throughout
Changes to Figure 2 6
Changes to Ordering Guide 16
Updated Outline Dimensions 16
12/2013-Rev. D to Rev. E
Changes to Figure 35. 12
9/2013—Rev. C to Rev. D
Changes to Figure 2 6
Added EPAD Row, Table 4 6
Added Figure 35; Renumbered Sequentially 12
Added Exposed Pad Notation to Outline Dimensions 16
3/2009—Rev. B to Rev. C
Changes to Lead Temperature (Soldering, 60 sec) Parameter,
Table 3 5
Changes to Ordering Guide 16
12/2005—Rev. A to Rev. BChanges to Table 1. 3
Changes to Table 2 4
Changes to Figure 16 9
Changes to Figure 32 11
Moved Figure 39 to Page 15; Renumbered Sequentially 15
Changes to Ordering Guide 16
Typical Performance Characteristics 7
Theory of Operation 13
Basic Connections 13
Applications Information 14
Low Frequency Applications Below 100 MHz 14
Evaluation Board 15
Outline Dimensions 16
Ordering Guide 16
8/2005—Rev. 0 to Rev. A
Updated Format. Universal
Changes to Product Title 1
Changes to Features, Figure 1, and General Description 1
Changes to Table 1 3
Changes to Table 2.4
Changes to Figure 2 and Table 46
Changes to Figure 3 caption and Figure 6 caption.7
Changes to Figure 17 caption and Figure 20 caption 9
Changes to Basic Connections Section 13
Added Low Frequency Applications Below 100 MHz Section. 14
Changes to Table 5. 15
Changes to Ordering Guide 16
Updated Outline Dimensions. 16
2/2002—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 100 \mathrm{nH}$ external inductor between RFOUT and VPOS, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		1		2700	MHz
Gain	$\mathrm{f}=900 \mathrm{MHz}$		19.8		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		17.7		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		15.6		dB
Delta Gain	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.97		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.15		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.34		dB
Gain Supply Sensitivity	VPOS $\pm 10 \%$, $\mathrm{f}=900 \mathrm{MHz}$		0.04		dB/V
	$\mathrm{f}=1.9 \mathrm{GHz}$		-0.004		dB / V
	$\mathrm{f}=2.7 \mathrm{GHz}$		-0.04		dB/V
Reverse Isolation (S_{12})	$\mathrm{f}=900 \mathrm{MHz}$		-35.6		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		-34.9		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		-30.3		dB
RF INPUT INTERFACE Input Return Loss	Pin RFIN				
	$\mathrm{f}=900 \mathrm{MHz}$		22.3		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		20.9		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		11.2		dB
RF OUTPUT INTERFACE Output Compression Point	Pin RFOUT				
	$\mathrm{f}=900 \mathrm{MHz}, 1 \mathrm{~dB}$ compression		9.1		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}$		8.4		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}$		7.6		dBm
Delta Compression Point	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.46		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.17		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1		dB
Output Return Loss	$\mathrm{f}=900 \mathrm{MHz}$		26.3		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		16.9		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		13.3		dB
DISTORTION/NOISE					
Output Third-Order Intercept	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm}$		23.6		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-28 \mathrm{dBm}$		20.8		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-28 \mathrm{dBm}$		19.5		dBm
Output Second-Order Intercept Noise Figure	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-28 \mathrm{dBm}$		31.6		dBm
	$\mathrm{f}=900 \mathrm{MHz}$		5.3		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		6		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		6.8		dB
POWER INTERFACE	Pin VPOS				
Supply Voltage		2.7	3	3.3	V
Total Supply Current		35	41	48	mA
Supply Voltage Sensitivity			15.3		mA/V
Temperature Sensitivity	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		60		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no external inductor between RFOUT and VPOS, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		1		2700	MHz
Gain	$\mathrm{f}=900 \mathrm{MHz}$		19.5		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		17.6		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		15.7		dB
Delta Gain	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-0.96		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.18		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.38		dB
Gain Supply Sensitivity	VPOS $\pm 10 \%, f=900 \mathrm{MHz}$		0.09		$d B / V$
	$\mathrm{f}=1.9 \mathrm{GHz}$		-0.01		dB / V
	$\mathrm{f}=2.7 \mathrm{GHz}$		-0.09		$d B / V$
Reverse Isolation (S_{12})	$\mathrm{f}=900 \mathrm{MHz}$		-35.4		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		-34.6		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		-30.2		
RF INPUT INTERFACE Input Return Loss	Pin RFIN				
	$\mathrm{f}=900 \mathrm{MHz}$		22.9		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		21.7		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		11.5		dB
RF OUTPUT INTERFACE Output Compression Point	Pin RFOUT				
	$\mathrm{f}=900 \mathrm{MHz}$		8.3		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}$		8.1		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}$		7.5		dBm
Delta Compression Point	$\mathrm{f}=900 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.05		dB
	$\mathrm{f}=1.9 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.49		dB
	$\mathrm{f}=2.7 \mathrm{GHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		-1.33		dB
Output Return Loss	$\mathrm{f}=900 \mathrm{MHz}$		27		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		22		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		14.3		dB
DISTORTION/NOISE					
Output Third-Order Intercept	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{Pin}_{\text {in }}=-28 \mathrm{dBm}$		22.8		dBm
	$\mathrm{f}=1.9 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-28 \mathrm{dBm}$		20.6		dBm
	$\mathrm{f}=2.7 \mathrm{GHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-28 \mathrm{dBm}$		19.5		dBm
Output Second-Order Intercept	$\mathrm{f}=900 \mathrm{MHz}, \Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{PiN}_{\text {IN }}=-28 \mathrm{dBm}$		30.3		dBm
Noise Figure	$\mathrm{f}=900 \mathrm{MHz}$		5.6		dB
	$\mathrm{f}=1.9 \mathrm{GHz}$		6.3		dB
	$\mathrm{f}=2.7 \mathrm{GHz}$		7.1		
POWER INTERFACE	Pin VPOS				
Supply Voltage		4.5	5	5.5	V
Total Supply Current		35	42	52	mA
Supply Voltage Sensitivity			4.3		mA / V
Temperature Sensitivity	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		45.7		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, VPOS	5.5 V
Input Power (re: 50Ω)	10 dBm
\quad Equivalent Voltage	700 mV rms
Internal Power Dissipation	
\quad Paddle Not Soldered	325 mW
\quad Paddle Soldered	812 mW
θ_{JA} (Paddle Soldered)	$80^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (Paddle Not Soldered)	$200^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$260^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,8	COM1	Device Common. Connect to low impedance ground.
2	NC	No Connection.
3	RFIN	RF Input Connection. Must be ac-coupled.
4,5	COM2	Device Common. Connect to low impedance ground.
6	VPOS	Positive Supply Voltage.
7	RFOUT	RF Output Connection. Must be ac-coupled.
	EPAD	Exposed Pad. The exposed pad must be connected to a low impedance ground pad.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. S_{11} vs. Frequency, $V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}, d c \leq f \leq 3 \mathrm{GHz}$

Figure 4. Gain vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 5. Reverse Isolation vs. Frequency, $V_{s}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 6. S_{22} vs. Frequency, $V_{s}=3 V, T_{A}=25^{\circ} \mathrm{C}, d c \leq f \leq 3 \mathrm{GHz}$

Figure 7. Gain vs. Frequency, $V_{S}=3 V, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 8. Reverse Isolation vs. Frequency, $V_{S}=3 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 9. $P_{1 d B}$ Vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 10. Distribution of $P_{1 d B}, V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 11. OIP3 vs. Frequency, $V_{s}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 12. $P_{1 d B}$ vs. Frequency, $V_{S}=3 V, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 13. Distribution of OIP3, $V_{S}=3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 14. OIP3 vs. Frequency, $V_{S}=3 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 15. Noise Figure vs. Frequency, $V_{S}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and $3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 16. Distribution of Noise Figure, $V_{S}=3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 17. S_{11} vs. Frequency, $V_{S}=5 V, T_{A}=25^{\circ} \mathrm{C}, d c \leq f \leq 3 \mathrm{GHz}$

Figure 18. Noise Figure vs. Frequency, $V_{s}=3 V, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 19. Supply Current vs. Temperature, $V_{s}=2.7 \mathrm{~V}, 3 \mathrm{~V}$, and 3.3 V

Figure 20. S_{22} vs. Frequency, $V_{s}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, d c \leq f \leq 3 \mathrm{GHz}$

Figure 21. Gain vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 22. Reverse Isolation vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 23. $P_{1 d B}$ Vs. Frequency, $V_{s}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 24. Gain vs. Frequency, $V_{S}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 25. Reverse Isolation vs. Frequency, $V_{S}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 26. $P_{1 d B}$ Vs. Frequency, $V_{S}=5 V, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 27. Distribution of $P_{1 d B}, V_{S}=3 V, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 28. OIP3 vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=27^{\circ} \mathrm{C}$

Figure 29. Noise Figure vs. Frequency, $V_{S}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and $5.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Figure 30. Distribution of OIP3, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 31. OIP3 vs. Frequency, $V_{s}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 32. Noise Figure vs. Frequency, $V_{s}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

Figure 33. Distribution of Noise Figure, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=2.2 \mathrm{GHz}$

Figure 34. Supply Current vs. Temperature, $V_{s}=4.5 \mathrm{~V}, 5 \mathrm{~V}$, and 5.5 V

Figure 35. Supply Current vs. Temperature, $V_{s}=3 \mathrm{~V}$ and 5 V Frequency $=900 \mathrm{MHz}$

Figure 36. Output Power and Gain vs. Input Power, $V_{S}=3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=900 \mathrm{MHz}$

Figure 37. Output Power and Gain vs. Input Power, $V_{S}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, f=900 \mathrm{MHz}$

THEORY OF OPERATION

The AD8353 is a 2-stage, feedback amplifier employing both shunt-series and shunt-shunt feedback. The first stage is degenerated and resistively loaded and provides approximately 10 dB of gain. The second stage is a PNP-NPN Darlington output stage, which provides another 10 dB of gain. Seriesshunt feedback from the emitter of the output transistor sets the input impedance to 50Ω over a broad frequency range. Shuntshunt feedback from the amplifier output to the input of the Darlington stage helps to set the output impedance to 50Ω. The amplifier can be operated from a 3 V supply by adding a choke inductor from the amplifier output to VPOS. Without this choke inductor, operation from a 5 V supply is also possible.

BASIC CONNECTIONS

The AD8353 RF gain block is a fixed gain amplifier with single-ended input and output ports whose impedances are nominally equal to 50Ω over the frequency range 1 MHz to 2.7 GHz . Consequently, it can be directly inserted into a 50Ω system with no impedance matching circuitry required. The input and output impedances are sufficiently stable vs. variations in temperature and supply voltage that no impedance matching compensation is required. A complete set of scattering parameters is available at http://www.analog.com.

The input pin (RFIN) is connected directly to the base of the first amplifier stage, which is internally biased to approximately 1 V ; therefore, a dc blocking capacitor should be connected between the source that drives the AD8353 and the input pin, RFIN.

It is critical to supply very low inductance ground connections to the ground pins (Pin 1, Pin 4, Pin 5, and Pin 8) as well as to the backside exposed paddle. This ensures stable operation.

The AD8353 is designed to operate over a wide supply voltage range, from 2.7 V to 5.5 V . The output of the part, RFOUT, is taken directly from the collector of the output amplifier stage. This node is internally biased to approximately 2.2 V when the supply voltage is 5 V . Consequently, a dc blocking capacitor should be connected between the output pin, RFOUT, and the load that it drives. The value of this capacitor is not critical, but it should be 100 pF or larger.

When the supply voltage is 3 V , it is recommended that an external RF choke be connected between the supply voltage and the output pin, RFOUT. This increases the dc voltage applied to the collector of the output amplifier stage, which improves performance of the AD8353 to be very similar to the performance produced when 5 V is used for the supply voltage. The inductance of the RF choke should be approximately 100 nH , and care should be taken to ensure that the lowest series self-resonant frequency of this choke is well above the maximum frequency of operation for the AD8353. For lower frequency operation, use a higher value inductor.

Bypass the supply voltage input, VPOS, using a large value capacitance (approximately $0.47 \mu \mathrm{~F}$ or larger) and a smaller, high frequency bypass capacitor (approximately 100 pF) physically located close to the VPOS pin.

The recommended connections and components are shown in Figure 41.

APPLICATIONS INFORMATION

The AD8353 RF gain block can be used as a general-purpose, fixed gain amplifier in a wide variety of applications, such as a driver for a transmitter power amplifier (see Figure 38). Its excellent reverse isolation also makes this amplifier suitable for use as a local oscillator buffer amplifier that would drive the local oscillator port of an upconverter or downconverter mixer (see Figure 39).

Figure 38. AD8353 as a Driver Amplifier

Figure 39. AD8353 as a LO Driver Amplifier

LOW FREQUENCY APPLICATIONS BELOW 100 MHz

The AD8353 RF gain block can be used below 100 MHz . To accomplish this, the series dc blocking capacitors, C 1 and C 2 , need to be changed to a higher value that is appropriate for the desired frequency. C 1 and C 2 were changed to $0.1 \mu \mathrm{~F}$ to accomplish the sweep in Figure 40.

EVALUATION BOARD

Figure 41 shows the schematic of the AD8353 evaluation board. Note that L1 is shown as an optional component that is used to obtain maximum gain only when $\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$. The board is powered by a single supply in the 2.7 V to 5.5 V range. The power supply is decoupled by a $0.47 \mu \mathrm{~F}$ and a 100 pF capacitor.

Figure 41. Evaluation Board Schematic

Table 5. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2	AC coupling capacitors.	1000 pF,
C3		0603
C4	High frequency bypass capacitor.	100 pF
L1		0603
	Low frequency bypass capacitor.	$0.47 \mu \mathrm{~F}$,
	Optional RF choke, used to increase	0603
	Current through output stage when	0603
	$\mathrm{~V}_{\mathrm{P}}=3 \mathrm{~V}$. . Not recommended for use	
	when $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V}$.	

Figure 42. Silkscreen Top

Figure 43. Component Side

AD8353

OUTLINE DIMENSIONS

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8353ACPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-$ Lead Lead Frame Chip Scale Package [LFCSP], 7" Tape and Reel Evaluation Board	CP-8-23	0E
AD8353-EVALZ				

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Amplifier category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15\#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011

[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

