FEATURES

Replaces Hybrid Amplifiers in Many Applications
AC PERFORMANCE:
Settles to 0.01\% in 350 ns
100 V/ $\mu \mathrm{s}$ Slew Rate
12.8 MHz Min Unity Gain Bandwidth
1.75 MHz Full Power Bandwidth at 20 V p-p

DC PERFORMANCE:
0.25 mV Max Input Offset Voltage
$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Offset Voltage Drift
0.5 nA Input Bias Current
$250 \mathrm{~V} / \mathrm{mV}$ Min Open-Loop Gain
$4 \mu \mathrm{~V}$ p-p Max Voltage Noise, 0.1 Hz to 10 Hz
94 dB Min CMRR
Available in Plastic Mini-DIP, Hermetic CERDIP, and SOIC Packages. Also Available in Tape and Reel in Accordance with EIA-481A Standard

GENERAL DESCRIPTION

The AD845 is a fast, precise, N channel JFET input, monolithic operational amplifier. It is fabricated using Analog Devices' complementary bipolar (CB) process. Advanced laser-wafer trimming technology enables the very low input offset voltage and offset voltage drift performance to be realized. This precision, when coupled with a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$, a stable unity gain bandwidth of 16 MHz , and a settling time of 350 ns to 0.01%-while driving a parallel load of 100 pF and 500Ω represents a combination of features unmatched by any FET input IC amplifier. The AD845 can easily be used to upgrade many existing designs that use BiFET or FET input hybrid amplifiers and, in some cases, those which use bipolar input op amps.
The AD845 is ideal for use in applications such as active filters, high speed integrators, photodiode preamps, sample-and-hold amplifiers, and \log amplifiers, and for buffering A/D and D/A converters. The $250 \mu \mathrm{~V}$ max input offset voltage makes offset nulling unnecessary in many applications. The common-mode rejection ratio of 110 dB over a $\pm 10 \mathrm{~V}$ input voltage range represents exceptional performance for a JFET input high speed op amp. This, together with a minimum open-loop gain of $250 \mathrm{~V} / \mathrm{mV}$ ensures that 12-bit performance is achieved, even in unity gain buffer circuits.

REV. E

CONNECTION DIAGRAMS

Plastic Mini-DIP (N) Package	16-Lead SOIC
and CERDIP (Q) Package	(R-16) Package

The AD845 conforms to the standard op amp pinout except that offset nulling is to $\mathrm{V}+$. The AD845J and AD845K grade devices are available specified to operate over the commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. AD845A and AD845B devices are specified for operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range. The AD845S is specified to operate over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Both the industrial and military versions are available in 8-lead CERDIP packages. The commercial version is available in an 8 -lead plastic mini-DIP and 16-lead SOIC; J and S grade chips are also available.

PRODUCT HIGHLIGHTS

1. The high slew rate, fast settling time, and dc precision of the AD845 make it ideal for high speed applications requiring 12-bit accuracy.
2. The performance of circuits using the LF400, HA2520, HA2522, HA2525, HA2620, HA2622, HA2625, 3550, OPA605, and LH0062 can be upgraded in most cases.
3. The AD845 is unity gain stable and internally compensated.
4. The AD 845 is specified while driving $100 \mathrm{pF} / 500 \Omega$ loads.

Parameter	Conditions	Min	$\begin{aligned} & \text { AD845J/A } \\ & \text { Typ } \end{aligned}$	Max	Min	AD845K/B Typ	Max	Min	AD845S Typ	Max	Unit
INPUT OFFSET VOLTAGE ${ }^{1}$ Initial Offset Offset Drift	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		0.7	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 20 \\ & \hline \end{aligned}$		0.1 1.5	$\begin{aligned} & 0.25 \\ & 0.4 \\ & 5.0 \\ & \hline \end{aligned}$		0.25	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 10 \end{aligned}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
INPUT BIAS CURRENT ${ }^{2}$ Initial	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		0.75	$\begin{aligned} & \mathbf{2} \\ & 45 / 75 \end{aligned}$		0.5	$\begin{aligned} & 1 \\ & 18 / 38 \end{aligned}$		0.75	$\begin{aligned} & 2 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
INPUT OFFSET CURRENT Initial	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		25	$\begin{aligned} & 300 \\ & 3 / 6.5 \end{aligned}$		15	$\begin{aligned} & 100 \\ & 1.2 / 2.6 \end{aligned}$		25	$\begin{aligned} & 300 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance			$\begin{aligned} & 10^{11} \\ & 4.0 \end{aligned}$			$\begin{aligned} & 10^{11} \\ & 4.0 \end{aligned}$			$\begin{aligned} & 10^{11} \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
INPUT VOLTAGE RANGE Differential Common-Mode Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	$\begin{aligned} & \pm 10 \\ & 86 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10.5 /-13 \\ & 110 \end{aligned}$		$\begin{aligned} & \pm 10 \\ & 94 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10.5 /-13 \\ & 113 \end{aligned}$		$\begin{aligned} & \pm 10 \\ & 86 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10.5 /-13 \\ & 110 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
INPUT VOLTAGE NOISE	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 4 \\ & 80 \\ & 60 \\ & 25 \\ & 18 \\ & 12 \end{aligned}$			$\begin{aligned} & 4 \\ & 80 \\ & 60 \\ & 25 \\ & 18 \\ & 12 \end{aligned}$			$\begin{aligned} & 4 \\ & 80 \\ & 60 \\ & 25 \\ & 18 \\ & 12 \end{aligned}$		
INPUT CURRENT NOISE	$\mathrm{f}=1 \mathrm{kHz}$		0.1			0.1			0.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
OPEN-LOOP GAIN	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{LOAD}} \geq 500 \Omega \\ & \mathrm{~T}_{\mathrm{MIN}}-\mathrm{T}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 70 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$		$\begin{array}{\|l} 250 \\ 125 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
OUTPUT CHARACTERISTICS Voltage Current Output Resistance	$\mathrm{R}_{\text {LOAD }} \geq 500 \Omega$ Short Circuit Open Loop	± 12.5	$\begin{aligned} & 50 \\ & 5 \end{aligned}$		± 12.5	$\begin{aligned} & 50 \\ & 5 \end{aligned}$		± 12.5	$\begin{aligned} & 50 \\ & 5 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \Omega \end{aligned}$
FREQUENCY RESPONSE Small Signal Full Power Bandwidth ${ }^{3}$ Rise Time Overshoot Slew Rate Settling Time	Unity Gain $\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=500 \Omega \end{aligned}$ 10 V Step $\begin{aligned} & \mathrm{C}_{\text {LOAD }}=100 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega \\ & \text { to } 0.01 \% \\ & \text { to } 0.1 \% \end{aligned}$	12.8 80	16 1.75 20 20 100 350 250		13.6 94	16 1.75 20 20 100 350 250	500	13.6 94	16 1.75 20 20 100 $\begin{aligned} & 350 \\ & 250 \end{aligned}$		MHz MHz ns \% V/ $\mu \mathrm{s}$ ns ns
DIFFERENTIAL GAIN	$\mathrm{f}=4.4 \mathrm{MHz}$		0.04			0.04			0.04		\%
DIFFERENTIAL PHASE	$\mathrm{f}=4.4 \mathrm{MHz}$		0.02			0.02			0.02		Degree
POWER SUPPLY Rated Performance Operating Range Rejection Ratio Quiescent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & \pm 4.75 \\ & 88 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 110 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 4.75 \\ & 95 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 113 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \pm 4.75 \\ & 88 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 110 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \\ & \mathrm{~mA} \end{aligned}$

NOTES

${ }^{1}$ Input offset voltage specifications are guaranteed after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{2}$ Bias current specifications are guaranteed maximum at either input after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{3}$ FPBW $=$ slew rate $/ 2 \pi \mathrm{~V}$ peak.
${ }^{4} \mathrm{~S}$ grade $\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\mathrm{MAX}}$ are tested with automatic test equipment at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$.
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at final electrical test. Results from these tests are used to calculate outgoing quality levels.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . $\pm 18 \mathrm{~V}$
Internal Power Dissipation

Plastic Mini-DIP . 1.6 W
CERDIP . 1.4 W
16-Lead SOIC . 1.5 W
Input Voltage . + V ${ }_{S}$
Output Short-Circuit Duration Indefinite
Differential Input Voltage $+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{S}}$
Storage Temperature Range
Q . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
N, R . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60 sec) $300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Mini-DIP package: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$; CERDIP package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W}$; SOIC package: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$.

METALIZATION PHOTOGRAPH
Dimensions shown in inches and (mm).
Contact factory for latest dimensions.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option ${ }^{1}$
AD845JN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	$\mathrm{N}-8$
AD845KN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	$\mathrm{N}-8$
AD845JR-16	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16-Lead SOIC	$\mathrm{R}-16$
AD845JR-16-REEL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-16$
AD845JR-16-REEL7	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Tape and Reel	$\mathrm{R}-16$
AD845AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead CERDIP	$\mathrm{Q}-8$
AD845BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead CERDIP	$\mathrm{Q}-8$
AD845SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	$\mathrm{Q}-8$
AD845SQ $/ 883 \mathrm{~B}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	$\mathrm{Q}-8$
$5962-8964501 \mathrm{PA}^{2}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	$\mathrm{Q}-8$
AD845JCHIPS	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Die	

[^0]
AD845-Typical Performance Characteristics

TPC 1. Input Voltage Swing vs. Supply Voltage

TPC 4. Quiescent Current vs. Supply Voltage

TPC 7. Input Bias Current vs. Common-Mode Voltage

TPC 2. Output Voltage Swing vs. Supply Voltage

TPC 5. Input Bias Current vs. Temperature

TPC 8. Short-Circuit Current Limit vs. Temperature

TPC 3. Output Voltage Swing vs. Resistive Load

TPC 6. Magnitude of Output Impedance vs. Frequency

TPC 9. Unity-Gain Bandwidth vs. Temperature

TPC 10. Open-Loop Gain and Phase Margin vs. Frequency

TPC 13. Common-Mode Rejection vs. Frequency

TPC 16. Harmonic Distortion vs. Frequency

TPC 11. Open-Loop Gain vs. Supply Voltage

TPC 14. Large Signal Frequency Response

TPC 17. Input Noise Voltage Spectral Density

TPC 12. Power Supply
Rejection vs. Frequency

TPC 15. Output Swing and Error vs. Settling Time

TPC 18. Slew Rate vs. Temperature

TPC 19. Recommended Power Supply Bypassing

TPC 22. Unity Gain Follower

TPC 25. Unity Gain Inverter

TPC 20. AD845 Simplified Schematic

TPC 23. Unity Gain Follower Large Signal Pulse Response

TPC 26. Unity Gain Inverter Large Signal Pulse Response

TPC 21. Offset Null Configuration

TPC 24. Unity Gain Follower Small Signal Pulse Response

TPC 27. Unity Gain Inverter Small Signal Pulse Response

MEASURING AD845 SETTLING TIME

Figure 1 shows AD845 settling time performance. This measurement was accomplished by driving the amplifier in the unity gain inverting mode with a fast pulse generator. The input summing junction was measured using false nulling techniques.
Settling time is defined as the interval of time from the application of an ideal step function input until the closed-loop amplifier output has entered and remains within a specified error band.

Components of settling time include:

1. Propagation time through the amplifier
2. Slewing time to approach the final output value
3. Recovery time from overload associated with the slewing
4. Linear settling to within a specified error band

These individual components can be seen easily in Figure 1. Settling time is extremely important in high speed applications where the current output of a DAC must be converted to a voltage. When driving a 500Ω load in parallel with a 100 pF capacitor, the AD 845 settles to 0.1% in 250 ns and to 0.01% in 310 ns .

Figure 1. Settling Characteristics 0 V to 10 V Step Upper Trace: Output of AD845 Under Test (5 V/Div) Lower Trace: Error Voltage (1 mV/Div)

Figure 2. Settling Time Test Circuit

A HIGH SPEED INSTRUMENTATION AMP

The 3-op amp instrumentation amplifier circuit shown in Figure 3 can provide a range of gains from unity up to 1000 and higher. The instrumentation amplifier configuration features high common-mode rejection, balanced differential inputs, and
stable, accurately defined gain. Low input bias currents and fast settling are achieved with the FET input AD845.
Most monolithic instrumentation amplifiers do not have the high frequency performance of the circuit in Figure 3. The circuit bandwidth is 10.9 MHz at a gain of 1 and 8.8 MHz at a gain of 10 ; settling time for the entire circuit is 900 ns to 0.01% for a 10 V step (Gain = 10).
The capacitors employed in this circuit greatly improve the amplifier's settling time and phase margin.

Figure 3. High Performance, High Speed Instrumentation Amplifier

Table I. Performance Summary for the 3-Op Amp Instrumentation Amplifier Circuit

3-Op Amp In-Amp			
Gain	$\mathbf{R}_{\mathbf{G}}$	Small Signal Bandwidth	Settling Time to 0.01\%
1	$O p e n$	10.9 MHz	500 ns
2	$2 \mathrm{k} \Omega$	8.8 MHz	500 ns
10	226Ω	2.6 MHz	900 ns
100	20Ω	290 kHz	$7.5 \mu \mathrm{~s}$

Note: Resistors around the amplifiers' input pins need to be small enough in value so that the RC time constant they form, with stray circuit capacitance, does not reduce circuit bandwidth.

Figure 4. The Pulse Response of the 3-Op Amp Instrumentation Amplifier. Gain $=1$, Horizontal Scale $=$ $0.5 \mathrm{~ms} /$ Div and Vertical Scale $=5 \mathrm{~V} /$ Div.

Figure 5. Settling Time of the 3-Op Amp Instrumentation Amplifier. Horizontal Scale is 200 ns/Div, Vertical Scale, Positive Pulse Input is 5 V/Div and Output Settling is $1 \mathrm{mV} / \mathrm{Div}$.

DRIVING THE ANALOG INPUT OF AN A/D CONVERTER An op amp driving the analog input of an A / D converter, such as that shown in Figure 7, must be capable of maintaining a constant output voltage under dynamically changing load conditions. In successive approximation converters, the input current is compared to a series of switched trial currents. The comparison point is diode clamped but may deviate several hundred millivolts, resulting in high frequency modulation of A / D input current. The output impedance of a feedback amplifier is made artificially low by the loop gain. At high frequencies, where the loop gain is low, the amplifier output impedance can approach its open-loop value. Most IC amplifiers exhibit a minimum open-loop output impedance of 25Ω due to current limiting resistors. A few hundred microamps reflected from the change in converter loading can introduce errors in instantaneous input voltage. If the A / D conversion speed is not excessive and the bandwidth of the amplifier is sufficient, the amplifier's output will return to the nominal value before the converter makes its comparison. However, many amplifiers have relatively narrow bandwidth, yielding slow recovery from output transients. The

Figure 6. Settling Time of the Three Op Amp Instrumentation Amplifier. Horizontal Scale: 200 ns/Div; Vertical Scale, Negative Pulse Input: 5 V/ Div; Output Settling: 1 mV/Div.

AD845 is ideally suited to drive high resolution A/D converters with 5μ s or longer conversion times since it offers both wide bandwidth and high open-loop gain.

Figure 7. AD845 As ADC Unity Gain Buffer

OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP]
(N-8)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

16-Lead Standard Small Outline Package [SOIC] Wide Body
(R-16)
Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-013AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Ceramic Dual In-Line Package [CERDIP]
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Revision History

LocationPage10/03-Data Sheet changed from REV. D to REV. E.Renumbered figures and TPCsUniversal
Updated OUTLINE DIMENSIONS 9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB

LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB
LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB
LMP7717MAE/NOPB LMV2011MA/NOPB TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1
TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR TLC272CD AD8539ARMZ LTC6084HDD\#PBF
LT1638CMS8\#TRPBF LTC1050CN8\#PBF LT1112ACN8\#PBF LT1996AIDD\#PBF LT1112CN8\#PBF LTC6087CDD\#PBF
LT1078S8\#PBF LT1079ACN\#PBF

[^0]: NOTES
 ${ }^{1} \mathrm{~N}=$ Plastic DIP; $\mathrm{Q}=$ CERDIP; R = Small Outline IC (SOIC).
 ${ }^{2}$ See military data sheet.

