FEATURES

Superior Performance
High Unity Gain BW: 50 MHz
Low Supply Current: 5.3 mA
High Slew Rate: 300 V/ $\mu \mathrm{s}$
Excellent Video Specifications 0.04\% Differential Gain (NTSC and PAL) 0.19° Differential Phase (NTSC and PAL)
Drives Any Capacitive Load
Fast Settling Time to 0.1% (10 V Step): 65 ns
Excellent DC Performance
High Open-Loop Gain $5.5 \mathrm{~V} / \mathrm{mV}\left(R_{\text {LOAD }}=1 \mathrm{k} \Omega\right)$
Low Input Offset Voltage: 0.5 mV
Specified for ± 5 V and $\pm 15 \mathrm{~V}$ Operation
Available in a Wide Variety of Options
Plastic DIP and SOIC Packages
Cerdip Package
Die Form
MIL-STD-883B Processing
Tape \& Reel (EIA-481A Standard)
Dual Version Available: AD827 (8 Lead)
Enhanced Replacement for LM6361
Replacement for HA2544, HA2520/ 2/5 and EL2020

APPLICATIONS

Video Instrumentation
Imaging Equipment
Copiers, Fax, Scanners, Cameras
High Speed Cable Driver
High Speed DAC and Flash ADC Buffers

PRODUCT DESCRIPTION

The AD 847 represents a breakthrough in high speed amplifiers offering superior ac \& dc performance and low power, all at low cost. T he excellent dc performance is demonstrated by its $\pm 5 \mathrm{~V}$

Quiescent Current vs. Supply Voltage
REV. F

[^0]
CONNECTION DIAGRAM

Plastic DIP (N),
Small Outline (R) and
Cerdip (Q) Packages

specifications which include an open-loop gain of $3500 \mathrm{~V} / \mathrm{V}$ (500Ω load) and low input offset voltage of 0.5 mV . Commonmode rejection is a minimum of 78 dB . Output voltage swing is $\pm 3 \mathrm{~V}$ into loads as low as 150Ω. Analog D evices also offers over 30 other high speed amplifiers from the low noise AD 829 $(1.7 \mathrm{nV} / \sqrt{\mathrm{Hz}})$ to the ultimate video amplifier, the AD 811, which features 0.01% differential gain and 0.01° differential phase.

APPLICATION HIGHLIGHTS

1. As a buffer the AD 847 offers a full-power bandwidth of 12.7 M Hz (5 V p-p with $\pm 5 \mathrm{~V}$ supplies) making it outstanding as an input buffer for flash A/D converters.
2. The low power and small outline package of the AD 847 make it very well suited for high density applications such as multiple pole active filters.
3. The AD 847 is internally compensated for unity gain operation and remains stable when driving any capacitive load.

AD847 Driving Capacitive Loads

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

Model	Conditions	$\mathrm{V}_{\text {S }}$	AD847)			AD847AR			Units
			Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE ${ }^{1}$ Offset D rift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\pm 5 \mathrm{~V}$			$\begin{aligned} & \hline \mathbf{1} \\ & 3.5 \end{aligned}$			$\begin{aligned} & \hline \mathbf{1} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
INPUT BIAS CURRENT	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		3.3	$\begin{aligned} & 6.6 \\ & 7.2 \end{aligned}$		3.3	$\begin{aligned} & 6.6 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
INPUT OFFSET CURRENT Offset Current Drift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		$\begin{aligned} & 50 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$			$\begin{aligned} & 300 \\ & 500 \end{aligned}$	nA nA $n A /{ }^{\circ} \mathrm{C}$
OPEN-LOOP GAIN	$\begin{gathered} \mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V} \\ \mathrm{R}_{\text {LOAD }}=500 \Omega \\ \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{R}_{\text {LOAD }}=150 \Omega \\ \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{gathered}$	$\pm 5 \mathrm{~V}$ $\pm 15 \mathrm{~V}$	$\begin{aligned} & \mathbf{2} \\ & 1 \\ & \mathbf{3} \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.6 \\ & 5.5 \end{aligned}$		$\begin{array}{\|l} \mathbf{2} \\ 1 \\ \\ \mathbf{3} \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 1.6 \\ & 5.5 \end{aligned}$		V / mV V / mV V / mV V / mV V / mV
DYNAMIC PERFORMANCE Unity G ain Bandwidth		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 35 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Full Power Bandwidth ${ }^{2}$ Slew Rate ${ }^{3}$	$\begin{gathered} \mathrm{V}_{\text {OUT }}=5 \mathrm{Vp}-\mathrm{p} \\ \mathrm{R}_{\text {LOAD }}=500 \Omega, \\ \mathrm{~V}_{\text {OUT }}=20 \mathrm{Vp-p,} \\ \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	225	$\begin{aligned} & 12.7 \\ & 4.7 \\ & 200 \\ & 300 \end{aligned}$		225	$\begin{aligned} & 12.7 \\ & 4.7 \\ & 200 \\ & 300 \end{aligned}$		M Hz M Hz V/us V/us
Settling Time to $0.1 \%, R_{\text {LOAD }}=250 \Omega$ to $0.01 \%, \mathrm{R}_{\text {LOAD }}=250 \Omega$ Phase M argin D ifferential Gain Differential Phase	$\begin{aligned} & -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\ & 10 \mathrm{~V} \text { Step, } A_{\mathrm{V}}=-1 \\ & -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\ & 10 \mathrm{~V} \text { Step, } A_{V}=-1 \\ & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF} \\ & R_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{f} \approx 4.4 \mathrm{M} \mathrm{~Hz}, R_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{f} \approx 4.4 \mathrm{MHz}, R_{L O A D}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		65 65 140 120 50 0.04 0.19			$\begin{aligned} & 65 \\ & 65 \\ & 140 \\ & 120 \\ & \\ & 50 \\ & 0.04 \\ & 0.19 \end{aligned}$		ns ns ns ns D egree \% D egree
COMMON-MODE REJECTION	$\begin{aligned} & \mathrm{V}_{C M}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{C M}= \pm 12 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 78 \\ & 78 \\ & 75 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{array}{\|l\|} \hline 78 \\ 78 \\ 75 \end{array}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
POWER SUPPLY REJECTION	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & 75 \\ & 72 \end{aligned}$	86		$\begin{aligned} & \hline 75 \\ & 72 \end{aligned}$	86		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
INPUT VOLTAGE NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		15			15		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
INPUT CURRENT NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5			1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
INPUT COMMON-MODE voltage range		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \end{aligned}$			$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
OUTPUT VOLTAGE SWING Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=500 \Omega \\ & \mathrm{R}_{\text {LAD }}=150 \Omega \\ & \mathrm{R}_{\text {LAAD }}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3 \\ & 32 \end{aligned}$		$\begin{array}{\|l} \hline 3.0 \\ 2.5 \\ 12 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 3.6 \\ & 3 \\ & 32 \end{aligned}$		$\begin{aligned} & \pm V \\ & \pm V \\ & \pm V \\ & \pm V \\ & \mathrm{~mA} \end{aligned}$
INPUT RESISTANCE				300			300		k Ω
INPUT CAPACITANCE				1.5			1.5		pF
OUTPUT RESISTANCE	Open Loop			15			15		Ω
POWER SUPPLY Operating Range Quiescent Current	$\begin{aligned} & T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	± 4.5	4.8 5.3	$\begin{aligned} & \pm \mathbf{1 8} \\ & \mathbf{6 . 0} \\ & 7.3 \\ & \mathbf{6 . 3} \\ & 7.6 \end{aligned}$	± 4.5	$\begin{aligned} & 4.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \mathbf{6 . 0} \\ & 7.3 \\ & \mathbf{6 . 3} \\ & 7.6 \end{aligned}$	V mA mA mA mA

NOTES

${ }^{1}$ Input Offset Voltage Specifications are guaranteed after 5 minutes at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{2}$ Full Power Bandwidth $=$ Slew Rate $/ 2 \pi V_{\text {PEAK }}$.
${ }^{3}$ Slew Rate is measured on rising edge.
All min and max specifications are guaranteed. Specifications in boldface are 100% tested at final electrical test.
Specifications subject to change without notice.

Model	Conditions	V	AD847AQ			AD847S			Units
			Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE ${ }^{1}$ Offset Drift	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$	$\pm 5 \mathrm{~V}$		$\begin{aligned} & 0.5 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$			$\begin{aligned} & \hline 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
INPUT BIAS CURRENT	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		3.3	$\begin{aligned} & \hline 5 \\ & 7.5 \end{aligned}$		3.3	$\begin{aligned} & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
in Put OFFSET CURRENT Offset Current D rift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$		$\begin{aligned} & 50 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 400 \end{aligned}$		$\begin{aligned} & 50 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	nA nA $n A /{ }^{\circ} \mathrm{C}$
OPEN-LOOP GAIN	$\begin{gathered} \mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V} \\ \mathrm{R}_{\text {LOAD }}=500 \Omega \\ \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{R}_{\text {LOAD }}=150 \Omega \\ \mathrm{~V}_{\text {OUT }}= \pm \pm 10 \mathrm{~V} \\ \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ \mathrm{~T}_{\text {MIN }} \mathrm{T}_{\text {MAX }} \end{gathered}$	$\pm 5 \mathrm{~V}$ $\pm 15 \mathrm{~V}$	$\begin{aligned} & 2 \\ & 1 \\ & \\ & \mathbf{3} \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.6 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \\ & \\ & 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.6 \\ & 5.5 \end{aligned}$		V / mV V / mV V / mV V/mV V / mV
DYNAMIC PERFORMANCE Unity G ain Bandwidth		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 35 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \end{aligned}$		M Hz M Hz
Full Power Bandwidth ${ }^{2}$ Slew Rate ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{Vp-p} \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega, \\ & \mathrm{~V}_{\text {OUT }}=20 \mathrm{Vp} \text {, }, \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	225	$\begin{aligned} & 12.7 \\ & 4.7 \\ & 200 \\ & 300 \end{aligned}$		225	$\begin{aligned} & 12.7 \\ & 4.7 \\ & 200 \\ & 300 \end{aligned}$		M Hz M Hz V/ $\mu \mathrm{s}$ V/us
Settling Time $\begin{aligned} & \text { to } 0.1 \%, \mathrm{R}_{\text {LOAD }}=250 \Omega \\ & \text { to } 0.01 \%, \mathrm{R}_{\text {LOAD }}=250 \Omega \end{aligned}$ Phase M argin D ifferential Gain Differential Phase	$\begin{aligned} & -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\ & 10 \mathrm{~V} \text { Step, } \mathrm{A}_{\mathrm{v}}=-1 \\ & -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\ & 10 \mathrm{~V} \text { Step, } \mathrm{A}_{\mathrm{V}}=-1 \\ & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{f} \approx 4.4 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{f} \approx 4.4 \mathrm{MHz}, R_{\text {LOAD }}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		65 65 140 120 50 0.04 0.19			65 65 140 120 50 0.04 0.19		ns ns ns ns D egree \% D egree
COMMON-MODE REJECTION	$\begin{aligned} & \mathrm{V}_{\text {CM }}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{C M}= \pm 12 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
POWER SUPPLY REJECTION	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & 75 \\ & 72 \end{aligned}$	86		$\begin{aligned} & 75 \\ & 72 \end{aligned}$	86		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
INPUT VOLTAGE NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		15			15		$\mathrm{nV} / \sqrt{\overline{\mathrm{Hz}}}$
INPUT CURRENT NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5			1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
INPUT COMMON-MODE VOLTAGE RANGE		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \end{aligned}$			$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
OUTPUT VOLTAGE SWING Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=500 \Omega \\ & \mathrm{R}_{\text {LAD }}=150 \Omega \\ & \mathrm{R}_{\text {LAAD }}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3 \end{aligned}$ 32		$\begin{aligned} & 3.0 \\ & 2.5 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3 \end{aligned}$ 32		$\begin{aligned} & \pm V \\ & \pm V \\ & \pm V \\ & \pm V \\ & \mathrm{~mA} \end{aligned}$
INPUT RESISTANCE				300			300		$\mathrm{k} \Omega$
INPUT CAPACITANCE				1.5			1.5		pF
OUTPUT RESISTANCE	Open Loop			15			15		Ω
POWER SUPPLY O perating Range Quiescent Current	$T_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	± 4.5	$\begin{aligned} & 4.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 5.7 \\ & 7.0 \\ & 6.3 \\ & 7.6 \end{aligned}$	± 4.5	$\begin{aligned} & 4.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & 5.7 \\ & 7.8 \\ & 6.3 \\ & 8.4 \end{aligned}$	V mA mA mA mA

AD847

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Supply Voltage . ± 18 V
Internal Power D issipation²
Plastic (N) . 1.2 Watts
Small Outline (R) . 0.8 W atts
Cerdip (Q) . 1.1 Watts
Input Voltage . \pm V
Differential Input Voltage . ± 6 V
Storage Temperature Range (Q) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(N, R) . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature . $175^{\circ} \mathrm{C}$
Lead T emperature Range (Soldering 60 sec) $+300^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2} \mathrm{M}$ ini-DIP Package: $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$ att; $\theta_{\mathrm{JC}}=33^{\circ} \mathrm{C} /$ Watt
C erdip Package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W}$ att; $\theta_{\mathrm{j}} \mathrm{C}=30^{\circ} \mathrm{C} / \mathrm{W}$ att
Small Outline Package: $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C} / \mathrm{W}$ att; $\theta_{\mathrm{JC}}=33^{\circ} \mathrm{C} / \mathrm{W}$ att

ESD SUSCEPTIBILITY

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which readily accumulate on the human body and on test equipment, can discharge without detection. Although the AD 847 features proprietary ESD protection circuitry, permanent damage may still occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

METALIZATION PHOTOGRAPH

Contact factory for latest dimensions.
Dimensions shown in inches and (mm).

ORDERING GUIDE

Models* *	Temperature Range $-{ }^{\circ}$ C	Package Description	Package Option
AD 847JN	0 to +70	Plastic	N-8
AD 847JR	0 to +70	SOIC	R-8
AD 847AQ	-40 to +85	C erdip	Q-8
AD 847AR	-40 to +85	SOIC	R-8
AD 847SQ	-55 to +125	C erdip	Q-8
AD 847SQ/883B	-55 to +125	C erdip	Q-8
5962-8964701PA	-55 to +125	Cerdip	Q-8

*AD 847 also available in J and S grade chips, and AD 847JR and AD 847AR are available in tape and reel.

Typical Characteristics (e $+25^{\circ} \mathrm{Cand} \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, unless otherwise noted)

Figure 1. Input Common-Mode Range vs. Supply Voltage

Figure 3. Output Voltage Swing vs. Load Resistance

Figure 5. Input Bias Current vs. Temperature

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 6. Output Impedance vs. Frequency

AD847- Typical Characteristics (e $+25^{\circ} \mathrm{Cand} V_{s}= \pm 15 \mathrm{~V}$, unless othervise noted)

Figure 7. Quiescent Current vs. Temperature

Figure 9. Gain Bandwidth Product vs. Temperature

Figure 11. Open-Loop Gain vs. Load Resistance

Figure 8. Short-Circuit Current Limit vs. Temperature

Figure 10. Open-Loop Gain and Phase Margin vs. Frequency

Figure 12. Power Supply Rejection vs. Frequency

Figure 13. Common-Mode Rejection vs. Frequency

Figure 15. Output Swing and Error vs. Settling Time

Figure 17. Input Voltage Noise Spectral Density

Figure 14. Large Signal Frequency Response

Figure 16. Harmonic Distortion vs. Frequency

Figure 18. Slew Rate vs. Temperature

Figure 19. Inverting Amplifier Configuration

Figure 19a. Inverter Large
Signal Pulse Response

Figure 19b. Inverter Small Signal Pulse Response

Figure 20. Noninverting Amplifier Configuration

Figure 20a. Noninverting Large Signal Pulse Response

Figure 20b. Noninverting Small Signal Pulse Response

OFFSET NULLING

The input offset voltage of the AD 847 is very low for a high speed op amp, but if additional nulling is required, the circuit shown in Figure 21 can be used.

Figure 21. Offset Nulling

INPUT CONSIDERATIONS

An input resistor (R_{IN} in Figure 20) is required in circuits where the input to the AD 847 will be subjected to transient or continuous overload voltages exceeding the $\pm 6 \mathrm{~V}$ maximum differential limit. T his resistor provides protection for the input transistors by limiting the maximum current that can be forced into their bases.

F or high performance circuits it is recommended that a resistor (R_{B} in Figures 19 and 20) be used to reduce bias current errors by matching the impedance at each input. The offset voltage error will be reduced by more than an order of magnitude.

THEORY OF OPERATION

The AD847 is fabricated on Analog D evices' proprietary complementary bipolar ($C B$) process which enables the construction of pnp and npn transistors with similar $f_{T} s$ in the 600 M Hz to 800 M Hz region. The AD 847 circuit (Figure 22) includes an npn input stage followed by fast pnps in the folded cascode intermediate gain stage. The C B pnps are also used in the current amplifying output stage. T he internal compensation capacitance that makes the AD 847 unity gain stable is provided by the junction capacitances of transistors in the gain stage.
The capacitor, C_{F}, in the output stage mitigates the effect of capacitive loads. At low frequencies and with low capacitive loads, the gain from the compensation node to the output is very close to unity. In this case C_{F} is bootstrapped and does not contribute to the compensation capacitance of the part. As the capacitive load is increased, a pole is formed with the output impedance of the output stage. This reduces the gain, and therefore, C_{F} is incompletely bootstrapped. Some fraction of C_{F} contributes to the compensation capacitance, and the unity gain bandwidth falls. As the load capacitance is increased, the bandwidth continues to fall, and the amplifier remains stable.

Figure 22. AD847 Simplified Schematic

GROUNDING AND BYPASSING

In designing practical circuits with the AD 847, the user must remember that whenever high frequencies are involved, some special precautions are in order. Circuits must be built with short interconnect leads. A large ground plane should be used whenever possible to provide a low resistance, low inductance circuit path, as well as minimizing the effects of high frequency coupling. Sockets should be avoided because the increased interlead capacitance can degrade bandwidth.
F eedback resistors should be of low enough value to assure that the time constant formed with the capacitance at the amplifier summing junction will not limit the amplifier performance. Resistor values of less than $5 \mathrm{k} \Omega$ are recommended. If a larger resistor must be used, a small ($<10 \mathrm{pF}$) feedback capacitor in parallel with the feedback resistor, R_{F}, may be used to compensate for the input capacitances and optimize the dynamic performance of the amplifier.
Power supply leads should be bypassed to ground as close as possible to the amplifier pins. Ceramic disc capacitors of $0.1 \mu \mathrm{~F}$ are recommended.

AD847

VIDEO LINE DRIVER

The AD 847 functions very well as a low cost, high speed line driver for either terminated or unterminated cables. F igure 23 shows the AD 847 driving a doubly terminated cable in a follower configuration.

The termination resistor, R_{T}, (when equal to the cable's characteristic impedance) minimizes reflections from the far end of the cable. While operating from $\pm 5 \mathrm{~V}$ supplies, the AD 847 maintains a typical slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$, which means it can drive a $\pm 1 \mathrm{~V}, 30 \mathrm{M} \mathrm{Hz}$ signal into a terminated cable.

Figure 23. Video Line Driver
Table I. Video Line Driver Performance Chart

$\mathbf{V}_{\mathbf{I N}} *$	$\mathbf{V}_{\text {supply }}$	$\mathbf{C}_{\mathbf{c}}$	$\mathbf{- 3} \mathbf{d B} \mathbf{B}_{\mathbf{w}}$	Over- shoot
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	20 pF	23 M Hz	4%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	15 pF	21 M Hz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 15	0 pF	13 M Hz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	20 pF	18 M Hz	2%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	15 pF	16 M Hz	0%
0 dB or $\pm 500 \mathrm{mV}$ Step	± 5	0 pF	11 M Hz	0%

*-3 dB bandwidth numbers are for the 0 dBm signal input. Overshoot numbers are the percent overshoot of the 1 volt step input.

A back-termination resistor (R_{BT}, also equal to the characteristic impedance of the cable) may be placed between the AD 847 output and the cable input, in order to damp any reflected signals caused by a mismatch between R_{T} and the cable's characteristic impedance. This will result in a flatter frequency response, although this requires that the op amp supply $\pm 2 \mathrm{~V}$ to the output in order to achieve a $\pm 1 \mathrm{~V}$ swing at resistor R_{T}.

Figure 24 shows the AD 847 driving 100 pF and 1000 pF loads.

Figure 24. AD847 Driving Capacitive Loads

FLASH ADC INPUT BUFFER

The 35 M Hz unity gain bandwidth of the AD 847 makes it an excellent choice for buffering the input of high speed flash A/D converters, such as the AD 9048.

Figure 25 shows the AD 847 as a unity inverter for the input to the AD 9048.

Figure 25. Flash ADC Input Buffer

A High Speed, Three Op-Amp In-Amp

The circuit of Figure 26 lends itself well to CCD imaging and other video speed applications. It uses two high speed C B process op-amps: A mplifier A3, the output amplifier, is an AD 847.

The input amplifier (A 1 and $A 2$) is an AD 827, which is a dual version of the AD 847. This circuit has the optional flexibility of both dc and ac trims for common-mode rejection, plus the ability to adjust for minimum settling time.

INPUT	
FREQUENCY	CMRR
100 Hz	88.3 dB
1 kHz	87.4 dB
10 kHz	86.2 dB
100 kHz	67.4 dB
1 MHz	47.1 dB

BANDWIDTH, SETTLING TIME AND TOTAL HARMONIC DISTORTION VS. GAIN

GAIN	$\mathbf{R}_{\mathbf{G}}$	$\begin{aligned} & \mathrm{C}_{\text {ADJ }} \\ & (\mathrm{pF}) \end{aligned}$	SMALL SIGNAL BANDWIDTH	SETTLING TIME TO 0.1\%	THD + NOISE BELOW INPUT LEVEL @ 10kHz
1	OPEN	2-8	16.1 MHz	200ns	82dB
2	2k Ω	2-8	14.7MHz	200ns	82dB
10	226Ω	2-8	4.5MHz	370ns	81dB
100	20Ω	2-8	660kHz	$2.5 \mu \mathrm{~s}$	71dB

Figure 26. A High Speed In-Amp Circuit for Data Acquisition

AD847

HIGH SPEED DAC BUFFER

The wide bandwidth and fast settling time of the AD 847 makes it a very good output buffer for high speed current-output D/A converters like the AD 668. As shown in Figure 27, the op amp establishes a summing node at ground for the DAC output. The output voltage is determined by the amplifier's feedback resistor
(10.24 V for a $1 \mathrm{k} \Omega$ resistor). N ote that since the DAC generates a positive current to ground, the voltage at the amplifier output will be negative. A 100Ω series resistor between the noninverting amplifier input and ground minimizes the offset effects of op amp input bias currents.

Figure 27. High Speed DAC Buffer

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Cerdip (Q-8) Package

Small Outline (R-8) Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB LT1013DDR TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TS9222IYDT TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZ$\underline{\text { R7 TLC272CD AD8539ARMZ LTC6084HDD\#PBF LT1638CMS8\#TRPBF LTC1050CN8\#PBF LT1112ACN8\#PBF LT1996AIDD\#PBF }}$

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

