1.8 V to 5 V Auto-Zero, In-Amp with Shutdown

FEATURES

Low offset voltage: $\mathbf{2 0 \mu \mathrm { V } \text { max }}$
Low input offset drift: $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
High CMR: 120 dB min @ G=100
Low noise: $0.7 \mu \mathrm{~V}$ p-p from 0.01 Hz to 10 Hz
Wide gain range: 0.1 to $\mathbf{1 0 , 0 0 0}$
Single-supply operation: 1.8 V to 5.5 V
Rail-to-rail output
Shutdown capability

APPLICATIONS

Strain gauge

Weigh scales

Pressure sensors

Laser diode control loops
Portable medical instruments
Thermocouple amplifiers

PIN CONFIGURATION

Figure 1. 10-Lead MSOP

GENERAL DESCRIPTION

The AD8553 is a precision instrumentation amplifier featuring low noise, rail-to-rail output and a power-saving shutdown mode. The AD8553 also features low offset voltage and drift coupled with high common-mode rejection. In shutdown mode, the total supply current is reduced to less than $4 \mu \mathrm{~A}$. The AD8553 is capable of operating from 1.8 V to 5.5 V .

With a low offset voltage of $20 \mu \mathrm{~V}$, an offset voltage drift of $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and a voltage noise of only $0.7 \mu \mathrm{~V}$ p-p $(0.01 \mathrm{~Hz}$ to 10 Hz), the AD8553 is ideal for applications where error sources cannot be tolerated. Precision instrumentation, position and pressure sensors, medical instrumentation, and strain gauge amplifiers benefit from the low noise, low input bias current, and high common-mode rejection. The small footprint and low cost are ideal for high volume applications.

The small package and low power consumption allow maximum channel density and minimum board size for space-critical equipment and portable systems.

The AD8553 is specified over the industrial temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The AD8553 is available in a Pb -free, 10 -lead MSOP.

Rev. A

AD8553

TABLE OF CONTENTS

\qquad
Applications. 1
Pin Configuration 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Typical Performance Characteristics 6
Theory of Operation 11
High PSR and CMR 11
1/f Noise Correction 11
Applications 12
REVISION HISTORY
8/10—Rev. 0 to Rev. A
Changes to Figure 30 13
10/05—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {INP }}-\mathrm{V}_{\text {INN }}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=100$, unless specified. See Table 5 for gain setting resistor values. Temperature specifications guaranteed by characterization.

Table 1.

[^0]
AD8553

$\mathrm{V}_{\mathrm{s}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{s}} / 2, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INP}}-\mathrm{V}_{\mathrm{INN}}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=100$, unless specified. See Table 5 for gain setting resistor values. Temperature specifications guaranteed by characterization.
Table 2.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit	
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	$\mathrm{G}=1000$		3	20	$\mu \mathrm{V}$	
		$\mathrm{G}=100$		3	20	$\mu \mathrm{V}$	
		$\mathrm{G}=10$		14	50	$\mu \mathrm{V}$	
		$\mathrm{G}=1$		130	375	$\mu \mathrm{V}$	
Vs. Temperature	$\Delta V_{\text {os }} / \Delta \mathrm{T}$	$\mathrm{G}=1000,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02	0.25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
		$\mathrm{G}=100,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02	0.25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
		$\mathrm{G}=10,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.1	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
		$\mathrm{G}=1,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current	I_{B}	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.05	1	nA	
					2	nA	
Input Offset Current	los				2	nA	
VREF Pin Current Input Operating Impedance	Iref			0.02	1	nA	
Differential				$50\|\mid 1$$10\|\mid 10$		$\mathrm{M} \Omega \\| \mathrm{pF}$	
Common Mode						$\mathrm{G} \Omega\|\mid \mathrm{pF}$	
			0		0.15	V	
Common-Mode Rejection	CMR	$\mathrm{G}=100, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $0.15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	100	110		dB	
		$\mathrm{G}=10, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $0.15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	90	110		dB	
Gain Error		$\mathrm{G}=100, \mathrm{~V}_{\mathrm{cm}}=4.125 \mathrm{mV}, \mathrm{V}_{0}=0.075 \mathrm{~V}$ to 1.725 V		0.2	0.4	\%	
		$\mathrm{G}=10, \mathrm{~V}_{\text {cM }}=41.25 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0.075 \mathrm{~V}$ to 1.725 V		0.2	0.4		
Gain Drift		$\mathrm{G}=10,100,1000,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			25	ppm/ ${ }^{\circ} \mathrm{C}$	
		$\mathrm{G}=1,-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.0030.010	50	ppm $/{ }^{\circ} \mathrm{C}$	
Nonlinearity		$\mathrm{G}=100, \mathrm{~V}_{\mathrm{CM}}=4.125 \mathrm{mV}, \mathrm{V}_{\mathrm{o}}=0.075 \mathrm{~V}$ to 1.725 V				\% FS	
		$\mathrm{G}=10, \mathrm{~V}$ CM $=41.25 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0.075 \mathrm{~V}$ to 1.725 V				\% FS	
$\mathrm{V}_{\text {Ref }}$ Range			0.8		1.0	V	
OUTPUT CHARACTERISITICS							
Output Voltage High	Vor		1.725			V	
Output Voltage Low	Voı				0.075	V	
Short-Circuit Current	Isc			± 5		mA	
POWER SUPPLY							
Power Supply Rejection	PSR	$\mathrm{G}=100, \mathrm{~V}_{\mathrm{S}}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$	100	120		dB	
Supply Current	Isr	$\mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.8	1.2	mA	
					1.4	mA	
Supply Current Shutdown Mode	ISD			2	4	$\mu \mathrm{A}$	
ENABLE INPUTS							
Logic High Voltage			1.4			V	
Logic Low Voltage					0.5	V	
NOISE PERFORMANCE							
Voltage Noise	$\begin{aligned} & e_{n p-p} \\ & e_{n} \end{aligned}$	$\mathrm{f}=0.01 \mathrm{~Hz}$ to 10 Hz		0.7		$\mu \mathrm{V}$ p-p	
Voltage Noise Density		$\mathrm{G}=100, \mathrm{f}=1 \mathrm{kHz}$		30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
		$\mathrm{G}=10, \mathrm{f}=1 \mathrm{kHz}$		150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
Internal Clock Frequency				60		kHz	
Signal Bandwidth ${ }^{1}$		$\mathrm{G}=1$ to 1000		1		kHz	

[^1]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Ratings
Supply Voltage	6 V
Input Voltage	$+V_{\text {supply }}$
Differential Input Voltage ${ }^{1}$	$\pm V_{\text {suppLy }}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range (RM Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range (RM Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ Differential input voltage is limited to $\pm 5.0 \mathrm{~V}$, the supply voltage, or
whichever is less. whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 4.

Package Type	$\boldsymbol{\theta}_{\text {JA }}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit		
10-Lead MSOP (RM)	110	32.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$		${ }^{1} \theta_{\text {JA }}$ is specified for the nominal conditions, that is, $\theta_{\text {JA }}$ is specified for the
:---					
device soldered on a circuit board.					

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8553

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=100$, unless specified, see Table 5 for gain setting resistor values. Filters as noted are the combination of R2/C2 and R3/C3 as in Figure 31.

Figure 2. Gain vs. Frequency

Figure 3. Common-Mode Rejection (CMR) vs. Frequency

Figure 4. Power Supply Rejection vs. Frequency

Figure 5. Gain vs. Frequency

Figure 6. Common-Mode Rejection (CMR) vs. Frequency

Figure 7. Voltage Noise Density

Figure 8. Input Offset Voltage vs. Turn-On Time

Figure 9. Small Signal Step Response

Figure 11. Input Offset Voltage vs. Turn-On Time

Figure 12. Large Signal Step Response

AD8553

Figure 20. Common-Mode Rejection (CMR) vs. Frequency

Figure 21. Input Offset Voltage ($\mu \mathrm{V}$)

Figure 22. Input Offset Voltage ($\mu \mathrm{V}$)

Figure 23. Common-Mode Rejection (CMR) vs. Frequency

Figure 24. Input Offset Voltage Drift $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$

Figure 25. Input Offset Voltage Drift ($\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$)

AD8553

Figure 26. Input Offset Voltage ($\mu \mathrm{V}$)

10SECIDIV

Figure 28. Input Offset Voltage Drift ($\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$)

Figure 29. Large Signal Step Response

THEORY OF OPERATION

The AD8553 is a precision current-mode correction instrumentation amplifier capable of single-supply operation. The current-mode correction topology results in excellent accuracy without the need for trimmed resistors on the die.

Figure 30 shows a simplified diagram illustrating the basic operation of the AD8553 (without correction). The circuit consists of a voltage-to-current amplifier (M1 to M6), followed by a current-to-voltage amplifier (R2 and A1). Application of a differential input voltage forces a current through External Resistor R1, resulting in conversion of the input voltage to a signal current. Transistor M3 to Transistor M6 transfer twice this signal current to the inverting input of the op amp A1. Amplifier A1 and External Resistor R2 form a current-tovoltage converter to produce a rail-to-rail output voltage at Vout.

Op amp A1 is a high precision auto-zero amplifier. This amplifier preserves the performance of the autocorrecting, current-mode amplifier topology while offering the user a true voltage-in, voltage-out instrumentation amplifier. Offset errors are corrected internally.

An external reference voltage is applied to the noninverting input of A1 to set the output reference level. External Capacitor C 2 is used to filter out correction noise.

The pinout of the AD8553 allows the user to access the signal current from the output of the voltage-to-current converter (Pin 5). The user can choose to use the AD8553 as a currentoutput device instead of a voltage-output device. See Figure 35 for circuit connections.

HIGH PSR AND CMR

Common-mode rejection and power supply rejection indicate the amount that the offset voltage of an amplifier changes when its common-mode input voltage or power supply voltage changes. The autocorrection architecture of the AD8553 continuously corrects for offset errors, including those induced by changes in input or supply voltage, resulting in exceptional rejection performance. The continuous autocorrection provides great CMR and PSR performances over the entire operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

The parasitic resistance in series with R2 does not degrade CMR but causes a small gain error and a very small offset error. Therefore, an external buffer amplifier is not required to drive the $V_{\text {ref }}$ pin to maintain excellent CMR performance. This helps reduce system costs over conventional instrumentation amplifiers.

1/f NOISE CORRECTION

Flicker noise, also known as $1 / \mathrm{f}$ noise, is noise inherent in the physics of semiconductor devices and decreases 10 dB per decade. The $1 / \mathrm{f}$ corner frequency of an amplifier is the frequency at which the flicker noise is equal to the broadband noise of the amplifier. At lower frequencies, flicker noise dominates causing large errors in low frequency or dc applications.

Flicker noise is seen effectively as a slowly varying offset error, which is reduced by the autocorrection topology of the AD8553. This allows the AD8553 to have lower noise near dc than standard low noise instrumentation amplifiers.

APPLICATIONS

GAIN SELECTION (GAIN-SETTING RESISTORS)

The gain of the AD8553 is set according to

$$
\begin{equation*}
G=2 \times(R 2 / R 1) \tag{1}
\end{equation*}
$$

Table 5 lists the recommended resistor values. Resistor R1 must be at least $3.92 \mathrm{k} \Omega$ for proper operation. Use of resistors larger than the recommended values results in higher offset and higher noise.

Gain accuracy depends on the matching of R1 and R2. Any mismatch in resistor values results in a gain error. Resistor value errors due to drift affect gain by the amount indicated by Equation 1. However, due to the current-mode operation of the AD8553, a mismatch in R1 and R2 does not degrade the CMR.

Care should be taken when selecting and positioning the gain setting resistors. The resistors should be made of the same material and package style. Surface-mount resistors are recommended. They should be positioned as close together as possible to minimize TC errors.

To maintain good CMR vs. frequency, the parasitic capacitance on the R1 gain setting pins should be minimized and matched. This also helps maintain a low gain error at $\mathrm{G}<10$.

If resistor trimming is required to set a precise gain, trim Resistor R2 only. Using a potentiometer for R1 degrades the amplifier's performance.

REFERENCE CONNECTION

Unlike traditional three op amp instrumentation amplifiers, parasitic resistance in series with $\mathrm{V}_{\text {REF }}$ (Pin 7) does not degrade CMR performance. This allows the AD8553 to attain its extremely high CMR performance without the use of an external buffer amplifier to drive the $V_{\text {REF }}$ pin, which is required by industrystandard instrumentation amplifiers. This helps save valuable printed circuit board space and minimizes system costs.

For optimal performance in single-supply applications, Vref should be set with a low noise precision voltage reference. However, for a lower system cost, the reference voltage can be set with a simple resistor voltage divider between the supply and ground (see Figure 31). This configuration results in degraded output offset performance if the resistors deviate from their ideal values. In dual-supply applications, V VeF can simply be connected to ground.

The $V_{\text {ref }}$ pin current is approximately 20 pA , and as a result, an external buffer is not required.

DISABLE FUNCTION

The AD8553 provides a shutdown function to conserve power when the device is not needed. Although there is a $1 \mu \mathrm{~A}$ pull-up current on the ENABLE pin, Pin 6 should be connected to the positive supply for normal operation and to the negative supply to turn the device off. It is not recommended to leave Pin 6 floating.

Turn-on time upon switching Pin 6 high is dominated by the output filters. When the device is disabled, the output becomes high impedance enabling muxing application of multiple AD8553 instrumentation amplifiers.

OUTPUT FILTERING

Filter Capacitor C2 is required to limit the amount of switching noise present at the output. The recommended bandwidth of the filter created by C2 and R2 is 1.4 kHz . The user should first select R1 and R2 based on the desired gain, then select C2 based on

$$
\begin{equation*}
C 2=1 /(1400 \times 2 \times \pi \times R 2) \tag{2}
\end{equation*}
$$

Addition of another single-pole RC filter of 1.4 kHz on the output (R3 and C3 in Figure 31 to Figure 33) is required for bandwidths greater than 10 Hz . These two filters produce an overall bandwidth of 1 kHz .

When driving an ADC, the recommended values for the second filter are $\mathrm{R} 3=100 \Omega$ and $\mathrm{C} 3=1 \mu \mathrm{~F}$. This filter is required to achieve the specified performance. It also acts as an antialiasing filter for the ADC . If a sampling ADC is not being driven, the value of the capacitor can be reduced, but the filter frequency should remain unchanged.

For applications with low bandwidths ($<10 \mathrm{~Hz}$), only the first filter is required. In this case, the high frequency noise from the auto-zero amplifier (output amplifier) is not filtered before the following stage.

CLOCK FEEDTHROUGH

The AD8553 uses two synchronized clocks to perform the autocorrection. The input voltage-to-current amplifiers are corrected at 60 kHz .

Trace amounts of these clock frequencies can be observed at the output. The amount of feedthrough is dependent upon the gain, because the autocorrection noise has an input and output referred term. The correction feedthrough is also dependent upon the values of the external filters R2/C2, and R3/C3.

LOW IMPEDANCE OUTPUT

For applications where a low output impedance is required, the circuit in Figure 33 should be used. This provides the same filtering performance as shown in the configuration in Figure 34.

AD8553

MAXIMIZING PERFORMANCE THROUGH PROPER LAYOUT

To achieve the maximum performance of the AD8553, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board reduces surface moisture and provides a humidity barrier, reducing parasitic resistance on the board.

Care must be taken to minimize parasitic capacitance on Pin 1 and Pin 10 (Resistor R1 connections). Traces from Pin 1 and Pin 10 to R1 should be kept short and symmetric. Excessive capacitance on these pins will result in a gain error. This effect is most prominent at low gains $(\mathrm{G}<10)$.

For high impedance sources, the PC board traces from the AD8553 inputs should be kept to a minimum to reduce input bias current errors.

POWER SUPPLY BYPASSING

The AD8553 uses internally generated clock signals to perform the autocorrection. As a result, proper bypassing is necessary to achieve optimum performance. Inadequate or improper bypassing of the supply lines can lead to excessive noise and offset voltage.

A $0.1 \mu \mathrm{~F}$ surface-mount capacitor should be connected between the supply lines. This capacitor is necessary to minimize ripple from the correction clocks inside the IC. For dual-supply operation (see Figure 33), a $0.1 \mu \mathrm{~F}$ (ceramic) surface-mount capacitor should be connected from each supply pin to ground.

For single-supply operation, a $0.1 \mu \mathrm{~F}$ surface-mount capacitor should be connected from the supply line to ground.

All bypass capacitors should be positioned as close to the DUT supply pins as possible, especially the bypass capacitor between the supplies. Placement of the bypass capacitor on the back of the board directly under the DUT is preferred.

INPUT OVERVOLTAGE PROTECTION

All terminals of the AD8553 are protected against ESD. In the case of a dc overload voltage beyond either supply, a large current would flow directly through the ESD protection diodes. If such a condition should occur, an external resistor should be used in series with the inputs to limit current for voltages beyond the supply rails. The AD8553 can safely handle 5 mA of continuous current, resulting in an external resistor selection of $\mathrm{R}_{\mathrm{ExT}}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{S}}\right) / 5 \mathrm{~mA}$.

CAPACITIVE LOAD DRIVE

The output buffer, Pin 4, can drive capacitive loads up to 100 pF .

Figure 30. Simplified AD8553 Schematic

AD8553

CIRCUIT DIAGRAMS/CONNECTIONS

Figure 31. Single-Supply Connection Diagram Using Voltage Divider Reference

Figure 32. Dual-Supply Connection Diagram

Figure 33. Dual-Supply Connection Diagram with Low Impedance Output

Figure 34. Dual-Supply Connection Diagram Using IC Voltage Reference

Figure 35. Voltage-to-Current Converter, $0 \mu \mathrm{~A}$ to $30 \mu \mathrm{~A}$ Source

Figure 36. Example of an AD8553 Driving a Converter at $V_{S_{+}}=5 \mathrm{~V}$

Table 5. Recommended External Component Values for Selected Gains

| Desired Gain (V/V) | R1 ($\mathbf{\Omega}$) | R2 \|| C2 ($\mathbf{\\|} \boldsymbol{\| \|} \mathbf{F}$) | Calculated Gain |
| :---: | :---: | :---: | :---: |
| 1 | 200 k | 100 k \|| 1200p | 1 |
| 2 | 100 k | $100 \mathrm{k}\|\mid 1200 \mathrm{p}$ | 2 |
| 5 | 40.2 k | $100 \mathrm{k}\|\mid 1200 \mathrm{p}$ | 4.975 |
| 10 | 20 k | $100 \mathrm{k}\|\mid 1200 \mathrm{p}$ | 10 |
| 50 | 4.02 k | $100 \mathrm{k}\|\mid 1200 \mathrm{p}$ | 49.75 |
| 100 | 3.92 k | 196 k \|| 560p | 100 |
| 500 | 3.92 k | 976 k \|| 120p | 497.95 |
| 1000 | 3.92 k | 1.96 M \|| 56p | 1000 |

AD8553

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 38. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8553ARMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10-$ Lead MSOP	RM-10	A09
AD8553ARMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead MSOP	RM-10	A09

[^2]| |
| ---: |
| AD8553 |

NOTES

AD8553

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
ADA4254RU-EBZ MCP6N16-001E/MF LT1102IN8\#PBF AD694BRZ-REEL7 LT1101ISW AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BDZ AD524CDZ AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ
AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625JNZ AD625KNZ AD625SD AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694BRZ-REEL AD694JNZ AD8221ARMZ-R7 AD8224BCPZ-WP AD8224HBCPZ-WP AD8226ARMZ-R7 AD8228ARMZ AD8228ARMZ-R7 AD8229HDZ AD8236ARMZ-R7 AD8237ARMZ-R7 AD8253ARMZ AD8293G160BRJZ-R7 AD8293G80BRJZ-R2 AD8553ARMZ AD8553ARMZ-REEL AD8555ACPZ-REEL7 AD8556ACPZ-R2 AD8556ACPZ-REEL7

[^0]: ${ }^{1}$ Higher bandwidths result in higher noise.

[^1]: ${ }^{1}$ Higher bandwidths result in higher noise.

[^2]: ${ }^{1} Z=$ RoHS Compliant Part.

