AD8801/AD8803

FEATURES

Low Cost
Replaces Eight Potentiometers
Eight Individually Programmable Outputs
Three-Wire Serial Input
Power Shutdown $\leq \mathbf{2 5} \boldsymbol{\mu} \mathbf{W}$ Including I_{DD} and $\mathrm{I}_{\text {REF }}$ Midscale Preset, AD8801
Separate V $_{\text {REFL }}$ Range Setting, AD8803
+3 V to +5 V Single Supply Operation
APPLICATIONS
Automatic Adjustment
Trimmer Potentiometer Replacement
Video and Audio Equipment Gain and Offset Adjustment Portable and Battery Operated Equipment

GENERAL DESCRIPTION

The AD 8801/AD 8803 provides eight digitally controlled dc voltage outputs. This potentiometer divider TrimD AC ${ }^{\circledR}$ allows replacement of the mechanical trimmer function in new designs. The AD 8801/AD 8803 is ideal for dc voltage adjustment applications.
Easily programmed by serial interfaced microcontroller ports, the AD 8801 with its midscale preset is ideal for potentiometer replacement where adjustments start at a nominal value. Applications such as gain control of video amplifiers, voltage controlled frequencies and bandwidths in video equipment, geometric correction and automatic adjustment in CRT computer graphic displays are a few of the many applications ideally suited for these parts. The AD 8803 provides independent control of both the top and bottom end of the potentiometer divider allowing a separate zero-scale voltage setting determined by the $\mathrm{V}_{\text {Refl }}$ pin. This is helpful for maximizing the resolution of devices with a limited allowable voltage control range.

See the AD8802/AD8804 for a twelve channel version of this product.

TrimDAC is a registered trademark of Analog Devices, Inc.

REV. A

FUNCTIONAL BLOCK DIAGRAM

(DACs 2-7 Omitted for Clarity)

Internally the AD 8801/AD 8803 contain eight voltage output digital-to-analog converters, sharing a common reference voltage input.
Each DAC has its own DAC register that holds its output state. These DAC registers are updated from an internal serial-to-parallel shift register that is loaded from a standard three-wire serial input digital interface. Eleven data bits make up the data word clocked into the serial input register. This data word is decoded where the first 3 bits determine the address of the DAC register to be loaded with the last 8 bits of data. The AD 8801/AD 8803 consumes only $5 \mu \mathrm{~A}$ from 5 V power supplies. In addition, in shutdown mode reference input current consumption is also reduced to $5 \mu \mathrm{~A}$ while saving the D AC latch settings for use after return to normal operation.
The AD 8801/AD 8803 is available in 16-pin plastic DIP and the 1.5 mm height SO-16 surface mount packages.

AD8801/AD8803-SPEC|F|CATONS $\begin{aligned} & \left(\mathrm{V}_{D D}=+3 \mathrm{~V} \pm 10 \% \text { or }+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REFH}}=+\mathrm{V}_{\mathrm{DD},} \mathrm{V}_{\mathrm{REFL}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}\right. \\ & \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { unless otherwise noted) }\end{aligned}$

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Units
STATIC ACCURACY Specifications Apply to All DACs Resolution Integral N onlinearity Error D ifferential N onlinearity Full-Scale Error Zero-C ode Error DAC Output Resistance O utput Resistance M atch	N IN L DNL $G_{\text {FSE }}$ $V_{\text {ZSE }}$ Rout $\Delta R / R_{0}$	Guaranteed M onotonic	$\begin{aligned} & 8 \\ & -1.5 \\ & -1 \\ & -4 \\ & -0.5 \\ & 3 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 4 \\ & -2.8 \\ & \pm 0.1 \\ & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +1 \\ & +0.5 \\ & +0.5 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Bits } \\ & \text { LSB } \\ & \mathrm{k} \Omega \\ & \% \end{aligned}$
REFERENCEINPUT Voltage R ange ${ }^{2}$ Input Resistance R eference Input C apacitance ${ }^{3}$	$V_{\text {REFH }}$ $V_{\text {Refl }}$ $\mathrm{R}_{\text {REFH }}$ Crefo $C_{\text {REF } 1}$	Pin Available on AD 8803 Only Digital Inputs $=55_{H}, V_{\text {REFH }}=V_{D D}$ Digital Inputs All Zeros Digital Inputs All Ones		$\begin{aligned} & 2 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & V_{D D} \\ & V_{D D} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
DIGIT AL INPUTS Logic High Logic Low Logic High Logic Low I nput C urrent Input C apacitance ${ }^{3}$	$\mathrm{V}_{\text {IH }}$ $V_{\text {IL }}$ $V_{\text {IH }}$ $V_{\text {IL }}$ IIL $C_{\text {IL }}$	$\begin{aligned} & V_{D D}=+5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=+5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=+3 \mathrm{~V} \\ & \mathrm{~V}_{D D}=+3 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or }+5 \mathrm{~V} \end{aligned}$	2.4 2.1	5	$\begin{gathered} 0.8 \\ 0.6 \\ \pm 1 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & \mu A \end{aligned}$ pF
POWER SUPPLIES ${ }^{4}$ Power Supply Range Supply Current (CM OS) Supply Current (TTL) Shutdown Current Power Dissipation Power Supply Sensitivity Power Supply Sensitivity	$V_{D D}$ Range $I_{D D}$ $I_{D D}$ I REFH $P_{\text {DISS }}$ PSRR PSRR	$\begin{aligned} & V_{I H}=V_{D D} \text { or } V_{I L}=0 \mathrm{~V} \\ & V_{I H}=2.4 \mathrm{~V} \text { or } \mathrm{V}_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { SHDN }=0 \\ & \mathrm{~V}_{I H}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {REFH }}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {REFH }}=+2.7 \mathrm{~V} \end{aligned}$	2.7	$\begin{aligned} & 0.01 \\ & 1 \\ & 0.01 \\ & \\ & 0.001 \\ & 0.01 \end{aligned}$	5.5 5 4 5 27.5 0.002	V $\mu \mathrm{A}$ mA $\mu \mathrm{A}$ $\mu \mathrm{W}$ \%/\% \%/\%
DYNAMIC PERFORMANCE ${ }^{3}$ $V_{\text {out }}$ Settling T ime (Positive or N egative) C rosstalk	$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{CT} \end{aligned}$	$\pm 1 / 2$ LSB Error Band See N ote 5, f=100kHz		$\begin{aligned} & 0.6 \\ & 50 \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mathrm{~dB} \end{aligned}$
SWITCHING CHARACTERISTICS ${ }^{3,6}$ Input C lock Pulse Width D ata Setup Time D ata H old Time $\overline{\mathrm{CS}}$ Setup Time $\overline{\mathrm{CS}}$ High Pulse Width R eset Pulse Width CLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time $\overline{\mathrm{CS}}$ Rise to N ext Rising Clock	$\mathrm{t}_{\mathrm{CH}}, \mathrm{t}_{\mathrm{CL}}$ $t_{D S}$ $t_{D H}$ $\mathrm{t}_{\mathrm{Css}}$ $t_{\text {csw }}$ $t_{\text {RS }}$ $\mathrm{t}_{\mathrm{CSH}}$ $\mathrm{t}_{\mathrm{CS} 1}$	Clock Level High or Low	$\begin{aligned} & 15 \\ & 5 \\ & 5 \\ & 10 \\ & 10 \\ & 60 \\ & 15 \\ & 10 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ ns

NOTES

${ }^{1} \mathrm{~T}$ ypical values represent average readings measured at $+25^{\circ} \mathrm{C}$.
${ }^{2} V_{\text {REFH }}$ can be any value between $G N D$ and $V_{D D}$, for the AD $8803 V_{\text {REFL }}$ can be any value between $G N D$ and $V_{D D}$.
${ }^{3} \mathrm{G}$ uaranteed by design and not subject to production test.
${ }^{4}$ Digital Input voltages $V_{I N}=0 \mathrm{~V}$ or $\mathrm{V}_{D D}$ for CM OS condition. DAC outputs unloaded. $P_{D I S S}$ is calculated from ($I_{D D} \times V_{D D}$).
${ }^{5} \mathrm{M}$ easured at a $\mathrm{V}_{\text {OUt }}$ pin where an adjacent $\mathrm{V}_{\text {OUt }}$ pin is making a full-scale voltage change.
${ }^{6}$ See timing diagram for location of measured values. All input control voltages are specified with $t_{R}=t_{F}=2 \mathrm{~ns}\left(10 \%\right.$ to 90% of $V_{D D}$) and timed from a voltage level of 1.6 V .
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{A}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)	
$V_{\text {DD }}$ to GND . -0.3, +8 V	
$V_{\text {Refx }}$ to GND	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
Outputs ($0 x$) to GND	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
Digital Input Voltage to GND	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$
O perating T emperature R ange	-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M aximum Junction Temperature ($T, ~ M ~ A X) ~$	$+150^{\circ} \mathrm{C}$
Storage T emperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
L ead T emperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$
Package Power Dissipation	$\left(T_{j} M A X-T_{A}\right) / \theta_{j A}$
T hermal Resistance θ_{JA},	
SOIC (SO-16)	$60^{\circ} \mathrm{C} / \mathrm{W}$
P-DIP (N-16)	$57^{\circ} \mathrm{C} / \mathrm{W}$

AD8801 PIN DESCRIPTIONS

Pin	Name	Description
1	$V_{\text {REFH }}$	Common DAC Reference Input
2	01	D AC O utput \#1, Addr $=00 \mathrm{O}_{2}$
3	02	DAC Output \#2, Addr $=001_{2}$
4	03	D AC O utput \#3, Addr $=010_{2}$
5	04	D AC O utput \#4, Addr $=011_{2}$
6	$\overline{\text { SHDN }}$	Reference input open circuit, active low, all DAC outputs open circuit. DAC latch settings maintained.
7	$\overline{\mathrm{CS}}$	Chip Select Input, active low. When $\overline{\mathrm{CS}}$ returns high, data in the serial input register is decoded based on the address bits and loaded into the target DAC register.
8	GND	Ground
9	CLK	Serial Clock Input, Positive Edge T riggered
10	SDI	Serial D ata Input
11	05	DAC Output \#5, Addr $=100_{2}$
12	06	DAC Output \#6, Addr $=101_{2}$
13	07	DAC Output \#7, $\mathrm{Addr}=110_{2}$
14	08	DAC Output \#8, Addr $=111_{2}$
15	$\overline{\mathrm{RS}}$	Asynchronous preset to midscale output setting, active low. Loads all DAC latches with 80_{H}.
16	$V_{D D}$	Positive power supply, specified for operation at both +3 V and +5 V .

ORDERING GUIDE

Model	FTN	Temperature	Package Description	Package Option
AD 8801AN	$\overline{R S}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PDIP-16	$\mathrm{N}-16$
AD 8801AR	$\overline{\mathrm{RS}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-16	$R-16 \mathrm{~A}$
AD 8803AN	REFL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	PDIP-16	$\mathrm{N}-16$
AD 8803AR	REFL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-16	$\mathrm{R}-16 \mathrm{~A}$

AD8803 PIN DESCRIPTIONS

Pin	Name	Description
1	$V_{\text {REFH }}$	Common High-Side D AC Reference Input
2	01	DAC O utput \#1, Addr $=000_{2}$
3	02	DAC O utput \#2, Addr $=001_{2}$
4	03	DAC O utput \#3, Addr $=010_{2}$
5	04	DAC O utput \#4, Addr $=011_{2}$
6	$\overline{\text { SHDN }}$	Reference inputs open circuit, active low, all DAC outputs open circuit. DAC latch settings maintained.
7	$\overline{\mathrm{CS}}$	Chip Select Input, active low. When $\overline{\mathrm{CS}}$ returns high, data in the serial input register is decoded based on the address bits and loaded into the target DAC register.
8	GND	Ground
9	$V_{\text {REFL }}$	Common Low-Side DAC Reference Input
10	CLK	Serial Clock Input, Positive Edge T riggered
11	SDI	Serial D ata Input
12	05	DAC Output \#5, Addr $=100_{2}$
13	06	DAC Output \#6, Addr $=101_{2}$
14	07	DAC Output \#7, Addr $=110_{2}$
15	08	DAC Output \#8, Addr $=111_{2}$
16	$V_{\text {D }}$	Positive power supply, specified for operation at both +3 V and +5 V .

PIN CONFIGURATIONS

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OCTAL 8-BIT TRIMDAC, WITH SHUTDOWN

Figure 2a. Timing Diagram

DETAIL SERIAL DATA INPUT TIMING ($\overline{\mathbf{R S}}=\mathbf{= 1} 1$)

Figure 2b. Detail Timing Diagram

RESET TIMING

Figure 2c. Reset Timing Diagram
Table I. Serial-D ata Word Format

ADDR			DATA							
B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
A2	A1	A0	D 7	D6	D 5	D 4	D 3	D2	D 1	D 0
M SB		LSB	M SB							L SB
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

OPERATION

The AD 8801/AD 8803 provides eight channels of programmable voltage output adjustment capability. Changing the programmed output voltage of each TrimDAC is accomplished by clocking in an 11-bit serial data word into the SDI (Serial D ata Input) pin. The format of this data word is three address bits, M SB first, followed by eight data bits, M SB first. Table I provides the serial register data word format. The AD 8801/A D 8803 has the
following address assignments for the ADDR decode which determines the location of DAC register receiving the serial register data in bits B 7 through B 0 :

$$
D A C \#=A 2 \times 4+A 1 \times 2+A 0+1
$$

DAC outputs can be changed one at a time in random sequence. The fast serial-data loading of 33 M Hz makes it possible to load all eight DAC sin as little time as $3 \mu \mathrm{~s}(12 \times 8 \times 30 \mathrm{~ns})$. The exact timing requirements are shown in Figure 2.
The AD 8801 offers a midscale preset activated by the $\overline{\mathrm{RS}}$ pin simplifying initial setting conditions at first power up. The AD 8803 has both a $\mathrm{V}_{\text {REFH }}$ and a $\mathrm{V}_{\text {REFL }}$ pin to establish independent positive full-scale and zero-scale settings to optimize resoIution. Both parts offer a power shutdown SHDN that places the DAC structure in a zero power consumption state resulting in only leakage currents being consumed from the power supply, $V_{\text {REF }}$ inputs, and all 8 outputs. In shutdown mode the DACx latch settings are maintained. When returning to operational mode from power shutdown the D AC outputs return to their previous voltage settings.

Figure 3. AD8801/AD8803 Equivalent TrimDAC Circuit

PROGRAMMING THE OUTPUT VOLTAGE

The output voltage range is determined by the external reference connected to $\mathrm{V}_{\text {Reft }}$ and $\mathrm{V}_{\text {Refl }}$ pins. See Figure 3 for a simplified diagram of the equivalent DAC circuit. In the case of the $A D 8801$, its $V_{\text {REFL }}$ is internally connected to GND and therefore cannot be offset. $\mathrm{V}_{\text {REFH }}$ can be tied to V_{DD} and $\mathrm{V}_{\text {REFL }}$ can be tied to GND establishing a basic rail-to-rail voltage output programming range. Other output ranges are established by the use of different external voltage references. The general transfer equation that determines the programmed output voltage is:

$$
\begin{equation*}
V_{0}(D x)=(D x) / 256 \times\left(V_{R E F H}-V_{R E F L}\right)+V_{R E F L} \tag{1}
\end{equation*}
$$

where $D x$ is the data contained in the 8 -bit $D A C x$ latch.

For example, when $\mathrm{V}_{\text {REFH }}=+5 \mathrm{~V}$ and $\mathrm{V}_{\text {REFL }}=0 \mathrm{~V}$ the following output voltages will be generated for the following codes:

\mathbf{D}	$\mathbf{V}_{\mathbf{0 X}}$	Output State $\left.\mathbf{V}_{\text {REFH }}=+\mathbf{5 ~ V}, \mathbf{V}_{\text {REFL }}=\mathbf{0 V}\right)$
255	4.98 V	Full-Scale
128	2.50 V	Half-Scale (M idscale Reset Value)
1	0.02 V	1 LSB
0	0.00 V	Zero-Scale

REFERENCE INPUTS ($\mathbf{V}_{\text {REFH }}, \mathbf{V}_{\text {REFL }}$)

The reference input pins set the output voltage range of all eight DAC s. In the case of the AD 8801 only the $\mathrm{V}_{\text {REFH }}$ pin is available to establish a user designed full-scale output voltage. T he external reference voltage can be any value between 0 and $V_{D D}$ but must not exceed the V_{DD} supply voltage. In the case of the AD 8803, which has access to the $\mathrm{V}_{\text {REFL }}$ which establishes the zero-scale output voltage, any voltage can be applied between 0 V and $\mathrm{V}_{\mathrm{DD}} . \mathrm{V}_{\text {REFL }}$ can be smaller or larger in voltage than $V_{\text {REFH }}$ since the DAC design uses fully bidirectional switches as shown in Figure 3. The input resistance to the DAC has a code dependent variation that has a nominal worst case measured at 55_{H}, which is approximately $2 \mathrm{k} \Omega$. W hen $\mathrm{V}_{\text {REFH }}$ is greater than $\mathrm{V}_{\text {REFL }}$, the REFL reference must be able to sink current out of the DAC Iadder, while the REFH reference is sourcing current into the DAC ladder. The DAC design minimizes reference glitch current maintaining minimum interference between DAC channels during code changes.

DAC OUTPUTS (01-08)

T he eight DAC outputs present a constant output resistance of approximately $5 \mathrm{k} \Omega$ independent of code setting. The distribution of $R_{\text {OUT }}$ from DAC to DAC typically matches within $\pm 1 \%$. However, device to device matching is process lot dependent having a $\pm 20 \%$ variation. The change in R оut with temperature has a $500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. During power shutdown all eight outputs are open circuited.

Figure 4. Block Diagram

DIGITAL INTERFACING

The AD 8801/AD 8803 contains a standard three-wire serial input control interface. The three inputs are clock (CLK), $\overline{\mathrm{CS}}$ and serial data input (SDI). The positive-edge sensitive CLK input requires clean transitions to avoid clocking incorrect data into the serial input register. Standard logic families work well. If mechanical switches are used for product evaluation, they should be debounced by a flip-flop or other suitable means. Figure 4 block diagram shows more detail of the internal digital circuitry. When $\overline{\mathrm{CS}}$ is taken active low, the clock can load data into the serial register on each positive clock edge, see T able II.

Table II. Input Logic Control Truth Table

$\overline{\overline{\mathbf{C S}}}$	CLK	Register Activity
1	X	N o effect.
0	P	Shifts Serial Register one bit loading the next bit in from the SD I pin.
P	X	D ata is transferred from the serial register to the decoded DAC register. See Figure 5.

NOTE: $P=$ positive edge, $X=$ don't care.
The data setup and data hold times in the specification table determine the data valid time requirements. The last 11 bits of the data word entered into the serial register are held when $\overline{\mathrm{CS}}$ returns high. At the same time $\overline{\mathrm{CS}}$ goes high it gates the address decoder which enables one of the eight positive edge triggered DAC registers, see Figure 5 detail.

Figure 5. Equivalent Control Logic
The target DAC register is loaded with the last eight bits of the serial data word completing one DAC update. Eight separate 11-bit data words must be clocked in to change all eight output settings.
All digital inputs are protected with a series input resistor and parallel Zener ESD structure shown in Figure 6. This applies to digital input pins $\overline{\mathrm{CS}}, \mathrm{SDI}, \overline{\mathrm{RS}}, \overline{\mathrm{SHDN}}, \mathrm{CLK}$.

Figure 6. Equivalent ESD Protection Circuit Digital inputs can be driven by voltages exceeding the AD 8801/ AD 8803 V D value. This allows 5 V logic to interface directly to the part when it is operated at 3 V .

AD8801/AD8803- Typical Performance Characteristics

Figure 7. INL vs. Code

Figure 8. Differential Nonlinearity Error vs. Code

Figure 9. Total Unadjusted Error Histogram

Figure 10. Input Reference Current vs. Code

Figure 11. Shutdown Current vs. Temperature

Figure 12. Supply Current vs. Temperature

Figure 13. Supply Current vs. Logic Input Voltage

Figure 14. Power Supply Rejection vs. Frequency

Figure 15. Large-Signal Settling Time

Figure 16. Adjacent Channel Clock Feedthrough

TIME - 0.2 $\mu \mathrm{s} / \mathrm{DIV}$

Figure 17. Midscale Transition

Figure 18. Zero-Scale Error Accelerated by Burn-In

Figure 19. Full-Scale Error Accelerated by Burn-In

Figure 20. REF Input Resistance Accelerated by Burn-In

APPLICATIONS

Supply Bypassing

Precision analog products, such as the AD 8801/AD 8803, require a well filtered power source. Since the AD 8801/AD 8803 operate from a single +3 V to +5 V supply, it seems convenient to simply tap into the digital logic power supply. Unfortunately, the logic supply is often a switch-mode design, which generates noise in the 20 kHz to 1 M Hz range. In addition, fast logic gates can generate glitches hundred of millivolts in amplitude due to wiring resistances and inductances.
If possible, the AD 8801/AD 8803 should be powered directly from the system power supply. T his arrangement, shown in Figure 21, will isolate the analog section from the logic switching transients. Even if a separate power supply trace is not available, however, generous supply bypassing will reduce supply-line induced errors. Local supply bypassing consisting of a $10 \mu \mathrm{~F}$ tantalum electrolytic in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended (Figure 22).

Figure 21. Use Separate Traces to Reduce Power Supply Noise

Figure 22. Recommended Supply Bypassing for the AD8801/AD8803

Buffering the AD8801/AD 8803 Output

In many cases, the nominal $5 \mathrm{k} \Omega$ output impedance of the AD 8801/AD 8803 is sufficient to drive succeeding circuitry. If a lower output impedance is required, an external amplifier can be added. Several examples are shown in Figure 23. One amplifier of an OP291 is used as a simple buffer to reduce the output resistance of DAC A. The OP291 was chosen primarily for its rail-to-rail input and output operation, but it also offers operation to less than 3 V , low offset voltage, and low supply current.
The next two DACs, B and C, are configured in a summing arrangement where DAC C provides the coarse output voltage setting and DAC B can be used for fine adjustment. The insertion of R1 in series with DAC B attenuates its contribution to the voltage sum node at the D AC C output.

Figure 23. Buffering the AD8801/AD8803 Output

Increasing Output Voltage Swing

An external amplifier can also be used to extend the output voltage swing beyond the power supply rails of the AD 8801/AD 8803. This technique permits an easy digital interface for the DAC, while expanding the output swing to take advantage of higher voltage external power supplies. For example, DAC A of Figure 24 is configured to swing from -5 V to +5 V . The actual output voltage is given by:

$$
V_{\text {OUT }}=\left(1+\frac{R_{F}}{R_{S}}\right) \times\left(\frac{D}{256} \times 5 V\right)-5 V
$$

Where D is the $D A C$ input value (i.e., 0 to 255). This circuit can be combined with the "fine/coarse" circuit of Figure 23 if, for example, a very accurate adjustment around 0 V is desired.

Figure 24. Increasing Output Voltage Swing
DAC B of Figure 24 is in a noninverting gain of two configuration, which increases the available output swing to +10 V . T he feedback resistors can be adjusted to provide any scaling of the output voltage, within the limits of the external op amp power supplies.

Microcomputer Interfaces

The AD 8801/AD 8803 serial data input provides an easy interface to a variety of single-chip microcomputers ($\mu \mathrm{Cs}$). M any $\mu \mathrm{Cs}$ have a built-in serial data capability that can be used for communicating with the DAC. In cases where no serial port is provided, or it is being used for some other purpose (such as an RS-232 communications interface), the AD 8801/AD 8803 can easily be addressed in software.
Eleven data bits are required to load a value into the AD 8801/ AD 8803 (3 bits for the D AC address and 8 bits for the DAC value). If more than 11 bits are transmitted before the Chip Select input goes high, the extra (i.e., the most-significant) bits are ignored. This feature is valuable because most $\mu \mathrm{C}$ s only transmit data in 8 -bit increments. Thus, the $\mu \mathrm{C}$ will send 16 bits to the DAC instead of 11 bits. The AD 8801/A D 8803 will only respond to the last 11 bits clocked into the SDI input, however, so the serial data interface is not affected.

An 8051μ C Interface

A typical interface between the AD 8801/AD 8803 and an 8051 $\mu \mathrm{C}$ is shown in Figure 25. This interface uses the 8051's internal serial port. T he serial port is programmed for M ode 0 operation, which functions as a simple 8-bit shift register. T he 8051's Port3.0 pin functions as the serial data output, while Port3.1 serves as the serial clock.

Figure 25. Interfacing the $8051 \mu C$ to an AD8801/AD8803, Using the Serial Port
When data is written to the Serial Buffer Register (SBU F , at Special Function Register location 99^{H}), the data is automatically converted to serial format and clocked out via Port3.0 and Port3.1. A fter 8 bits have been transmitted, the T ransmit Interrupt flag (SCON.1) is set and the next 8 bits can be transmitted.
The AD 8801 and AD 8803 require the Chip Select to go low at the beginning of the serial data transfer. In addition, the SCLK input must be high when the Chip Select input goes high at the end of the transfer. The 8051's serial clock meets this requirement, since Port3.1 both begins and ends the serial data in the high state.

Software for the 8051 Interface

A software routine for the AD 8801/AD 8803 to 8051 interface is shown in Listing 1. The routine transfers the 8-bit data stored at data memory location DAC_VALUE to the AD 8801/AD 8803 DAC addressed by the contents of location DAC_ADD R.

AD8801/AD8803

; This subroutine loads an AD 8801/AD 8803 DAC from an 8051 microcomputer, ; using the 8051's serial port in M ODE 0 (Shift Register M ode). ; The DAC value is stored at location DAC_VAL ; The DAC address is stored at location DAC_ADDR			
; Variable declarations			
PORT 1	DATA	90 H	;SFR register for port 1
dac_value	DATA	40 H	;DAC Value
DAC ADDR	DATA	41H	;DAC Address
SHIFT1	DATA	042H	;high byte of 16-bit answer
SHIFT2	DATA	043H	;low byte of answer
SHIFT_COUNT	DATA	44 H	;
	ORG	100 H	;arbitrary start
D O_8801:	CLR	SCON. 7	;set serial
	CLR	SCON. 6	; data mode 0
	CLR	SCON. 5	
	CLR	SCON 1	;clr transmit flag
	ORL	PORT 1.1,\#00001110B	;/RS, /SH DN, /CS high
	CLR	PORT 1.1	;set the /CS low
	MOV	SHIFT1,DAC_ADDR	;put DAC value in shift register
	ACALL	BYTESWAP	
	M OV	SBUF,SHIFT2	;send the address byte
ADDR_WAIT	JNB	SCON.1,ADDR_WAIT	;wait until 8 bits are sent
	CLR	SCON. 1	;clear the serial transmit flag
	MOV	SHIFT1,DAC_VALUE	; send the DAC value
	ACALL	BYTESWAP	
	M OV	SBUF,SHIFT2	
VALU_WAIT	JNB	SCON.1,VALU_WAIT	;wait again
	CLR	SCON.1 -	;clear serial flag
	SETB	PORT 1.1	;/CS high, latch data
	RET		; into AD8801
BYTESWAP: SWAP_LOOP:	MOV	SHIFT_COUNT,\#8	;Shift 8 bits
	MOV	A, SHIFT 1	;G et source byte
	RLC	A	;Rotate M SB to carry
	MOV	SHIFT 1,A	;Save new source byte
	MOV	A,SHIFT2	;Get destination byte
	RRC	A	; M ove carry to M SB
	MOV	SHIFT2,A	;Save
	DJNZ	SHIFT_COUNT,SWAP_LOOP	;D one?
	$\begin{aligned} & \text { RET } \\ & \text { END } \end{aligned}$		

Listing 1. Software for the 8051 to AD8801/AD8803 Serial Port Interface

The subroutine begins by setting appropriate bits in the Serial C ontrol register to configure the serial port for M ode 0 operation. N ext the DAC's C hip Select input is set low to enable the AD 8801/AD 8803. T he DAC address is obtained from memory location DAC_ADDR, adjusted to compensate for the 8051's serial data format, and moved to the serial buffer register. At this point, serial data transmission begins automatically. When all 8 bits have been sent, the T ransmit Interrupt bit is set, and the subroutine then proceeds to send the DAC value stored at location DAC_VALUE. Finally the Chip Select input is returned high, causing the appropriate AD 8801/AD 8803 output voltage to change, and the subroutine ends.
The 8051 sends data out of its shift register LSB first, while the AD 8801/AD 8803 require data M SB first. The subroutine therefore includes a BYTESWAP subroutine to reformat the data. This routine transfers the M SB-first byte at location SHIFT 1 to an LSB-first byte at location SH IF T 2. T he routine rotates the M SB of the first byte into the carry with a Rotate Left C arry instruction, then rotates the carry into the M SB of the second byte with a Rotate Right C arry instruction. After 8 loops, SH IF T 2 contains the data in the proper format.

The BYTESWAP routine in Listing 1 is convenient because the DAC data can be calculated in normal LSB form. For example, producing a ramp voltage on a DAC is simply a matter of repeatedly incrementing the DAC_VALUE location and calling the LD_8801 subroutine.
If the $\mu \mathrm{C}$'s hardware serial port is being used for other purposes, the AD 8801/AD 8803 can be loaded by using the parallel port. A typical parallel interface is shown in Figure 26. T he serial data is transmitted to the D AC via the 8051 's Port1.7 output, while Port1.6 acts as the serial clock.
Software for the interface of Figure 26 is contained in Listing 2. The subroutine will send the value stored at location DAC VALUE to the AD 8801/AD 8803 DAC addressed by location D A C_ADD R. The program begins by setting the AD 8801/AD 8803's Serial Clock and Chip Select inputs high, then setting Chip Select low to start the serial interface process. The D AC address is loaded into the accumulator and three Rotate Right shifts are performed. T his places the DAC address in the 3 M SBs of the accumulator. T he address is then sent to the AD 8801/AD 8803 via the SEND_SERIAL subroutine. N ext, the DAC value is loaded into the accumulator and sent to the AD 8801/AD 8803. Finally, the C hip Select input is set high to complete the data transfer.

Listing 2. Software for the 8051 to AD8801/AD8803 Parallel Port Interface

Figure 26. An AD8801/AD8803-8051 μ C Interface Using Parallel Port 1
Unlike the serial port interface of Figure 25, the parallel port interface only transmits 11 bits to the AD 8801/AD 8803. Also, the BYTESWAP subroutine is not required for the parallel interface, because data can be shifted out M SB first. H owever, the results of the two interface methods are exactly identical. In most cases, the decision on which method to use will be determined by whether or not the serial data port is available for communication with the AD 8801/AD 8803.

An MC68HC11-to-AD8801/AD 8803 Interface

Like the 8051, the M C 68H C 11 includes a dedicated serial data port (labeled SPI). The SPI port provides an easy interface to the AD 8801/AD 8803 (Figure 27). The interface uses three lines of Port D for the serial data, and one or two lines from Port C to control the $\overline{\text { SHDN }}$ and $\overline{\mathrm{RS}}$ (AD 8801 only) inputs.

*ADIITIONAL PINS OMITTED FOR CLARITY

Figure 27. An AD8801/AD8803-to-MC68HC11 Interface
A software routine for loading the AD 8801/AD 8803 from a 68 HC 11 evaluation board is shown in Listing 3. First, the M C68H C 11 is configured for SPI operation. Bits CPH A and CPOL define the SPI mode wherein the serial clock (SCK) is high at the beginning and end of transmission, and data is valid on the rising edge of SCK. This mode matches the requirements of the AD 8801/AD 8803. After the registers are saved on the stack, the DAC value and address are transferred to RAM and the AD 8801/AD 8803's $\overline{C S}$ is driven low. N ext, the DAC's address byte is transferred to the SPDR register, which automatically initiates the SPI data transfer. T he program tests the SPIF bit and loops until the data transfer is complete. Then the DAC value is sent to the SPI. When transmission of the second byte is complete, $\overline{\mathrm{CS}}$ is driven high to load the new data and address into the AD 8801/AD 8803.
*

* AD 8801/AD 8803 to M 68H C 11 Interface A ssembly Program
* M 68H C 11 Register definitions

PORTC	EQ
*	
DDRC	EQ
PORTD	EQ
*	
DDRD	EQ
SPCR	EQ
*	
SPSR	EQ
*	
SPDR	EQ
*SDI RAM	
*	
*	
*	
*	
*	
SDII I	
SDI2	
*	
* M ain Program	
*	

	ORG
INIT	LDS
$*$	
* Initialize	Port C
$*$	

\$C000
\#\$CFFF

```
#$03

PORTC
\#\$03
DDRC
*
* Initialize Port D Outputs
* LDAA
*
STAA
LDAA
STAA
*
* Initialize SPI Interface
*
\begin{tabular}{ll} 
LDAA & \(\# \$ 53\) \\
STAA & SPCR
\end{tabular}
*
* Call update subroutine
*
\begin{tabular}{ll} 
BSR & UPDATE \\
JMP & \(\$ E 000\)
\end{tabular}
*
* Subroutine U PDATE
*
UPDATE PSHX
STAA

\section*{LDAA}

STAA


LDAA
STAA
SPCR \$E000

Port C control register
" \(0,0,0,0 ; 0,0, R S /\), SH D N /"
Port C data direction
Port D data register
"0,0,/CS,CLK;SDI,0,0,0"
Port D data direction
SPI control register
"SPIE,SPE,DWOM ,M STR;CPOL,CPHA,SPR1,SPR0"
SPI status register
"SPIF,WCOL, 0,M ODF;0,0,0,0"
SPI data register; Read-Buffer; W rite-Shifter
SDII is encoded from 0 ( Hex ) to 7 ( Hex )
SDI2 is encoded from 00 (Hex) to FF (Hex)
AD 8801/3 requires two 8-bit loads; upper 5 bits of SDII are ignored. AD 8801/3 address bits in last three LSBs of SDII.

SDI packed byte 1 " \(0,0,0,0 ; 0, \mathrm{~A} 2, \mathrm{~A} 1, A 0\) "
SDI packed byte 2 "DB7,D B6,DB5,DB4;DB3,D B2,D B1,DB0"

Start of user's RAM in EVB
Top of \(C\) page RAM

0,0,0,0;0,0,1,1
/RS-Hi, /SH DN-Hi
Initialize Port C Outputs
0,0,0,0;0,0,1,1
/RS and /SH DN are now enabled as outputs

0,0,1,0;0,0,0,0
/CS-Hi,/CLK-Lo,SDI-Lo
Initialize Port D Outputs
0,0,1,1;1,0,0,0
/CS,CLK, and SDI are now enabled as outputs

SPI is M aster, \(\mathrm{CPHA}=0, \mathrm{CPOL}=0, \mathrm{Clk}\) rate \(=\mathrm{E} / 32\)

Xfer 2 8-bit words to AD 8402
Restart BUFFALO
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { PSH Y } \\
& \text { PSH A }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{* Enter C ontents of SDII D ata R egister}} \\
\hline & & & \\
\hline \multirow{2}{*}{*} & LDAA & \$0000 & H i-byte data loaded from memory \\
\hline & STAA & SDI1 & SDII = data in location 0000 H \\
\hline * & & & \\
\hline \multicolumn{4}{|l|}{* Enter Contents of SDI2 D ata Register} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline & LDAA & \$0001 & L ow-byte data loaded from memory \\
\hline & STAA & SDI2 & SDI2 = D ata in location 0001H \\
\hline \multicolumn{4}{|l|}{* \({ }^{\text {a }}\)} \\
\hline & LDX & \#SDI1 & Stack pointer at 1st byte to send via SDI \\
\hline & LDY & \#\$1000 & Stack pointer at on-chip registers \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multicolumn{4}{|l|}{* Reset AD 8801 to one-half scale (AD 8803 does not have a Reset input)} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline & BCLR & PORTC, Y \$02 & Assert /RS \\
\hline & BSET & PORTC, Y \$02 & D e-assert /RS \\
\hline * & & & \\
\hline \multicolumn{4}{|l|}{* G et AD 8801/03 ready for data input} \\
\hline & \(B C L R\) & PORTD, Y \$20 & Assert /C S \\
\hline \multicolumn{4}{|l|}{* 0 ( \({ }^{\text {a }}\)} \\
\hline \multirow[t]{2}{*}{TFRLP} & LDAA & 0, X & G et a byte to transfer via SPI \\
\hline & STAA & SPDR & W rite SDI data reg to start xfer \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{2}{*}{WAIT} & LDAA & SPSR & Loop to wait for SPIF \\
\hline & BPL & WAIT & SPIF is the M SB of SPSR \\
\hline \multirow[t]{4}{*}{*} & & & (when SPIF is set, SPSR is negated) \\
\hline & INX & & Increment counter to next byte for xfer \\
\hline & CPX & \#SDI2+1 & Are we done yet? \\
\hline & BNE & TFRLP & If not, xfer the second byte \\
\hline * & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{* U pdate AD 8801 output}} \\
\hline & & & \\
\hline & BSET & PORTD, Y \$20 & L atch register \& update AD 8801 \\
\hline \multirow[t]{5}{*}{*} & & & \\
\hline & PULA & & When done, restore registers \(\mathrm{X}, \mathrm{Y}\) \& A \\
\hline & PULY & & \\
\hline & PULX & & \\
\hline & RTS & & ** Return to M ain Program ** \\
\hline
\end{tabular}

Listing 3. AD8801/AD8803 to MC68HC11 Interface Program Source Code

\section*{OUTLINE DIMENSIONS}

Dimensions shown in inches and (mm).

\section*{16-Pin Plastic DIP Package ( \(\mathbf{N}-16\) )}


\section*{16-Pin Narrow Body SOIC Package (R-16A)}


\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
5962-8871903MYA 5962-8876601LA AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A
702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2
MCP48FVB24-20E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP47FVB04-20E/ST MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24TE/MQ MCP48FVB24T-E/MQ MCP48FVB18T-20E/ST MCP47FEB14T-E/MQ MCP48FVB14T-20E/ST MCP48FEB08T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP48FEB04T-20E/ST MCP47FEB04T-E/MQ MCP48FVB04T-20E/ST MCP47FVB04T20E/ST MCP48CVB18-E/ML MCP48CVB08-E/ML MCP47CMB28-E/ML MCP48CMB18-E/ML MCP48CVB14-E/ML MCP48CMB04E/ML MCP48CMB08-E/ML MCP47CVB04-E/ML MCP47CMB14-E/ML MCP48CMB14-E/ML MCP48CVB28-20E/ST```

