MxFE Quad, 16-Bit, 12 GSPS RF DAC and Quad, 12-Bit, 4 GSPS RF ADC

FEATURES

- Flexible, reconfigurable common platform design
- 4 DACs and 4 ADCs (4D4A)
- Supports single, dual, and quad band
- Datapaths and DSP blocks are fully bypassable
- DAC to ADC sample rate ratios of $1,2,3$, and 4
- On-chip PLL with multichip synchronization
- External RFCLK input option for off-chip PLL
- Maximum DAC sample rate up to 12 GSPS
- Maximum data rate up to 12 GSPS using JESD204C
- Useable analog bandwidth to 8 GHz
- Maximum ADC sample rate up to 4 GSPS
- Maximum data rate up to 4 GSPS using JESD204C
- 7.5 GHz analog input full power bandwidth (-3 dB)
- ADC ac performance at 4 GSPS, input at $-2.7 \mathrm{GHz},-1 \mathrm{dBFS}$
- Full-scale input voltage: 1.4 V p-p
- Noise density: $-147.5 \mathrm{dBFS} / \mathrm{Hz}$
- Noise figure: 26.8 dB
- HD2: -67 dBFS
- HD3: -73 dBFS
- Worst other (excluding HD2 and HD3): -79 dBFS at 2.7 GHz
- DAC ac performance at 12 GSPS
- Full-scale output current range: 6.43 mA to 37.75 mA
- Two-tone IMD3 (-7 dBFS per tone): -78.9 dBc
- NSD, single-tone at 3.7 GHz : $-155.1 \mathrm{dBc} / \mathrm{Hz}$
- SFDR, single-tone at 3.7 GHz : -70 dBC
- Versatile digital features
- Configurable or bypassable DDCs and DUCs
- 8 fine complex DUCs and 4 coarse complex DUCs
- 8 fine complex DDCs and 4 coarse complex DDCs
- 48-bit NCO per DUC or DDC
- Programmable 192-tap PFIR filter for receive equalization
- Supports 4 different profile settings loaded via GPIO
- Programmable delay per datapath
- Receive AGC support
- Fast detect with low latency for fast AGC control
- Signal monitor for slow AGC control
- Transmit DPD support
- Fine DUC channel gain control and delay adjust
- Coarse DDC delay adjust for DPD observation path
- Auxiliary features
- Fast frequency hopping and direct digital synthesis (DDS)
- Low latency loopback mode (receive datapath data can be routed to the transmit datapaths)
- ADC clock driver with selectable divide ratios
- Power amplifier downstream protection circuitry
- On-chip temperature monitoring unit
- Flexible GPIO pins
- TDD power savings option and sharing ADCs
- SERDES JESD204B/JESD204C interface, 16 lanes up to 24.75 Gbps
- 8 lanes JESD204B/C transmitter (JTx) and 8 lanes JESD204B/C receiver (JRx)
- JESD204B compliance with the maximum 15.5 Gbps
- JESD204C compliance with the maximum 24.75 Gbps
- Supports real or complex digital data (8-, 12-, 16-, or 24 -bit)
- $15 \mathrm{~mm} \times 15 \mathrm{~mm}, 324$-ball BGA with 0.8 mm pitch

APPLICATIONS

- Wireless communications infrastructure
- Microwave point to point, E-band, and 5G mmWave
- Broadband communications systems
- DOCSIS 3.1 and 4.0 CMTS
- Phased array radar and electronic warfare
- Electronic test and measurement systems

GENERAL DESCRIPTION

The AD9081 mixed signal front end $\left(\mathrm{MxFE}^{\circledR}\right)$ is a highly integrated device with four 16 -bit, 12 GSPS maximum sample rate, RF digital-to-analog converter (DAC) cores, and four 12-bit, 4 GSPS rate, RF analog-to-digital converter (ADC) cores. The AD9081 is well suited for applications requiring both wideband ADCs and DACs to process signal(s) that have wide instantaneous bandwidth. The device features eight transmit and eight receive lanes that support 24.75 Gbps/lane JESD204C or 15.5 Gbps/lane JESD204B standards. The device also has an on-chip clock multiplier, and a digital signal processing (DSP) capability targeted at either wideband or multiband direct to RF applications. The DSP datapaths can be bypassed to allow a direct connection between the converter cores and the JESD204 data transceiver port. The device also features low latency loopback and frequency hopping modes targeted at phase array radar system and electronic warfare applications. Two models for the AD9081 are offered. The 4D4AC model supports the full instantaneous channel bandwidth, whereas the 4D4AB model supports a maximum instantaneous bandwidth of 600 MHz per channel by automatically configuring the DSP to limit the instantaneous bandwidth at startup. See the Ordering Guide for more information.

Rev. 0

TABLE OF CONTENTS

Features 1
Applications 1
General Description. 1
Functional Block Diagram 3
Specifications 4
Recommended Operating Conditions 4
Power Consumption 4
DAC DC Specifications 5
ADC DC Specifications 6
Clock Inputs and Outputs 7
Clock Input and Phase-Locked Loop (PLL)
Frequency Specifications. 7
DAC Sample Rate Specifications 8
ADC Sample Rate Specifications 9
Input Data Rate Specifications 10
NCO Frequency Specifications 11
JESD204B and JESD204C Interface
Electrical and Speed Specifications. 11
CMOS Pin Specifications 13
DAC AC Specifications. 13
ADC AC Specifications 16
Timing Specifications 19
Absolute Maximum Ratings 21
Thermal Resistance 21
ESD Caution 21
Pin Configuration and Function Descriptions 22
Typical Performance Characteristics 27
DAC 27
ADC: 4 GSPS 32
ADC: 3 GSPS 39
Theory of Operation. 43
Applications Information 44
Outline Dimensions 45
Ordering Guide 45
Evaluation Boards 45

REVISION HISTORY

4/2021—Revision 0: Initial Version

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

AD9081

SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Successful DAC calibration is required during the device initialization phase that occurs shortly after power-up to ensure long-term reliability of the DAC core circuitry. Refer to the UG-1578 user guide for more information on device initialization.

Table 1.

Parameter	Min	Typ	Max	Unit
OPERATING JUNCTION TEMPERATURE (TJ)	-40		+120	${ }^{\circ} \mathrm{C}$
ANALOG SUPPLY VOLTAGE RANGE				
AVDD2, BVDD2, RVDD2	1.9	2.0	2.1	V
AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, VDD1_NVG1	0.95	1.0	1.05	V
IGITAL SUPPLY VOLTAGE RANGE				
DVDD1, DVDD1_RT, DCLKVDD1, DAVDD1	0.95	1.0	1.05	V
DVDD1P8	1.7	1.8	2.1	V
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGE RANGE	1.9	2.0	2.1	V
SVDD2_PLL	0.95	1.0	1.05	V
SVDD1, SVDD1_PLL				

POWER CONSUMPTION

Typical at nominal supplies and maximum at 5% supplies. For the minimum and maximum values, T_{J} varies between $-40^{\circ} \mathrm{C}$ and $+120^{\circ} \mathrm{C}$. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.
DAC datapath with a complex I/Q data rate frequency (f_{IQ} DATA $)=2$ GSPS, interpolation of $6 x$, and DAC frequency ($\mathrm{f}_{\mathrm{DAC}}$) of 12 GSPS. JESD204C mode of $24 \mathrm{C}(\mathrm{L}=8, \mathrm{M}=8, F=3, S=2, K=256, E=3, N=12, N P=12)$.

ADC datapath with DDC bypassed (no decimation), and $f_{\text {ADC }}$ of 4 GSPS. JESD204C mode of $27 C(L=8, M=4, F=3, S=4, K=256, E=3, N$ $=12, \mathrm{NP}=12$).
See the UG-1578 user guide for further information on the JESD204B and JESD204C mode configurations and a detailed description of the settings referenced throughout this data sheet. A table showing other operational modes and the corresponding typical and maximum power consumption numbers is included.

Table 2. Power Consumption

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CURRENTS					
AVDD2 ($\mathrm{I}_{\text {AVDD2 }}$)	2.0 V supply		190	205	mA
BVDD2 (livDD2) + RVDD2 (${ }_{\text {RVVD2 }}$)	2.0 V supply		295	355	mA
AVDD2_PLL ($\mathrm{I}_{\text {AVDD2_PLL }}$) +SVDD2_PLL ($\mathrm{I}_{\text {SVDD2 }}$ PLL $)$	2.0 V supply		45	55	mA
Power Dissipation for 2 V Supplies	2.0 V supply total power dissipation		1.1	1.2	W
PLLCLKVDD1 (lpllclkvdi)	1.0 V supply		15	25	mA
AVDD1 ($\mathrm{I}_{\text {AVD1 }}$) + DCLKVDD1 $\left(l_{\text {DCLKVDD1 }}\right)$	1.0 V supply		1000	1185	mA
AVDD1_ADC (${ }_{\text {AVDD1_ADC }}$)	1.0 V supply		1825	2155	mA
CLKVDD1 (IclkVDD1)	1.0 V supply		70	125	mA
FVDD1 (livdo1)	1.0 V supply		45	70	mA
VDD1_NVG (lvDD1_NVG)	1.0 V supply		280	345	mA
DAVDD1 ($\mathrm{L}_{\text {avdo1 }}$)	1.0 V supply		1600	1835	mA
DVDD1 (ldvodi)	1.0 V supply		2580	3530	mA
DVDD1_RT (1 $\mathrm{l}_{\text {VDD1_RT }}$)	1.0 V supply		720	840	mA
SVDD1 ($\mathrm{ISVDD1}^{1}$ + SVDD1_PLL ($\mathrm{ISVDD1}^{\text {PLLL }}$)	1.0 V supply		1920	2570	mA
Power Dissipation for 1 V Supplies	1.0 V supply total power dissipation		10.1	13.1	W
DVDD1P8 (1 ${ }_{\text {vVDD1P8 }}$)	1.8 V supply		7	10	mA
Total Power Dissipation	Total power dissipation of 2 V and 1 V supplies		11.2	14.3	W

SPECIFICATIONS

DAC DC SPECIFICATIONS

Nominal supplies with DAC full-scale output current (loutrs) $=26 \mathrm{~mA}$, unless otherwise noted. ADC setup in 4 GSPS, full bandwidth mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $T_{j}=80^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3. DAC DC Specifications

${ }^{1}$ For dc-coupled applications, the maximum full-scale output current is limited by the maximum $\mathrm{VCM}_{\text {OUT }}$ specification.
${ }^{2}$ The actual measured full-scale power is frequency dependent due to DAC sinc response, impedance mismatch loss, and balun insertion loss.

SPECIFICATIONS

ADC DC SPECIFICATIONS

Nominal supplies with DAC I ${ }_{\text {OutFs }}=26 \mathrm{~mA}$, unless otherwise noted. ADC setup in 4 GSPS, full bandwidth mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=$ $80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4. ADC DC Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
ADC RESOLUTION		12			Bit
ADC ACCURACY No Missing Codes Offset Error Offset Matching Gain Error Gain Matching DNL INL			Guaranteed -0.20 0.05 -0.71 1.2 ± 1.9 ± 0.5		\% FSR \% FSR \% FSR \% FSR LSB LSB
ADC ANALOG INPUTS Differential Input Voltage Full-Scale Sine Wave Input Power Common-Mode Input Voltage (VCMIN) Differential Input Resistance Differential Input Capacitance Return Loss	ADCxP and ADCxN Input power level resulting 0 dBFS tone level on fast Fourier transform (FFT) AC-coupled, equal to voltage at VCMx for ADCx input $<2.7 \mathrm{GHz}$ 2.7 GHz to 3.8 GHz 3.8 GHz to 5.4 GHz		1.4 3.9 1 100 0.4 -4.3 -3.6 -2.9		$\begin{aligned} & \mathrm{Vp}-\mathrm{p} \\ & \mathrm{dBm} \\ & \mathrm{~V} \\ & \Omega \\ & \mathrm{pF} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

SPECIFICATIONS

CLOCK INPUTS AND OUTPUTS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 5. Clock Inputs and Outputs

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUTS Differential Input Power Minimum Maximum Common-Mode Voltage Differential Input Resistance Differential Input Capacitance	CLKINP and CLKINN Direct RF clock AC-coupled			$\begin{aligned} & 0 \\ & 6 \\ & 0.5 \\ & 100 \\ & 0.3 \end{aligned}$	dBm dBm V Ω pF
CLOCK OUTPUTS (ADC CLOCK DRIVER) Differential Output Voltage Magnitude ${ }^{1}$ Differential Output Resistance Common-Mode Voltage	ADCDRVP and ADCDRVN 1.5 GHz 2.0 GHz 3.0 GHz 6.0 GHz AC-coupled			$\begin{aligned} & 740 \\ & 690 \\ & 640 \\ & 490 \\ & 100 \\ & 0.5 \end{aligned}$	$m V p-p$ $m \vee p-p$ $m \vee p-p$ $m \vee p-p$ Ω V

${ }^{1}$ Measured with differential 100Ω load and less than 2 mm of printed circuit board (PCB) trace from package ball.

CLOCK INPUT AND PHASE-LOCKED LOOP (PLL) FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 6. Clock Input and PLL Frequency Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUTS (CLKINP, CLKINN) FREQUENCY RANGES		25		12000	MHz
PHASE FREQUENCY DETECTOR (PFD) INPUT FREQUENCY RANGES		25		750	MHz
FREQUENCY RANGES ACCORDING TO CLOCK PATH CONFIGURATION Direct Clock (PLL Off) PLL Reference Clock (PLL On)	M divider set to divide by 1 M divider set to divide by 2 M divider set to divide by 3 M divider set to divide by 4	$\begin{aligned} & 2900^{1} \\ & 25 \\ & 50 \\ & 75 \\ & 100 \end{aligned}$		$\begin{aligned} & 12000 \\ & 750 \\ & 1500 \\ & 2250 \\ & 3000 \end{aligned}$	MHz MHz MHz MHz MHz
```PLL VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES VCO Output Divide by } Divide by } Divide by } Divide by }```	D divider set to divide by 1   D divider set to divide by 2   D divider set to divide by 3   D divider set to divide by 4	$\begin{array}{\|l} 5.8 \\ 2.9 \\ 1.93333 \\ 1.45 \end{array}$		$\begin{aligned} & 12 \\ & 6 \\ & 4 \\ & 3 \end{aligned}$	GHz   GHz   GHz   GHz

[^0]
## SPECIFICATIONS

## DAC SAMPLE RATE SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7. DAC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
DAC SAMPLE RATE				
Minimum				
Maximum	12		2.9	GSPS

[^1]
## SPECIFICATIONS

## ADC SAMPLE RATE SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 8. ADC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
ADC SAMPLE RATE ${ }^{1}$			1.45	GSPS
Minimum	4			GSPS   Maximum
Aperture Jitter ${ }^{2}$		65		fs rms

[^2]
## SPECIFICATIONS

## INPUT DATA RATE SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 9. Input Data Rate Specifications

Parameter ${ }^{1,2}$	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM DATA RATE PER NUMBER OF ACTIVE DAC OUTPUTS	Single DAC, fine digital upconverter (FDUC) and coarse digital upconverter (CDUC) bypassed ( $1 \times$ interpolation), 16 -bit resolution, limited by the maximum DAC clock rate   Quad DAC, FDUC and CDUC bypassed ( $1 \times$ interpolation), 12-bit resolution, limited by the maximum JESD204C link throughput $(M=4, L=8)$			$\begin{aligned} & 12000 \\ & 4000 \end{aligned}$	MSPS   MSPS
MAXIMUM COMPLEX (I/Q) DATA RATE PER NUMBER OF ACTIVE INPUT DATA CHANNELS	1 channel: FDUC bypassed, 1 CDUC enabled, 12-bit or 16-bit resolution, limited by the maximum CDUC NCO clock rate   2 channels: FDUC bypassed, 2 CDUCs enabled, 12-bit resolution, limited by the maximum JESD204C link throughput ( $M=4, L=8$ )   4 channels: FDUC bypassed, 4 CDUCs enabled, 12-bit resolution, limited by the maximum JESD204C link throughput ( $M=8, L=8$ )   8 channels: 8 FDUCs enabled, one or more CDUC enabled, 12 -bit or 16 -bit resolution, limited by the maximum FDUC NCO clock rate divided by the minimum $2 x$ interpolation rate required to enable the FDUC			$\begin{aligned} & 6000 \\ & 4000 \\ & 2000 \\ & 750 \end{aligned}$	MSPS   MSPS   MSPS   MSPS

[^3]
## SPECIFICATIONS

## NCO FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 10. NCO Frequency Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM NUMERICALLY CONTROLLED OSCILLATOR (NCO) CLOCK RATE   FDUC NCO CDUC NCO   Fine Digital Downconverter (FDDC) NCO Coarse Digital Downconverter (CDDC) NCO				$\begin{aligned} & 1.5 \\ & 12 \\ & 1.5 \\ & 4 \end{aligned}$	GHz   GHz   GHz   GHz
MAXIMUM NCO SHIFT FREQUENCY RANGE   FDUC NCO   CDUC NCO   FDDC NCO   CDDC NCO	Channel interpolation rate must be $>1 \times$ $\mathrm{f}_{\mathrm{DAC}}=12 \mathrm{GHz}$, main interpolation rate must be $>1 \mathrm{x}$ Channel decimation rate must be $>1 \times$ $f_{A D C}=4 \mathrm{GHz}$, main decimation rate must be $>1 \mathrm{x}$	$\begin{aligned} & -750 \\ & -6 \\ & -750 \\ & -2 \end{aligned}$		$\begin{aligned} & +750 \\ & +6 \\ & +750 \\ & +2 \end{aligned}$	MHz   GHz   MHz   GHz
MAXIMUM FREQUENCY SPACING BETWEEN CHANNELIZER CHANNELS   Tx FDUC Channels   Rx FDDC Channels	Maximum FDUC NCO clock rate $\times 0.8^{1}$   Maximum FDDC NCO clock rate $\times 0.814^{2}$			$\begin{aligned} & 1200 \\ & 1221 \end{aligned}$	

${ }^{1}$ The 0.8 factor is because the total complex pass-band of the first interpolation filter is $80 \%$ of the filter input data rate.
${ }^{2}$ The 0.814 factor is because the total complex pass-band of the decimation filter is $81.4 \%$ of the filter output data rate.

## JESD204B AND JESD204C INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, and for the typical values, $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 11. Serial Interface Rate Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
JESD204B SERIAL INTERFACE RATE	Serial lane rate	1.0	15.5	Gbps	
Unit Interval		64.5	1000.0	ps	
JESD204C SERIAL INTERFACE RATE	Serial lane rate	6.0	24.75	Gbps	
Unit Interval		40.4	166.67	ps	

Table 12. JESD204 Receiver (JRx) Electrical Specifications


[^4]
## SPECIFICATIONS

Table 13. JESD204 Transmitter (JTx) Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
JESD204 DATA OUTPUTS   Standards Compliance   Differential Output Voltage   Differential Termination Impedance   Rise Time, $\mathrm{t}_{\mathrm{R}}$   Fall Time, $\mathrm{t}_{\mathrm{F}}$	SERDOUTx $\pm$, where $x=0$ to 7   Maximum strength   $20 \%$ to $80 \%$ into $100 \Omega$ load   $20 \%$ to $80 \%$ into $100 \Omega$ load	80	$\quad$ JES 675 108 18 18	$4 C$ 120	$\begin{aligned} & \text { mV p-p } \\ & \Omega \\ & \text { ps } \\ & \text { ps } \end{aligned}$
SYNCXINB $\pm$ INPUTS ${ }^{1}$   Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance, $\mathrm{R}_{\mathbb{N}}\left(\right.$ Differential) ${ }^{2}$ Input Capacitance (Differential)	Where $x=0$ or 1   DC-coupled	0.24	0.7   0.675   18   1	$\begin{aligned} & 1.9 \\ & 2 \end{aligned}$	$\begin{aligned} & V p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
SYNCxINB+ AND SYNCxINB-	CMOS input option	Refer to the CMOS Pin Specifications section			

${ }^{1}$ IEEE 1596.3 standard LVDS compatible.
${ }^{2}$ Available on-chip $100 \Omega$ termination. See the UG-1578 user guide for details.

## Table 14. SYSREF Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYSREFP AND SYSREFN INPUTS	DC-coupled	LVDS/LVPECL ${ }^{1}$			
Logic Compliance					
Differential Input Voltage			0.7	1.9	V p-p
Input Common-Mode Voltage Range			0.675	2	V
Input Resistance, $\mathrm{R}_{\mathbb{N}}$ (Differential)			100		$\Omega$
Input Capacitance (Differential)			1		pF

[^5]
## SPECIFICATIONS

## CMOS PIN SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}, 1.7 \mathrm{~V} \leq \mathrm{DVDD1P8} \leq 2.1 \mathrm{~V}$, other supplies nominal, unless otherwise noted.
Table 15. CMOS Pin Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUTS   Logic 1 Voltage Logic 0 Voltage Input Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	SDIO, SCLK, CSB, RESETB, RXEN0, RXEN1, TXEN0, TXEN1, SYNCOINB $\pm$, SYNC1INB $\pm$, and GPIOx	$\begin{aligned} & 0.70 \times \text { DVDD1P8 } \\ & 40 \\ & \hline \end{aligned}$		$0.3 \times$ DVDD1P8	$\begin{array}{\|l} \hline V \\ V \\ k \Omega \\ \hline \end{array}$
OUTPUTS   Logic 1 Voltage Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{LL}} \end{aligned}$	SDIO, SDO, GPIOx, ADCx_FDx, ADCx_SMONx, SYNCOOUTB $\pm$, and SYNC1OUTB $\pm, 4 \mathrm{~mA}$ load	DVDD1P8-0.45		0.45	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
INTERRUPT OUTPUTS   Logic 1 Voltage   Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	IRQB_0 and IRQB_1, pull-up resistor of $5 \mathrm{k} \Omega$ to DVDD1P8	1.35		0.48	

## DAC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications represent the average of all four DAC channels with the $\mathrm{DAC} \mathrm{I}_{\text {OUTFS }}=26 \mathrm{~mA}$, unless otherwise noted.

Table 16. DAC AC Specifications


## SPECIFICATIONS

Table 16. DAC AC Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
$\begin{aligned} & f_{D A C}=9 \mathrm{GSPS} \\ & f_{D A C}=6 \mathrm{GSPS} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {OUT }}=3500 \mathrm{MHz} \\ & \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \\ & \mathrm{f}_{\text {OUT }}=2650 \mathrm{MHz} \\ & \mathrm{f}_{\text {OUT }}=750 \mathrm{MHz} \\ & \mathrm{f}_{\text {OUT }}=1840 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 73 \\ & 77 \\ & 77 \\ & 79 \\ & 77 \end{aligned}$		dBC   dBc   dBc   dBc   dBc
THIRD-ORDER INTERMODULATION DISTORTION (IMD3) $\begin{aligned} & f_{\mathrm{DAC}}=12 \mathrm{GSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=9 \mathrm{GSPS} \\ & \mathrm{f}_{\mathrm{DAC}}=6 \mathrm{GSPS} \end{aligned}$	Two tone test, 1 MHz spacing, 0 dBFS digital backoff, -6 dBFS per tone   $\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=2600 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=3700 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=2600 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}$   $\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}$		$\begin{aligned} & -69 \\ & -72 \\ & -72 \\ & -79 \\ & -76 \\ & -79 \\ & -90 \end{aligned}$	-62	dBc   dBc   dBc   dBc   dBc   dBc   dBc
NOISE SPECTRAL DENSITY (NSD)	0 dBFS , NSD measurement taken at $10 \%$ away from $f_{\text {Out }}$, shuffle off		$\begin{aligned} & -168 \\ & -167 \\ & -165 \\ & -162 \\ & -160 \\ & -155 \\ & -154 \\ & \\ & -168 \\ & -166 \\ & -164 \\ & -160 \\ & -158 \\ & -154 \\ & \\ & -168 \\ & -165 \\ & -163 \\ & -159 \\ & -157 \end{aligned}$		dBC/Hz   $\mathrm{dBC} / \mathrm{Hz}$   dBC/Hz   dBC/Hz   dBc/Hz
```SINGLE SIDEBAND PHASE NOISE OFFSET (PLL DISABLED) fout =3.6GHz, fDAC}=12\textrm{GSPS},\textrm{CLKINx Frequency (f 1 kHz 10 kHz 100 kHz 600 kHz 1.2 MHz 1.8 MHz 6MHz```	Direct device clock input at 6 dBm Rohde \& Schwarz SMA100B B711 option		$\begin{aligned} & -118 \\ & -129 \\ & -137 \\ & -144 \\ & -148 \\ & -149 \\ & -153 \end{aligned}$		dBC/Hz   dBC/Hz   dBC/Hz   dBC/Hz   dBC/Hz   dBC/Hz   dBC/Hz
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL ENABLED)	Loop filter component values include $\mathrm{C} 1=22 \mathrm{nF}, \mathrm{R} 1=226 \Omega, \mathrm{C} 2=2.2 \mathrm{nF}$, $C 3=33 \mathrm{nF}$, and PFD $=500 \mathrm{MHz}^{1}$				

SPECIFICATIONS

Table 16. DAC AC Specifications

Parameter	Test Conditions/Comments	Min	Typ
$\mathrm{f}_{\text {OUT }}=1.8 \mathrm{GHz}, \mathrm{f}_{\mathrm{DAC}}=12 \mathrm{GSPS}, \mathrm{f}_{\text {CLKIN }}=0.5 \mathrm{GHz}$	Max	Unit	
1 kHz		-106	
10 kHz		-113	
100 kHz		-120	$\mathrm{dBc} / \mathrm{Hz}$
600 kHz		-127	$\mathrm{dBc} / \mathrm{Hz}$
1.2 MHz		-134	$\mathrm{dBc} / \mathrm{Hz}$
1.8 MHz		-138	$\mathrm{dBc} / \mathrm{Hz}$
6 MHz		-150	$\mathrm{dBc} / \mathrm{Hz}$

[^6]
SPECIFICATIONS

ADC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Input amplitude $\left(\mathrm{A}_{I N}\right)=-1 \mathrm{dBFS}$, full bandwidth (no decimation) mode. For the minimum and maximum values, $T_{j}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. Specifications represent average of four ADC channels with DACs powered on. See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.
Table 17. ADC AC Specifications

SPECIFICATIONS

Table 17. ADC AC Specifications

	3 GSPS			4 GSPS			
Parameter	Min	Typ	Max	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-46			-46		dBFS
THIRD-ORDER HARMONIC DISTORTION (HD3) $\begin{aligned} & f_{\mathrm{f}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=6300 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=7200 \mathrm{MHz} \end{aligned}$		-78 -79 -78 -76 -71 -62 -60 -59 -58			$\begin{aligned} & -76 \\ & -76 \\ & -75 \\ & -73 \\ & -76 \\ & -64 \\ & -60 \\ & -57 \\ & -54 \end{aligned}$	-66	$\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$
WORST OTHER, EXCLUDING HD2, HD3, AND INTERLEAVING SPURS $\begin{aligned} & f_{\mathrm{f}_{\mathrm{N}}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=6300 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=7200 \mathrm{MHz} \end{aligned}$		-78 -78 -78 -78 -78 -77 -78 -74 -73			$\begin{aligned} & -88 \\ & -87 \\ & -81 \\ & -79 \\ & -77 \\ & -75 \\ & -74 \\ & -72 \\ & -72 \end{aligned}$	-64	$\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$
$\begin{aligned} & 1 N T E R L E A V I N G ~ S P U R ~ \\ &\left(f_{\mathbb{N}} \pm f_{S} / 2\right)^{3} \\ & f_{\mathbb{N}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=6300 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=7200 \mathrm{MHz} \end{aligned}$		-97 -94 -96 -86 -84 -53 -78 -77 -78			$\begin{aligned} & -93 \\ & -93 \\ & -90 \\ & -86 \\ & -81 \\ & -85 \\ & -86 \\ & -79 \\ & -74 \end{aligned}$		dBFS dBFS
$\begin{aligned} & \hline \text { DIGITAL COUPLING SPUR }\left(\mathrm{f}_{\mathbb{N}} \pm \mathrm{f}_{\mathrm{S}} / 4\right) \\ & \mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=6300 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=7200 \mathrm{MHz} \\ & \hline \end{aligned}$		-83 -79 -73 -70 -68 -66 -65 -64 -63			$\begin{aligned} & -94 \\ & -91 \\ & -89 \\ & -86 \\ & -87 \\ & -83 \\ & -82 \\ & -80 \\ & -79 \end{aligned}$	-67	dBFS dBFS
```TWO-TONE INTERMODULATION DISTORTION (IMD3, \(2 \mathrm{f}_{\mathbb{N} 1}-f_{\mathrm{IN} 2}\) OR \(2 \mathrm{f}_{\mathrm{N} 2}-\mathrm{f}_{\mathrm{N} 1}\) ) \(\mathrm{A}_{\mathrm{IN}^{1}}\) AND \(\mathrm{A}_{\mathbb{N} 2}=-7 \mathrm{dBFS}\) \(\mathrm{f}_{\mathrm{N} 1}=1775 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=1825 \mathrm{MHz}\) \(\mathrm{f}_{\mathrm{N} 1}=2675 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=2725 \mathrm{MHz}\) \(\mathrm{f}_{\mathrm{N} 1}=3575 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=3625 \mathrm{MHz}\) \(f_{\mathbb{N N}_{1}}=5375 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=5425 \mathrm{MHz}\)```		-81 -77 -73 -66			$\begin{aligned} & -84 \\ & -78 \\ & -74 \\ & -66 \end{aligned}$		dBFS   dBFS   dBFS   dBFS

## SPECIFICATIONS

Table 17. ADC AC Specifications

|  |  | 3 GSPS |  |  | 4 GSPS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Min | Typ | Max | Min | Typ | Max | Unit |
| ANALOG BANDWIDTH ${ }^{4}$ |  | 7.5 |  |  | 7.5 |  | GHz |

${ }^{1}$ Noise density is measured at 250 MHz input frequency at -30 dBFS , where timing jitter does not degrade noise floor.
${ }^{2}$ Noise figure is based on a nominal full-scale input power of 4.5 dBm with an input span of 1.4 V p-p and $\mathrm{R}_{\mathbb{N}}=100 \Omega$.
${ }^{3}$ With background interleaving calibration converged.
${ }^{4}$ Analog input bandwidth is the bandwidth of operation in which the full-scale input frequency response rolls off by -3 dB based on a de-embedded model of the ADC extracted from the measured frequency response on evaluation board. This bandwidth requires optimized matching network to achieve this upper bandwidth.

## SPECIFICATIONS

## TIMING SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 18. Timing Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
SERIAL PORT INTERFACE (SPI) WRITE OPERATION   Maximum SCLK Clock Rate   SCLK Clock High   SCLK Clock Low   SDIO to SCLK Setup Time   SCLK to SDIO Hold Time   CSB to SCLK Setup Time   CLK to CSB Hold Time	$\mathrm{f}_{\text {SCLK }}, 1 / \mathrm{t}_{\text {SCLK }}$ $\mathrm{t}_{\text {PWH }}$ $\mathrm{t}_{\text {PWL }}$ $\mathrm{t}_{\mathrm{DS}}$ $\mathrm{t}_{\mathrm{DH}}$ $\mathrm{t}_{\mathrm{S}}$ $\mathrm{t}_{\mathrm{H}}$	$\begin{aligned} & \text { SCLK }=33 \mathrm{MHz} \\ & \text { SCLK }=33 \mathrm{MHz} \end{aligned}$	$\begin{array}{\|l} 33 \\ 8 \\ 8 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$			MHz   ns   ns   ns   ns   ns   ns
SPI READ OPERATION   LSB First Data Format   Maximum SCLK Clock Rate   SCLK Clock High   SCLK Clock Low   MSB First Data Format   Maximum SCLK Clock Rate   SCLK Clock High   SCLK Clock Low   SDIO to SCLK Setup Time SCLK to SDIO Hold Time CSB to SCLK Setup Time SCLK to SDIO Data Valid Time SCLK to SDO Data Valid Time CSB to SDIO Output Valid to High-Z CSB to SDO Output Valid to High-Z	$\mathrm{f}_{\text {SCLK }} 1 /$ tsCLK   $t_{\text {PWH }}$   tpWL   $\mathrm{f}_{\text {SCLK }}, 1 /$ tsCLK   $t_{\text {PWH }}$   tpWL   tDS   $t_{D H}$   $t_{s}$   $t_{D V}$   $t_{D V _S D O}$   $\mathrm{t}_{\mathrm{z}}$   $\mathrm{t}_{\mathrm{Z} \text { _SDO }}$		$\begin{aligned} & 33 \\ & 8 \\ & 8 \\ & 8 \\ & 15 \\ & 30 \\ & 30 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$			MHz   ns   ns   MHz   ns
RESETB		Minimum hold time to trigger a device reset	40			ns

Timing Diagrams


Figure 2. Timing Diagram for 3-Wire Write Operation

## SPECIFICATIONS



Figure 3. Timing Diagram for 3-Wire Read Operation


Figure 4. Timing Diagram for 4-Wire Read Operation

## ABSOLUTE MAXIMUM RATINGS

Table 19.

Parameter	Rating
ISET, DACxP, DACxN, TDP, TDN	-0.3 V to AVDD2 + 0.3 V
VCO_COARSE, VCO_FINE, VCO_VCM, VCO_VREG	-0.3 V to AVDD2_PLL +0.3 V
Rx Input Power (ADCOP/N, ADC1P/N, ADC2P/N, ADC3P/N) ${ }^{1}$	22 dBm
VCM0, VCM1	-0.3 V to RVDD2 +0.3 V
CLKINP, CLKINN	-0.2 V to PLLCLKVDD1 +0.2 V
ADCDRVN, ADCDRVP	-0.2 V to CLKVDD1 + 0.2 V
SERDINx $\pm$, SERDOUTx $\pm$	-0.2 V to SVDD1 +0.2 V
SYSREFP, SYSREFN, and SYNCxINB $\pm$	-0.2 V to +2.5 V
SYNCxOUTB $\pm$, SYNCxINB $\pm$, RESETB, TXENx, RXENx, IRQB_x, CSB, SCLK, SDIO, SDO, TMU_REFN, TMU_REFP, ADCx_SMONO, ADCx_SMON1, ADCx_FDO, ADCx_FD1, GPIOx	-0.3 V to DVDD1P8 + 0.3 V
AVDD2, AVDD2_PLL, BVDD2, RVDD2, SVDD2_PLL, DVDD1P8	-0.3 V to +2.2 V
PLLCLKVDD1, AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, DAVDD1, DVDD1_RT, DCLKVDD1, SVDD1, SVDD1_PLL	-0.2 V to +1.2 V
VNN1	-1.1 V to +0.2 V
Temperature Ranges	
Maximum Junction ( $\left.\mathrm{T}_{\mathrm{J}}\right)^{2}$	$120^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

${ }^{1}$ Tested continuously for 1000 hours with $\mathrm{f}_{\mathrm{N}}=4.7 \mathrm{GHz}$ pulsed and continuous tone at maximum allowed junction temperature ( $\mathrm{T}_{\mathrm{J}}$ ). Refer to the UG-1578 user guide for more information.
${ }^{2}$ Do not exceed this temperature for any duration of time when the device is powered.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. The use of appropriate thermal management techniques is recommended to ensure that the maximum $T_{J}$ does not exceed the limits shown in Table 19.
$\theta_{\mathrm{JA}}$ is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.
$\theta_{J C_{-} \text {TOP }}$ is the junction to case, thermal resistance.
$\theta_{\mathrm{JB}}$ is the junction to board, thermal resistance.
Table 20. Simulated Thermal Resistance ${ }^{1}$

	Airflow Velocity   $(\mathrm{m} / \mathrm{sec})$		$\theta_{\text {JA }}$	$\theta_{\text {JC_TOP }}$	$\theta_{\text {JB }}$	Unit
PCB Type	14.9	0.70	1.8	${ }^{\circ} \mathrm{C} / W$		

${ }^{1}$ Thermal resistance values specified are simulated based on JEDEC specifications in compliance with JESD51-12 with the device power equal to 9 W .

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi-   ces and circuit boards can discharge without detection. Although   this product features patented or proprietary protection circuitry,   damage may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to avoid   performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 5. Pin Configuration

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
POWER SUPPLIES			
A2, E2, H2, L2, P2, V2	AVDD2	Input	Analog 2.0 V Supply Inputs for DAC.
L3	AVDD2_PLL	Input	Analog 2.0 V Supply Input for Clock PLL Linear Dropout Regulator (LDO).
D7, E7, P7, R7	BVDD2	Input	Analog 2.0 V Supply Inputs for ADC Buffer.
B11, U11	RVDD2	Input	Analog 2.0 V Supply Inputs for ADC Reference.
J5	PLLCLKVDD1	Input	Analog 1.0 V Supply Input for Clock PLL.
D2, D3, D4, E3, F3, N3, P3, R2, R3, R4	AVDD1	Input	Analog 1.0 V Supply Inputs for DAC Clock.
G7, G8, M7, M8	AVDD1_ADC	Input	Analog 1.0 V Supply Inputs for ADC.
G6, M6	CLKVDD1	Input	Analog 1.0 V Supply Inputs for ADC Clock.
D6, R6	FVDD1	Input	Analog 1.0 V Supply Inputs for ADC Reference.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
D10, R10	VDD1_NVG	Input	Analog 1.0 V Supply Inputs for Negative Voltage Generator (NVG) Used to Generate -1 V Output.
E9, P9	NVG1_OUT	Output	Analog -1 V Supply Outputs from NVG. Decouple NVG1_OUT to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
D8, E8, E10, P8, R8, P10	VNN1	Input	Analog -1 V Supply Inputs for ADC Buffer and Reference. Connect these pins to the adjacent NVG1_OUT pins.
C9, T9,	BVNN2	Output	Decoupling Pin for the Internally Generated Analog -2 V ADC Buffer Supply. Decouple each BVNN2 pin to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
C10, T10	BVDD3	Output	Decoupling Pin for the Internally Generated Analog 3 V ADC Buffer Supply. Decouple BVDD3 to GND with $0.1 \mu \mathrm{~F}$ capacitor.
E5, F5, N5, P5	DAVDD1	Input	Digital Analog 1.0 V Supply Inputs.
F10, H9, H11, J9, J11, K9, K11, L9, L11, M9	DVDD1	Input	Digital 1.0 V Supply Inputs.
J7, K7	DVDD1_RT	Input	Digital 1.0 V Supply Inputs for Retimer Block.
K5	DCLKVDD1	Input	Digital 1.0 V Clock Generation Supply.
A16, B16, C16, D16, E16, F16, G16, H16, M16, N16, P16, R16, T16, U16, V16	SVDD1	Input	Digital 1.0 V Supply Inputs for SERDES Deserializer and Serializer.
K15	SVDD2_PLL	Input	Digital 2.0 V Supply Input for SERDES LDO.
J16, K16	SVDD1_PLL	Input	Digital 1.0 V Supply Inputs for SERDES Clock Generation and PLL.
C13, F9, T13	DVDD1P8	Input	Digital Interface and Temperature Monitoring Unit (TMU) Supply Inputs (Nominal 1.8 V ).
$\mathrm{A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 7, \mathrm{~A} 8, \mathrm{~A} 11, \mathrm{~A} 17, \mathrm{~A} 18, \mathrm{~B} 2$ to $\mathrm{B} 6, \mathrm{~B} 9, \mathrm{~B} 10$, B14, B15, C2, C5 to C8, C11, C17, C18, D1, D5, D9, D14, D15, E1, E4, E6, E17, E18, F2, F4, F6 to F8, F14, F15, G2 to G5, G17, G18, H1, H5 to H8, H10, H12, H14, H15, J2, J8, J10, J12, J14, J15, J17, J18, K2, K8, K10, K12, K14, K17, K18, L1, L5 to L8, L10, L12, L14, M2 to M5, M10, M17, M18, N2, N4, N6 to N8, N14, N15, P1, P4, P6, P17, P18, R1, R5, R9, R14, R15, T2, T5 to T8, T11, T17, T18, U2 to U6, U9, U10, U14, U15, V1, V3, V4, V7, V8, V11, V17, V18	GND	Input/output	Ground References.
ANALOG OUTPUTS			
B1, C1	DACOP, DACON	Output	DACO Output Currents, Ground Referenced. Tie these pins to GND if unused.
G1, F1	DAC1P, DAC1N	Output	DAC1 Output Currents, Ground Referenced. Tie these pins to GND if unused.
M1, N1	DAC2P, DAC2N	Output	DAC2 Output Currents, Ground Referenced. Tie these pins to GND if unused.
U1, T1	DAC3P, DAC3N	Output	DAC3 Output Currents, Ground Referenced. Tie these pins to GND if unused.
H3	ISET	Output	DAC Bias Current Setting Pin. Connect this pin with a $5 \mathrm{k} \Omega$ resistor to GND.
C4, C3	ADCDRVP, ADCDRVN	Output	Optional Clock Output (for example, ADC Clock Driver for an external ADC). These pins are disabled by default. Leave the pins floating if unused.
B7, U7, B8, U8	VCM0, VCM1, VCM2, VCM3	Output	ADC Buffer Common-Mode Output Voltage. Decouple these pins to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
K3	VCO_VREG	Output	PLL LDO Regulator Output. Decouple this pin to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
G9	TMU_REFN	Output	TMU ADC Negative Reference. Connect this pin to GND.
G10	TMU_REFP	Output	TMU ADC Positive Reference. Connect this pin to DVDD1P8.
ANALOG INPUTS			

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
A6, A5	ADCOP, ADCON	Input	ADCO Differential Inputs with Internal $100 \Omega$ Differential Resistor. Leave these pins floating if unused.
V6, V5	ADC1P, ADC1N	Input	ADC1 Differential Inputs with Internal $100 \Omega$ Differential Resistor. Leave these pins floating if unused.
A10, A9	ADC2P, ADC2N	Input	ADC2 Differential Inputs with Internal $100 \Omega$ Differential Resistor. Leave these pins floating if unused.
V10, V9	ADC3P, ADC3N	Input	ADC3 Differential Inputs with Internal $100 \Omega$ Differential Resistor. Leave these pins floating if unused.
J3	VCO_FINE	Input	On-Chip Device Clock Multiplier and PLL Fine Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
J4	VCO_COARSE	Input	On-Chip Device Clock Multiplier and PLL Coarse Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
K4	VCO_VCM	Input	On-Chip Device Clock Multiplier and VCO Common-Mode Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
N9, N10	TDP, TDN	Input	Anode and Cathode of Temperature Diodes. This feature is not supported. Tie TDP and TDN to GND.
J1, K1	CLKINP, CLKINN	Input	Differential Clock Inputs with Nominal $100 \Omega$ Termination. Self bias input requiring ac coupling. When the on-chip clock multiplier PLL is enabled, this input is the reference clock input. If the PLL is disabled, an RF clock equal to the DAC output sample rate is required.
CMOS INPUTS AND OUTPUTS ${ }^{1}$			
G13	CSB	Input	Serial Port Enable Input. Active low.
H13	SCLK	Input	Serial Plot Clock Input.
F13	SDIO	Input/output	Serial Port Bidirectional Data Input/Output.
J13	SDO	Output	Serial Port Data Output.
C12	RESETB	Input	Active Low Reset Input. RESETB places digital logic and SPI registers in a known default state. RESETB must be connected to a digital IC that is capable of issuing a reset signal for the first step in the device initialization process.
E13, D13	RXEN0, RXEN1	Input	Active High ADC and Receive Datapath Enable Inputs. RXENx is also SPI configurable.
P13, R13	TXEN0, TXEN1	Input	Active High DAC and Transmit Datapath Enable Inputs. TXENx is also SPI configurable.
D12, D11	ADC0_FD0, ADC0_FD1	Output	ADCO Fast Detect Outputs by Default. Do not connect if unused.
E12, E11	ADC1_FD0, ADC1_FD1	Output	ADC1 Fast Detect Outputs by Default. Do not connect if unused.
F12, F11	ADC2_FD0, ADC2_FD1	Output	ADC2 Fast Detect Outputs by Default. Do not connect if unused.
G12, G11	ADC3_FD0, ADC3_FD1	Output	ADC3 Fast Detect Outputs by Default. Do not connect if unused.
P12, R12	IRQB_0, IRQB_1	Output	Interrupt Request Outputs. These pins are open-drain, active low outputs (CMOS levels with respect to DVDD1P8). Connect $a>5 \mathrm{k} \Omega$ pull-up resistor to DVDD1P8 to prevent these pins from floating when unused.
M11, M12, N11, N12, P11, R11	GPIO0 to GPIO5	Input/output	General-Purpose Input or Output Pins. These pins control auxiliary functions related to the Tx datapaths.
K13, L13, M13, N13, T12	GPIO6 to GPIO10	Input/output	General-Purpose Input or Output Pins. These pins control auxiliary functions related to the Rx datapaths and ADCs.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
JESD204B or JESD204C COMPATIBLE SERDES DATA LANES AND CONTROL SIGNALS ${ }^{2}$			
L18, L17	SERDIN0+, SERDIN0-	Input	JRx Lane 0 Inputs, Data True/Complement.
N18, N17	SERDIN1+, SERDIN1-	Input	JRx Lane 1 Inputs, Data True/Complement.
R18, R17	SERDIN2+, SERDIN2-	Input	JRx Lane 2 Inputs, Data True/Complement.
U18, U17	SERDIN3+, SERDIN3-	Input	JRx Lane 3 Inputs, Data True/Complement.
M15, M14	SERDIN4+, SERDIN4-	Input	JRx Lane 4 Inputs, Data True/Complement.
V15, V14	SERDIN5+, SERDIN5-	Input	JRx Lane 5 Inputs, Data True/Complement.
T15, T14	SERDIN6+, SERDIN6-	Input	JRx Lane 6 Inputs, Data True/Complement.
P15, P14	SERDIN7+, SERDIN7-	Input	JRx Lane 7 Inputs, Data True/Complement.
U13, V13	SYNCOOUTB+, SYNCOOUTB-	Output	JRx Link 0 Synchronization Outputs for the JESD204B Interface. These pins are LVDS or CMOS configurable. These pins can also provide differential $100 \Omega$ output impedance in LVDS mode.
U12, V12	SYNC10UTB+, SYNC10UTB-	Output	JRx Link 1 Synchronization Outputs for the JESD204B interface or CMOS Input to Control the Transmit Fast Frequency Hopping (FFH) Feature. For JRx link synchronization, these pins can be configured as LVDS or CMOS outputs and can provide differential $100 \Omega$ output impedance in LVDS mode.
A15, A14	SERDOUTO+, SERDOUTO-	Output	JTx Lane 0 Outputs, Data True/Complement.
C15, C14	SERDOUT1+, SERDOUT1-	Output	JTx Lane 1 Outputs, Data True/Complement.
E15, E14	SERDOUT2+, SERDOUT2-	Output	JTx Lane 2 Outputs, Data True/Complement.
G15, G14	SERDOUT3+, SERDOUT3-	Output	JTx Lane 3 Outputs, Data True/Complement.
H18, H17	SERDOUT4+, SERDOUT4-	Output	JTx Lane 4 Outputs, Data True/Complement.
F18, F17	SERDOUT5+, SERDOUT5-	Output	JTx Lane 5 Outputs, Data True/Complement.
D18, D17	SERDOUT6+, SERDOUT6-	Output	JTx Lane 6 Outputs, Data True/Complement.
B18, B17	SERDOUT7+, SERDOUT7-	Output	JTx Lane 7 Outputs, Data True/Complement.
B13, A13	SYNCOINB+, SYNCOINB-	Input	JTx Link 0 Synchronization Inputs for the JESD204B Interface. These pins are LVDS or CMOS configurable. These pins are LVDS or CMOS configurable and have selectable internal 100 $\Omega$ input impedance for LVDS operation
B12, A12	SYNC1INB+, SYNC1INB-	Input	JTx Link 1 Synchronization Inputs for the JESD204B Interface or CMOS Inputs for Receive FFH via the GPIOx Pins. These pins are LVDS or CMOS configurable and have selectable internal $100 \Omega$ input impedance for LVDS operation.
T4, T3	SYSREFP, SYSREFN	Input	Active High JESD204B/C System Reference Inputs. These pins are configurable for differential current mode logic (CML), PECL, and LVDS with internal $100 \Omega$ termination or singleended CMOS.
NO CONNECTS AND DO NOT CONNECTS J6, K6	NC		No Connect. These pins can be left open or connected.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
H4, L4, L15, L16	DNC	DNC	Do Not Connect. The pins must be kept open.

${ }^{1}$ CMOS inputs do not have pull-up or pull-down resistors.
${ }^{2}$ SERDIN $x \pm$ and SERDOUTx $\pm$ include $100 \Omega$ internal termination resistors.

## TYPICAL PERFORMANCE CHARACTERISTICS

## DAC

The data curves represent the average performance across all outputs with harmonics and spurs falling in the first Nyquist zone (<f $\mathrm{f}_{\mathrm{DC}} / 2$ ). All SFDR, IMD3, and NSD data measured on a laboratory evaluation board. All data for the phase noise and adjacent channel leakage ratio (ACLR) is measured on the AD9081-FMCA-EBZ customer evaluation board. For additional information on the JESD204B and JESD204C mode configurations, see the UG-1578 user guide.


Figure 6. HD2 vs. $f_{\text {OUT }}$ over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C


Figure 7. HD2 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C


Figure 8. HD3 vs. fout over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4×, Mode 15C


Figure 9. HD2 vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C


Figure 10. HD2 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B


Figure 11. HD3 vs. $f_{\text {OUT }}$ over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 12. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C


Figure 13. SFDR, Worst Spurious vs. fout over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C


Figure 14. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C


Figure 15. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B


Figure 16. SFDR, Worst Spurious vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C


Figure 17. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B

TYPICAL PERFORMANCE CHARACTERISTICS


Figure 18. IMD3 vs. fout over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, Mode 15C, IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale


Figure 19. IMD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, Mode 15C, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale


Figure 20. IMD3 vs. $f_{\text {OUT }}$ over $f_{D A C}$, Digital Scale -7 dBFS, IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale


Figure 21. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, Mode 15C, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale


Figure 22. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, Mode 16B, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale


Figure 23. SFDR, Worst In-Band Spurious vs. fout over $f_{D A C}$, with 0 dBFS Tone Level

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 24. DACO Fundamental Output Power vs. $f_{O U T}$ Across $f_{D A C}$, at 0 dBFS Digital Backoff, Measured on a Laboratory Evaluation Board, the AD9081-FMCA-EBZ Evaluation Board has a Different PCB Layout and Results in a Different Frequency Response when Compared to a Laboratory Evaluation Board


Figure 25. Single Sideband Phase Noise vs. Frequency Offset for Different Clock Input Power ( $\mathrm{P}_{\mathrm{CLK}}$ ), $f_{\text {OUT }}=1.8 \mathrm{GHz}$, External 12 GHz Clock Input with Clock PLL Disabled


Figure 26. Single-Tone NSD Measured at 10\% Offset from fout vs. fout over $f_{\text {DAC }}$, Shuffle On, 16-Bit Resolution, Mode 15C


Figure 27. Single Sideband Phase Noise vs. Frequency Offset for Different PLL Reference Clocks ( $f_{\text {REF }}$ ), $f_{\text {OUT }}=1.8 \mathrm{GHz}, f_{D A C}=12$ GSPS, PLL Enabled with Exception of External 12 GHz Clock Input with Clock PLL Disabled


Figure 28. Single Sideband Phase Noise vs. Frequency Offset for Different DAC Output Frequencies (fout), External 12 GHz Clock Input with Clock PLL Disabled


Figure 29. Single-Tone NSD Measured at $10 \%$ Offset from fout vs. fout over $f_{D A C}$, 12-Bit Resolution, Shuffle On, Mode 24C

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 30. Single-Tone NSD Measured at $10 \%$ Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{\text {DAC }}=11796.48$ MSPS, 16-Bit Resolution, Mode 15C


Figure 31. Dual Band ACLR Performance for Two 20 MHz LTE carriers at $f_{\text {OUT }}$ $=1.88 \mathrm{GHz}$ and $\mathrm{f}_{\mathrm{OUT}}=2.145 \mathrm{GHz}$ (Refer to Figure 32 for a Wideband Plot), Showing a Close Up of One Carrier at $f_{\text {OUT }}=1.88 \mathrm{GHz}, f_{D A C}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Backoff, Channel Interpolation 3 x , Main Interpolation 8x, Mode 9C


Figure 32. Dual Band Wideband Plot for Two 20 MHz LTE Carriers at fout $=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ (3GPP Bands, B1 and B3, Respectively), at $f_{D A C}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Backoff, Channel Interpolation 3x, Main Interpolation 8x, Mode 9C


Figure 33. Single-Tone NSD Measured at $10 \%$ Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{D A C}=11796.48$ MSPS, 12-Bit Resolution, Mode 24C


Figure 34. Dual Band ACLR Performance for two 20 MHz LTE carriers at fout $=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ (Refer to Figure 32 for a Wideband Plot), Showing a Close-up of One Carrier at $f_{\text {OUT }}=2.145 \mathrm{GHz}, f_{\text {DAC }}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Backoff, Channel Interpolation 3 x , Main Interpolation 8x, Mode 9C


Figure 35. ACLR Performance for 100 MHz 5 G Test Vector at fout $=3.9 \mathrm{GHz}$ and $f_{D A C}=11.898$ GSPS, Test Vector Peak to RMS $=11.7 \mathrm{~dB}$ with -1 dBFS Backoff (Mode 9C), Channel Interpolation 3x, Main Interpolation 8x

## TYPICAL PERFORMANCE CHARACTERISTICS

## ADC: 4 GSPS

Nominal supplies, sampling rate $=4$ GSPS with DAC clock frequency (fclk) $=12 \mathrm{GHz}$ direct RF clock, full bandwidth mode operation (no decimation), $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$, 128k FFT sample with five averages, and $\mathrm{A}_{\mathbb{N}}=-1 \mathrm{dBFS}$, unless otherwise noted.


Figure 36. Single-Tone FFT at $f_{I N}=450 \mathrm{MHz}$


Figure 37. Single-Tone FFT at $f_{I N}=900 \mathrm{MHz}$


Figure 38. Single-Tone FFT at $f_{I N}=1800 \mathrm{MHz}$


Figure 39. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=450 \mathrm{MHz}$


Figure 40. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{f_{N}}=900 \mathrm{MHz}$


Figure 41. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=1800 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 42. Single-Tone FFT at $f_{I_{N}}=2700 \mathrm{MHz}$


Figure 43. Single-Tone FFT at $f_{I_{N}}=3600 \mathrm{MHz}$


Figure 44. Single-Tone FFT at $f_{I N}=4500 \mathrm{MHz}$


Figure 45. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=2700 \mathrm{MHz}$


Figure 46. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=3600 \mathrm{MHz}$


Figure 47. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=4500 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 48. Single-Tone FFT at $f_{I_{N}}=5400 \mathrm{MHz}$


Figure 49. Single-Tone FFT at $f_{I_{N}}=6300 \mathrm{MHz}$


Figure 50. Single-Tone FFT at $f_{I_{N}}=7200 \mathrm{MHz}$


Figure 51. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=5400 \mathrm{MHz}$


Figure 52. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=6300 \mathrm{MHz}$


Figure 53. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=7200 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 54. Two-Tone FFT, $f_{I_{1} 1}=1.775 \mathrm{GHz}, f_{I_{N 2}}=1.825 \mathrm{GHz}$,
$A_{I N 1}$ and $A_{I N 2}=-7 d B F S$ (IMD3L $=2 f_{I_{1} 1}-f_{N 2}$, and IMD3H $\left.=2 f_{I_{2} 2}-f_{I_{1} 1}\right)$


Figure 55. Two-Tone FFT, $f_{I N 1}=2.675 \mathrm{GHz}, f_{I_{N 2}}=2.725 \mathrm{GHz}$,
$A_{\text {IN } 1}$ and $A_{I_{N} 2}=-7 d B F S$


Figure 56. Two-Tone FFT, $f_{\mathrm{IN}_{1}}=3.575 \mathrm{GHz}, f_{\mathrm{f}^{2} 2}=3.625 \mathrm{GHz}$,
$A_{\text {IN } 1}$ and $A_{\text {IN2 }}=-7 d B F S$


Figure 57. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{1} 1}=1.775 \mathrm{GHz}, f_{I N 2}=1.825 \mathrm{GHz}$


Figure 58. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=2.675 \mathrm{GHz}, f_{I N 2}=2.725 \mathrm{GHz}$


Figure 59. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{N 1}}=3.575 \mathrm{GHz}, f_{I_{N 2}}=3.625 \mathrm{GHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 60. Two-Tone FFT, $f_{I N 1}=5.375 \mathrm{GHz}, f_{I_{2} 2}=5.425 \mathrm{GHz}$,
$A_{\text {IN } 1}$ and $A_{I_{N} 2}=-7 \mathrm{dBFS}$


Figure 61. SNR and SFDR vs. Input Frequency with $A_{I N}=-1 d B F S$


Figure 62. Harmonics (HD2 and HD3) vs. Input Frequency with $A_{I N}=-1 d B F S$


Figure 63. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=5.375 \mathrm{GHz}, f_{I N 2}=5.425 \mathrm{GHz}$


Figure 64. SNR vs. Input Frequency, Direct Clock vs. On-Chip PLL Clock, $f_{S}=$ $4 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}$


Figure 65. FFT Close-In Comparison, Direct Clock vs. On-Chip PLL Clock, $f_{S}$ $=4 \mathrm{GHz}, f_{I_{N}}=2.7 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 66. SNR and SFDR vs. Die Temperature, $f_{I_{N}}=1.85 \mathrm{GHz}, A_{I_{N}}=-1 \mathrm{dBFS}$


Figure 67. SNR and SFDR vs. Sample Frequency ( $f_{S}$ ), $f_{I_{N}}=450 \mathrm{MHz}$


Figure 68. Power vs. Die Temperature, $f_{I N}=1.85 \mathrm{GHz}, A_{I N}=-1 \mathrm{dBFS}$


Figure 69. Harmonics (HD2, HD3, and Interleaving) vs. Die Temperature, $f_{I N}=$ 1.85 GHz


Figure 70. Harmonics (HD2 and HD3) vs. Sample Frequency ( $f_{s}$ ), $f_{N}=450$ MHz


Figure 71. Power vs. Sample Frequency ( $f_{\mathrm{s}}$ ) $f_{N}=450 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 72. Input Referred Noise Histogram


Figure 73. $D N L, f_{I N}=255 \mathrm{MHz}$


Figure 74. Measured Input Bandwidth ADC Input on AD9081-FMCA-EBZ (No Matching Network)


Figure 75. INL, $\boldsymbol{f}_{\mathrm{IN}}=\mathbf{2 5 5 \mathrm { MHz }}$

## TYPICAL PERFORMANCE CHARACTERISTICS

## ADC: 3 GSPS

Nominal supplies, sampling rate $=3$ GSPS with DAC clock frequency (fclk) $=12 \mathrm{GHz}$ direct RF clock, full bandwidth mode operation (no decimation), $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$, 128k FFT sample with five averages, and $\mathrm{A}_{\mathbb{N}}=-1 \mathrm{dBFS}$, unless otherwise noted.


Figure 76. Single-Tone FFT at $f_{I N}=450 \mathrm{MHz}$


Figure 77. Single-Tone FFT at $f_{I N}=900 \mathrm{MHz}$


Figure 78. Single-Tone FFT at $f_{I N}=1800 \mathrm{MHz}$


Figure 79. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=450 \mathrm{MHz}$


Figure 80. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=900 \mathrm{MHz}$


Figure 81. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=1800 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 82. Single-Tone FFT at $f_{I_{N}}=2700 \mathrm{MHz}$


Figure 83. Single-Tone FFT at $f_{I_{N}}=3600 \mathrm{MHz}$


Figure 84. Single-Tone FFT at $f_{I N}=4500 \mathrm{MHz}$


Figure 85. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=2700 \mathrm{MHz}$


Figure 86. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I N}=3600 \mathrm{MHz}$


Figure 87. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I_{N}}=4500 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 88. Single-Tone FFT at $f_{I_{N}}=5400 \mathrm{MHz}$


Figure 89. Single-Tone FFT at $f_{I N}=6300 \mathrm{MHz}$


Figure 90. Single-Tone FFT at $f_{I_{N}}=7200 \mathrm{MHz}$


Figure 91. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=5400 \mathrm{MHz}$


Figure 92. Single-Tone SFDR and SNR vs. $A_{I N}$ at $f_{I_{N}}=6300 \mathrm{MHz}$


Figure 93. Single-Tone SFDR and SNR vs. $A_{I_{N}}$ at $f_{I_{N}}=7200 \mathrm{MHz}$

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 94. Two-Tone FFT, $f_{I N 1}=1.775 \mathrm{GHz}, f_{I_{N 2}}=1.825 \mathrm{GHz}$,
$A_{I_{1} 1}$ and $A_{I N 2}=-7 d B F S$


Figure 95. Two-Tone FFT, $f_{I N 1}=3.575 \mathrm{GHz}, f_{\mathrm{f}^{\prime} 2}=3.625 \mathrm{GHz}$,
$A_{\text {IN } 1}$ and $A_{\text {IN } 2}=-7 d B F S$


Figure 96. SNR and SFDR vs. Input Frequency with $A_{I N}=-1 d B F S$


Figure 97. Two-Tone FFT, $f_{I_{1} 1}=2.675 \mathrm{GHz}, f_{I_{N 2}}=2.725 \mathrm{GHz}$, $A_{I N 1}$ and $A_{I N 2}=-7 \mathrm{dBFS}$


Figure 98. Two-Tone FFT, $f_{\mathrm{I}_{1} 1}=5.575 \mathrm{GHz}, f_{\mathrm{f}^{2} 2}=5.425 \mathrm{GHz}$, $A_{I N 1}$ and $A_{I N 2}=-7 d B F S$


Figure 99. Harmonics (HD2 and HD3) vs. Input Frequency with $A_{I N}=-1 d B F S$

## THEORY OF OPERATION

The AD9081 is a highly integrated, $28 \mathrm{~nm}, \mathrm{RF}$, MxFE featuring four 16-bit, 12 GSPS DAC cores and four 12-bit, 4 GSPS ADC cores (see Figure 1). The DAC core is based on a current segmentation architecture providing a differential complementary current output with an adjustable loutrs range of 6.43 mA to 37.75 mA . The ADC core is based on a proprietary interleaved architecture that suppresses residual interleaving spurious products into the noise floor. To enable wide bandwidth operation, a high linearity, $100 \Omega$ differential buffer with overload protection is used to isolate the ADC core from the RF ADC driver source. An on-chip clock multiplier can be used to synthesize the RF DAC and ADC clocks. Alternatively, an external clock can be applied.

Flexible transmit and receive DSP paths are available to up sample and down sample the desired intermediate frequency (IF) and RF signal(s) to lower the required data interface rates and efficiently align with bandwidth requirements. The channelizer data path enables efficient data transfer to allow multiband applications where up to eight unique RF bands are supported. The transmit and receive DSP paths are symmetric and consist of four coarse digital upconversion (DUC) and digital downconversion (DDC) blocks in the main data path along with eight fine DUC and DDC blocks in the channelizer data path. Each DUC and DDC block includes multiple interpolation or decimation stages and a 48 -bit NCO configurable for integer or fractional mode of operation. The NCOs in the coarse DUC and DDC block support fast frequency hopping, coherently, and can be controlled using GPIOs. The DUC blocks, the DDC blocks, and the data paths can be fully bypassed to enable Nyquist operation.
Various auxiliary DSP features facilitate an improved system integration. The data paths include adjustable delay lines to compensate for mismatch in channel delay paths that may occur external
to the device. The transmit data path includes digital gain control, fine delay adjust, and power amplifier protection to simplify DPD integration in a multiband transmitter. The receive data path includes a flexible, programmable, 192-tap finite impulse response (PFIR) filter. This filter can be allocated across one or more ADCs for receive equalization with support for four different profiles. The profiles can be selected using the GPIOx pins. The receive data path also includes a fast and slow signal detection capability in support of automatic gain control (AGC). The data paths also include features to reduce power consumption in time division duplex (TDD) applications. All the auxiliary DSP features can be fully bypassed.

The AD9081 also supports a low latency digital loopback between the receive and transmit data paths to bypass the JESD204 link. The data formatting of the data paths can be real or complex (I/Q) with selectable resolutions of $8,12,16$, and 24 bits, depending on the JESD204B or the JESD204C mode.
A 16-lane JESD204 transceiver port is available to support the high data throughput rates on the receive and transmit data paths. Eight SERDES lanes are designated for the transmit data paths, whereas the other eight lanes are designated for the receive data paths. The transceiver port supports JESD204C up to 24.75 Gbps , or JESD204B up to 15.5 Gbps lane rates. The JESD204 data link layer is highly flexible, allowing to adjust the lane count (or rate) required to support a target link throughput. An external alignment signal (SYSREF) can be used to guarantee deterministic latency, phase alignment, and aid in multichip synchronization.

An on-chip thermal management unit (TMU) can be used to measure the die temperature as part of a thermal management solution to guarantee better thermal stability during system operation.

## APPLICATIONS INFORMATION

Refer to UG-1578, the device user guide, for more information on device initialization and other applications information.

## OUTLINE DIMENSIONS



BALL DIAMETER

COMPLIANT TO JEDEC STANDARDS MO-275-KKAB-1
Figure 100. 324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]
(BP-324-3)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1	Temperature Range ${ }^{2}$	Package Description	Package	
AD9081BBPZ-4D4AB	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$324-$ Ball BGA_ED $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.58 \mathrm{~mm})$	Tray, 126	Quantity

${ }^{1} \mathrm{Z}$ = RoHS Compliant Part
${ }^{2}$ Specified operating junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$.

## EVALUATION BOARDS

Model	Description
AD9081-FMCA-EBZ	AD9081 Evaluation Board with High Performance Analog Network

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Front End - AFE category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
WM8255SEFL ADE9078ACPZ-RL ADA4355ABCZ MAX86176ENX+T MAX86176EVKIT\# TC500ACPE MCP3914A1-E/MV ISL51002CQZ-165 AFE5803ZCF TC500CPE AD73311ARSZ-REEL AFE4900YZT AD9961BCPZ ADAS1000-1BCPZ ADAS10003BCPZ ADAS1000BCPZ AD73311LARUZ AD5590BBCZ ADPD1080WBCPZR7 AD73311ARSZ AD73311ARZ AD73311LARSZ AD73311LARSZ-REEL7 AD73360ARZ AD73360ASUZ AD73360LARZ AD8232ACPZ-R7 AD8456ASTZ AD9082BBPZ-2D2AC AD9081BBPZ-4D4AC AD9670BBCZ AD9675KBCZ AD73360LARZ-REEL AD9822JRSZRL AD9826KRSZ AD9826KRSZRL AD9860BSTZ AD9861BCPZ-50 AD9861BCPZ-80 AD9862BSTZ AD9865BCPZ AD9867BCPZ AD9895KBCZ AD9923ABBCZ AD9942BBCZ AD9943KCPZ AD9945KCPZ AD9945KCPZRL7 AD9949KCPZ AD9963BCPZ


[^0]:    ${ }^{1}$ The minimum direct clock frequency is limited by the minimum DAC (core) sample rate, as specified in Table 7. The clock receiver can accommodate the full range between the minimum PLL reference clock frequency and the maximum direct clock frequency.

[^1]:    ${ }^{1}$ Pertains to the update rate of the DAC core, independent of the datapath and JESD204 mode configuration.

[^2]:    ${ }^{1}$ Pertains to the update rate of the ADC core, independent of the datapath and JESD204 mode configuration.
    ${ }^{2}$ Measured using a signal-to-noise ratio (SNR) degradation method with the DAC disabled, clock divider $=1$, ADC frequency $\left(f_{A D C}\right)=4$ GSPS, and input frequency $\left(f_{\mathbb{N}}\right)=$ 5.55 GHz .

[^3]:    ${ }^{1}$ The values listed for these parameters are the maximum possible when considering all JESD204 modes of operation. Some modes are more limiting, based on other parameters.
    ${ }^{2}$ The interpolation filters in the Tx datapath have a total complex filter bandwidth of $80 \%$ of the data rate, combining the $40 \%$ bandwidth in the I path and $40 \%$ bandwidth in the Q path. Similarly, the decimation stages inside the Rx datapath use filters with a total complex filter bandwidth of $81.4 \%$. Therefore, the maximum allowed instantaneous complex signal bandwidth (iBW) per channel is calculated as $\mathrm{iBW}=$ (complex I/Q data rate per channel) $\times$ (total complex filter bandwidth).

[^4]:    ${ }^{1}$ IEEE 1596.3 standard LVDS compatible.

[^5]:    ${ }^{1}$ LVDS means low voltage differential signaling and LVPECL means low voltage positive/pseudo emitter-coupled logic.

[^6]:    ${ }^{1}$ See UG-1578 for details on the loop filter components.

