Data Sheet

FEATURES

JESD204B (Subclass 1) coded serial digital outputs 1.5 W total power per channel at 1 GSPS (default settings) SFDR

79 dBFS at 340 MHz (1 GSPS)
85 dBFS at 340 MHz (500 MSPS)
SNR
63.4 dBFS at 340 MHz ($\mathrm{A}_{\text {IN }}=\mathbf{- 1 . 0 ~ d B F S , 1 ~ G S P S) ~}$

ENOB = $\mathbf{1 0 . 4}$ bits at 10 MHz (1 GSPS)
DNL $= \pm 0.16$ LSB; INL $= \pm 0.35$ LSB (1 GSPS)
Noise density
$-151 \mathrm{dBFS} / \mathrm{Hz}$ (1 GSPS)

- $150 \mathrm{dBFS} / \mathrm{Hz}$ (500 MSPS)
$1.25 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V dc supply operation
Low swing full-scale input
1.34 V p-p typical (1 GSPS)
1.63 V p-p typical (500 MSPS)

No missing codes
Internal ADC voltage reference
Flexible termination impedance
$400 \Omega, 200 \Omega, 100 \Omega$, and 50Ω differential
$2 \mathbf{G H z}$ usable analog input full power bandwidth
95 dB channel isolation/crosstalk
Amplitude detect bits for efficient AGC implementation
Differential clock input
Optional decimate by 2 DDC per channel
Differential clock input
Integer clock divide by 1,2,4, or 8
Flexible JESD204B lane configurations
Small signal dither

APPLICATIONS

Communications
Diversity multiband, multimode digital receivers
3G/4G, TD-SCDMA, W-CDMA, GSM, LTE
Point to point radio systems
Digital predistortion observation path
General-purpose software radios
Ultrawideband satellite receiver
Instrumentation (spectrum analyzers, network analyzers, integrated RF test solutions)
Digital oscilloscopes
High speed data acquisition systems
DOCSIS 3.0 CMTS upstream receive paths
HFC digital reverse path receivers

PRODUCT HIGHLIGHTS

1. Low power consumption analog core, 12-bit, 1.0 GSPS dual analog-to-digital converter (ADC) with 1.5 W per channel.
2. Wide full power bandwidth supports IF sampling of signals up to 2 GHz .
3. Buffered inputs with programmable input termination eases filter design and implementation.
4. Flexible serial port interface (SPI) controls various product features and functions to meet specific system requirements.
5. Programmable fast overrange detection.
6. $9 \mathrm{~mm} \times 9 \mathrm{~mm} 64$-lead LFCSP.
7. Pin compatible with the AD9680 14-bit, 1 GSPS/500 MSPS dual ADC.

Rev. B

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
©2014-2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
Product Highlights 1
Revision History 3
General Description 4
Specifications 5
DC Specifications 5
AC Specifications 6
Digital Specifications 8
Switching Specifications 9
Timing Specifications 9
Absolute Maximum Ratings 11
Thermal Characteristics 11
ESD Caution 11
Pin Configuration and Function Descriptions 12
Typical Performance Characteristics 14
AD9234-1000 14
AD9234-500 18
Equivalent Circuits 22
Theory of Operation 24
ADC Architecture 24
Analog Input Considerations 24
Voltage Reference 27
Clock Input Considerations 28
Clock Jitter Considerations 29
Power-Down/Standby Mode. 29
Temperature Diode 29
ADC Overrange and Fast Detect. 30
ADC Overrange 30
Fast Threshold Detection (FD A and FD B) 30
Signal Monitor 31
Digital Downconverter (DDC) 34
DDC General Description 34
Half-Band Filter 35
DDC Gain Stage 36
DDC Complex to Real Conversion 36
Digital Outputs 37
Introduction to the JESD204B Interface 37
JESD204B Overview 37
Functional Overview 38
JESD204B Link Establishment 39
Physical Layer (Driver) Outputs 41
Configuring the JESD204B Link 43
Deterministic Latency 46
Subclass 0 Operation 46
Subclass 1 Operation 46
Multichip Synchronization 48
Normal Mode. 48
Timestamp Mode 48
SYSREF \pm Input 50
SYSREF \pm Setup/Hold Window Monitor 52
Latency 54
End to End Total Latency 54
Example Latency Calculation 54
Test Modes. 55
ADC Test Modes 55
JESD204B Block Test Modes 56
Serial Port Interface. 58
Configuration Using the SPI 58
Hardware Interface 58
SPI Accessible Features 58
Memory Map 59
Reading the Memory Map Register Table 59
Memory Map Register Table 60
Applications Information 71
Power Supply Recommendations 71
Exposed Pad Thermal Heat Slug Recommendations 71
AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60) 71
Outline Dimensions 72
Ordering Guide 72

REVISION HISTORY

1/2018—Rev. A to Rev. B
Changes to Features Section 1
Added $\mathrm{t}_{\text {Access }}$ Parameter, Table 59
Change to Junction Temperature Range Parameter, Table 6. 11
Changes to Figure 38 and Figure 39 19
Added Deterministic Latency Section, Subclass 0 Operation
Section, Subclass 1 Operation Section, Deterministic LatencyRequirements Section, Setting Deterministic Latency
Registers Section, and Figure 103; Renumbered Sequentially 46
Added Figure 104 and Figure 105 47
Changes to Multichip Synchronization Section 48
Added Normal Mode Section and Timestamp Mode Section 48
Moved Figure 106 48
Added Figure 107 49
Added SYSREF \pm Input Section, SYSREF \pm Control Features
Section, Figure 108, Figure 109, Figure 110, Figure 111 50
Added Figure 112 and Figure 113 51
Changes to SYSREF \pm Setup/Hold Window Monitor Section. 52
Added Figure 114 52
Added Figure 115 53
Added Latency Section, End to End Total Latency Section,
Table 15, Example Latency Calculation Section, Table 16, and Table 17; Renumbered Sequentially 54
Changes to ADC Test Modes Section and Table 18 55
Add Figure 116 55
Changes to Transport Layer Sample Test Mode Section, Interface Test Mode Section, and Table 19 56
Moved Data Link Layer Test Modes Section 56
Added Reg Addr (Hex) 0x122, Table 25 62
Changes to Reg Addr (Hex) 0x56F, Table 25 67
Updated Outline Dimensions 72
Changes to Ordering Guide 72
3/2015—Rev. 0 to Rev. A
Added AD9234-500 Universal
Changes to Features Section 1
Changes to Table 1
Changes to Table 2 6
Changes to Table 4 9
Changes to Table 6, Thermal Characteristics Section, and Table 7 11
Change to Pin 58, Pin 59 Description Column, Table 8 15
Added AD9234-500 Section and Figure 29 to Figure 51 18
Changes to Figure 63 Caption and Figure 64 Caption, Analog Input
Controls and SFDR Optimization Section, and Figure 66 25
Changes to Figure 70 and Figure 71 26
Changes to Voltage Reference Section. 27
Changes to Figure 79 28
Changes to Figure 80 29
Changes to DDC General Description Section 34
Changes to Figure 91 38
Added Example 2: Full Bandwidth Mode at 500 MSPS Section... 44
Added Test Modes Section and Table 1550
Added Table 16 and Table 17 51
Added Table 18 and Table 19 52
Changes to Table 22 55
Changes to Power Supply Recommendations Section and Figure 106 65
Changes to Ordering Guide 66
8/2014—Revision 0: Initial Version

GENERAL DESCRIPTION

The AD9234 is a dual, 12-bit, 1 GSPS/500 MSPS ADC. The device has an on-chip buffer and sample-and-hold circuit designed for low power, small size, and ease of use. This product is designed for sampling wide bandwidth analog signals. The AD9234 is optimized for wide input bandwidth, high sampling rate, excellent linearity, and low power in a small package.
The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth buffered inputs supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations. Each ADC data output is internally connected to an optional decimate by 2 block.
The AD9234 has several functions that simplify the automatic gain control (AGC) function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC. If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly turn
down the system gain to avoid an overrange condition at the ADC input. In addition to the fast detect outputs, the AD9234 also offers signal monitoring capability. The signal monitoring block provides additional information about the signal being digitized by the ADC.
Users can configure the Subclass 1 JESD204B-based high speed serialized output in a variety of one-, two-, or four-lane configurations, depending on the acceptable lane rate of the receiving logic device and the sampling rate of the ADC. Multiple device synchronization is supported through the SYSREF \pm and SYNCINB \pm input pins.

The AD9234 has flexible power-down options that allow significant power savings when desired. All of these features can be programmed using a 1.8 V to 3.3 V capable 3 -wire SPI.
The AD9234 is available in a Pb -free, 64 -lead LFCSP and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range. This product is protected by a U.S. patent.

AD9234

SPECIFICATIONS

DC SPECIFICATIONS
$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{AVDD} 1 _\mathrm{SR}=1.25 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}$, specified maximum sampling rate, $\mathrm{A}_{\text {IN }}=-1.0 \mathrm{dBFS}$, clock divider $=2$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

Parameter	Temperature	AD9234-500			AD9234-1000			Unit
		Min	Typ	Max	Min	Typ	Max	
POWER CONSUMPTION								
Total Power Dissipation (Including Output Drivers) ${ }^{2}$	Full		2.15	2.5		3.0	3.3	W
Total Power Dissipation ($\mathrm{L}=2$ Mode)	$25^{\circ} \mathrm{C}$		2.08			$\mathrm{N} / \mathrm{A}^{3}$		W
Power-Down Dissipation	Full		670			750		mW
Standby ${ }^{4}$	Full		1.1			1.25		W

${ }^{1}$ All lanes running. Power dissipation on DRVDD changes with lane rate and number of lanes used.
${ }^{2}$ Default mode. No DDCs used. $L=4, M=2, F=1$.
${ }^{3} \mathrm{~N} / \mathrm{A}=$ not applicable. At the maximum sample rate, it is not applicable to use $\mathrm{L}=2$ mode on the JESD204B output interface because this exceeds the maximum lane rate of 12.5 Gbps . $\mathrm{L}=2$ mode is supported when the equation $\left(\left(\mathrm{M} \times \mathrm{N}^{\prime} \times(10 / 8) \times \mathrm{fout}^{\prime}\right) / \mathrm{L}\right)$ results in a line rate that is $\leq 12.5 \mathrm{Gbps}$. fout is the output sample rate and is denoted by $\mathrm{f}_{\mathrm{s}} / \mathrm{DCM}$, where $\mathrm{DCM}=$ decimation ratio.
${ }^{4}$ Can be controlled by the SPI.

AC SPECIFICATIONS

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{AVDD} 1 _\mathrm{SR}=1.25 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, SPIVDD $=1.8 \mathrm{~V}$, specified maximum sampling rate, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, clock divider $=2$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	Temperature	AD9234-500			AD9234-1000			Unit
		Min	Typ	Max	Min	Typ	Max	
ANALOG INPUT FULL SCALE	Full	1.63			1.34			V p-p
NOISE DENSITY ${ }^{2}$	Full	-150			-151			dBFS/Hz
SIGNAL-TO-NOISE RATIO (SNR) ${ }^{3}$								
$\mathrm{fiN}_{\text {I }}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	65.1	65.9		61.6	64.2		$\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$
$\mathrm{fiN}_{\text {I }}=170 \mathrm{MHz}$	Full		65.8			63.9		
$\mathrm{fix}^{\text {i }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		65.6			63.4		dBFS
$\mathrm{fiN}_{\text {I }}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		65.3			63.1		dBFS
$\mathrm{fiN}_{\text {I }}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		64.2			61.6		dBFS
$\mathrm{fiN}_{\mathrm{i}}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		63.6			60.7		dBFS
$\mathrm{fin}^{\text {a }} 1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		62.2			58.8		dBFS
$\mathrm{fiN}_{\mathrm{iN}}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	65.0	65.8		64.1			dBFS
$\mathrm{fiN}_{\text {I }}=170 \mathrm{MHz}$	Full		65.7		61.2	63.8		dBFS
$\mathrm{fiN}_{\text {I }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		65.5		63.3			dBFS
$\mathrm{fiN}_{\text {I }}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		65.2		63.0			dBFS
$\mathrm{fiN}_{\text {I }}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		63.7		61.5			dBFS
$\mathrm{fix}^{\mathrm{I}}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		63.1		60.6			dBFS
$\mathrm{fiN}_{\mathrm{i}}=1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		61.2		58.7			dBFS
EFFECTIVE NUMBER OF BITS (ENOB)								
$\mathrm{fin}_{\mathrm{IN}}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	10.5	10.7		9.9	10.4		Bits
$\mathrm{fiN}^{\text {(}}=170 \mathrm{MHz}$	Full		10.6			10.3		Bits
$\mathrm{fiN}^{\text {(}}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		10.6			10.2		Bits
$\mathrm{fiN}_{\mathrm{I}}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		10.5			10.2		Bits
$\mathrm{fiv}^{\mathrm{i}}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		10.3			9.9		Bits
$\mathrm{fiN}_{\mathrm{i}}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		10.2			9.8		Bits
$\mathrm{fiN}_{\text {I }}=1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		9.9			9.5		Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) ${ }^{3}$								
$\mathrm{fiN}_{\text {I }}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	77	84		70	89		dBFS
$\mathrm{fiN}_{\text {I }}=170 \mathrm{MHz}$	Full		85			80		dBFS
$\mathrm{fiN}_{\text {I }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		85			79		dBFS
$\mathrm{fiN}_{\mathrm{N}}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		87			80		dBFS
$\mathrm{fix}^{\mathrm{i}}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		75			81		dBFS
$\mathrm{fiN}^{\mathrm{N}}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		75			79		dBFS
$\mathrm{fiN}_{\text {I }}=1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		71			78		dBFS

Parameter ${ }^{1}$	Temperature	AD9234-500			AD9234-1000			Unit
		Min	Typ	Max	Min	Typ	Max	
WORST HARMONIC, SECOND ORTHIRD ${ }^{3}$								
$\mathrm{fin}^{\text {}}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-84			-89		dBFS
$\mathrm{fiN}_{\text {I }}=170 \mathrm{MHz}$	Full		-85	-77		-80	-70	dBFS
$\mathrm{fiN}^{\text {a }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-85			-79		dBFS
$\mathrm{fix}^{\mathrm{I}}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-87			-80		dBFS
$\mathrm{fiN}_{\text {I }}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-75			-82		dBFS
$\mathrm{fiN}^{\text {¢ }}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-75			-79		dBFS
$\mathrm{fiN}_{\text {I }}=1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-71			-78		dBFS
WORST OTHER, EXCLUDING SECOND OR THIRD HARMONIC ${ }^{3}$								
$\mathrm{fin}^{\text {a }}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-96			-89		dBFS
$\mathrm{fix}^{\text {(}}=170 \mathrm{MHz}$	Full	-82	-95			-85	-76	dBFS
$\mathrm{fiN}_{\text {I }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-94			-83		dBFS
$\mathrm{fiN}^{\text {(}}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-93			-82		dBFS
$\mathrm{fiN}_{\text {I }}=737 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-88			-81		dBFS
$\mathrm{fiN}^{\text {¢ }}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-89			-85		dBFS
$\mathrm{fiN}_{\text {}}=1410 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-86			-80		dBFS
TWO-TONE INTERMODULATION DISTORTION (IMD), AIN1 AND AIN2 = -7 dBFS								
$\mathrm{ffin} 1=187 \mathrm{MHz}, \mathrm{f}_{\mathrm{f} 2}=190 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-90			-81		dBFS
$\mathrm{ffin} 1=338 \mathrm{MHz}, \mathrm{fiN2}=341 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-86			-78		dBFS
CROSSTALK ${ }^{4}$	$25^{\circ} \mathrm{C}$		95			95		dB
FULL POWER BANDWIDTH ${ }^{5}$	$25^{\circ} \mathrm{C}$		2			2		GHz

[^0]
DIGITAL SPECIFICATIONS

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{AVDD} 1 _\mathrm{SR}=1.25 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, SPIVDD $=1.8 \mathrm{~V}$, specified maximum sampling rate, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Temperature	Min	Typ	Max	Unit
CLOCK INPUTS (CLK+, CLK-) Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance	Full Full Full Full Full	600	$\begin{aligned} & \text { VPECL } \\ & 1200 \\ & 0.85 \\ & 35 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m V p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
SYSTEM REFERENCE INPUTS (SYSREF+, SYSREF-) Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance (Differential)	Full Full Full Full Full	$\begin{aligned} & 400 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { VPECL } \\ & 1200 \\ & 0.85 \\ & 35 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m V p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY) Logic Compliance Logic 1 Voltage Logic 0 Voltage Input Resistance	Full Full Full Full	$\begin{aligned} & 0.8 \times \text { SPIVDD } \\ & 0 \end{aligned}$	S 30	0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$
LOGIC OUTPUT (SDIO) Logic Compliance Logic 1 Voltage ($\mathrm{loн}^{\mathrm{o}}=800 \mu \mathrm{~A}$) Logic 0 Voltage (los $=50 \mu \mathrm{~A}$)	Full Full Full	$\begin{aligned} & 0.8 \times \text { SPIVDD } \\ & 0 \\ & \hline \end{aligned}$		0.5	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
SYNC INPUTS (SYNCINB+, SYNCINB-) Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance	Full Full Full Full Full	$\begin{aligned} & \\ & 400 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { CL/CMC } \\ & 1200 \\ & 0.85 \\ & 35 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m \vee p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
LOGIC OUTPUTS (FD_A,FD_B) Logic Compliance Logic 1 Voltage Logic 0 Voltage Input Resistance	Full Full Full Full	$\begin{aligned} & 0.8 \times \text { SPIVDD } \\ & 0 \end{aligned}$	S 30	0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$
DIGITAL OUTPUTS (SERDOUTx $\pm, x=0$ TO 3) Logic Compliance Differential Output Voltage Output Common-Mode Voltage (V_{CM}) AC-Coupled Short-Circuit Current (IDshort) Differential Return Loss (RLDifF) ${ }^{1}$ Common-Mode Return Loss (RLcm) ${ }^{1}$ Differential Termination Impedance	Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ Full	$\begin{aligned} & 360 \\ & 0 \\ & -100 \\ & 8 \\ & 6 \\ & 80 \end{aligned}$	100	$\begin{aligned} & 770 \\ & 1.8 \\ & +100 \\ & 120 \end{aligned}$	$\begin{aligned} & m V p-p \\ & V \\ & m A \\ & d B \\ & d B \\ & \Omega \end{aligned}$

[^1]
SWITCHING SPECIFICATIONS

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{AVDD} 1 _\mathrm{SR}=1.25 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, SPIVDD $=1.8 \mathrm{~V}$, specified maximum sampling rate, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Temperature	AD9234-500			AD9234-1000			Unit
		Min	Typ	Max	Min	Typ	Max	
CLOCK								
Clock Rate (at CLK+/CLK - Pins)	Full	0.3		4	0.3		4	GHz
Maximum Sample Rate ${ }^{1}$	Full	500			1000			MSPS
Minimum Sample Rate ${ }^{2}$	Full	300			300			MSPS
Clock Pulse Width High	Full	1000			500			ps
Clock Pulse Width Low	Full	1000			500			ps
OUTPUT PARAMETERS								
Unit Interval (UI) ${ }^{3}$	Full	80	200		80	100		ps
Rise Time (tr) (20% to 80% into 100Ω Load)	$25^{\circ} \mathrm{C}$	24	32		24	32		ps
Fall Time (t_{F}) (20\% to 80\% into 100Ω Load)	$25^{\circ} \mathrm{C}$	24	32		24	32		ps
PLL Lock Time	$25^{\circ} \mathrm{C}$		2			2		ms
Data Rate per Channel (NRZ) ${ }^{4}$	$25^{\circ} \mathrm{C}$	3.125	5	12.5	3.125	10	12.5	Gbps
LATENCY ${ }^{5}$								
Pipeline Latency	Full		55			55		Clock cycles
Fast Detect Latency	Full			28			28	Clock cycles
Wake-Up Time ${ }^{6}$								
Standby	$25^{\circ} \mathrm{C}$		1			1		ms
Power-Down	$25^{\circ} \mathrm{C}$			4			4	ms
APERTURE								
Aperture Delay (t_{A})	Full		530			530		ps
Aperture Uncertainty (Jitter, t_{j})	Full		55			55		fs rms
Out-of-Range Recovery Time	Full		1			1		Clock Cycles

${ }^{1}$ The maximum sample rate is the clock rate after the divider.
${ }^{2}$ The minimum sample rate operates at 300 MSPS with $L=2$ or $L=1$.
${ }^{3}$ Baud rate $=1 /$ UI. A subset of this range can be supported.
${ }^{4}$ Default $\mathrm{L}=4$. This number can be changed based on the sample rate and decimation ratio.
${ }^{5}$ No DDCs used. $L=4, M=2, F=1$.
${ }^{6}$ Wake-up time is defined as the time required to return to normal operation from power-down mode.

TIMING SPECIFICATIONS

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLK+ to SYSREF+TIMING REQUIREMENTS	See Figure 2				
$\mathrm{t}_{\text {SU_SR }}$	Device clock to SYSREF+ setup time		117		ps
$\mathrm{t}_{\text {__S }}$	Device clock to SYSREF+ hold time		-96		ps
SPI TIMING REQUIREMENTS	See Figure 3				
$\mathrm{t}_{\text {DS }}$	Setup time between the data and the rising edge of SCLK	2			ns
toh	Hold time between the data and the rising edge of SCLK	2			ns
tclk	Period of the SCLK	40			ns
t_{5}	Setup time between CSB and SCLK	2			ns
t_{H}	Hold time between CSB and SCLK	2			ns
$\mathrm{t}_{\mathrm{HIGH}}$	Minimum period that SCLK must be in a logic high state	10			ns
tow	Minimum period that SCLK must be in a logic low state	10			ns
$t_{\text {ACCESS }}$	Maximum time delay between falling edge of SCLK and output data valid for a read operation		6	10	ns
ten_solo	Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge (not shown in Figure 3)	10			ns
$t_{\text {DIIS_SDIO }}$	Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge (not shown in Figure 3)	10			ns

Timing Diagrams

Figure 2. SYSREF \pm Setup and Hold Timing

Figure 3. Serial Port Interface Timing Diagram

Figure 4. Data Output Timing (Full Bandwidth Mode; $L=4 ; M=2 ; F=1$)

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Electrical	
AVDD1 to AGND	1.32 V
AVDD1_SR to AGND	1.32 V
AVDD2 to AGND	2.75 V
AVDD3 to AGND	3.63 V
DVDD to DGND	1.32 V
DRVDD to DRGND	1.32 V
SPIVDD to AGND	3.63 V
AGND to DRGND	-0.3 V to +0.3 V
VIN $\pm x$ to AGND	3.2 V
SCLK, SDIO, CSB to AGND	-0.3 V to SPIVDD +0.3 V
PDWN/STBY to AGND	-0.3 V to SPIVDD +0.3 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Ambient)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

Typical $\theta_{\mathrm{JA}}, \theta_{\mathrm{JB}}$, and θ_{JC} are specified vs. the number of printed circuit board (PCB) layers in different airflow velocities (in $\mathrm{m} / \mathrm{sec}$). Airflow increases heat dissipation effectively reducing θ_{IA} and $\theta_{\mathrm{J} \mathrm{B}}$. In addition, metal in direct contact with the package leads and exposed pad from metal traces, through holes, ground, and power planes, reduces the $\theta_{J A}$. Thermal performance for actual applications requires careful inspection of the conditions in an application. The use of appropriate thermal management techniques is recommended to ensure that the maximum junction temperature does not exceed the limits shown in Table 6.

Table 7. Thermal Resistance Values

PCB Type	Airflow Velocity ($\mathrm{m} / \mathrm{sec}$)	$\theta_{\text {JA }}$	$\Psi_{\text {נв }}$	$\boldsymbol{\theta}_{\text {Jc_top }}$	$\theta_{\mathrm{Jc} \text { _bot }}$	Unit
JEDEC	0.0	$17.8^{1,2}$	$6.3^{1,3}$	$4.7^{1,5}$	$1.2^{1,5}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
2s2p	1.0	$15.6^{1,2}$	$5.9{ }^{1,3}$	N/A ${ }^{4}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Board	2.5	$15.0^{1,2}$	$5.7{ }^{1,3}$	$\mathrm{N} / \mathrm{A}^{4}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.
${ }^{2}$ Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
${ }^{3}$ Per JEDEC JESD51-8 (still air).
${ }^{4} \mathrm{~N} / \mathrm{A}=$ not applicable.
${ }^{5}$ Per MIL-STD 883, Method 1012.1.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE PROVIDES THE GROUND REFENCE FOR AVDDx. THIS EXPOSED PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.

Figure 5. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
Power Supplies 0	EPAD	Ground	Exposed Pad. The exposed thermal pad on the bottom of the package provides the ground reference for AVDDx. This exposed pad must be connected to ground for proper operation.
1,2, 47, 48, 49, 52, 55, 61, 64	AVDD1	Supply	Analog Power Supply (1.25 V Nominal).
$\begin{aligned} & 3,8,9,10,11,39,40,41, \\ & 46,50,51,62,63 \end{aligned}$	AVDD2	Supply	Analog Power Supply (2.5 V Nominal).
4, 7, 42, 45	AVDD3	Supply	Analog Power Supply (3.3 V Nominal).
13, 38	SPIVDD	Supply	Digital Power Supply for SPI (1.8V to 3.3 V).
15,34	DVDD	Supply	Digital Power Supply (1.25 V Nominal).
16, 33	DGND	Ground	Ground Reference for DVDD.
18, 31	DRGND	Ground	Ground Reference for DRVDD.
19, 30	DRVDD	Supply	Digital Driver Power Supply (1.25 V Nominal).
56,60	AGND ${ }^{1}$	Ground	Ground Reference for SYSREF \pm.
57	AVDD1_SR ${ }^{1}$	Supply	Analog Power Supply for SYSREF \pm (1.25 V Nominal).
Analog			
5,6	VIN-A, VIN+A	Input	ADC A Analog Input Complement/True.
12	V_1P0	Input/DNC	1.0 V Reference Voltage Input/Do Not Connect. This pin is configurable through the SPI as a no connect or an input. Do not connect this pin if using the internal reference. This pin requires a 1.0 V reference voltage input if using an external voltage reference source.
43, 44	VIN+B, VIN-B	Input	ADC B Analog Input True/Complement.
53,54	CLK+, CLK-	Input	Clock Input True/Complement.
CMOS Outputs $17,32$	FD_A, FD_B	Output	Fast Detect Outputs for Channel A and Channel B.

Pin No.	Mnemonic	Type	Description
Digital Inputs	SYNCINB-, SYNCINB+	Input	Active Low JESD204B LVDS Sync Input Complement/True.
20,21	SYSREF+, SYSREF-	Input	Active High JESD204B LVDS System Reference Input 58,59
True/Complement.			

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

AD9234-1000

$\mathrm{AVDD} 1=1.25 \mathrm{~V}$, AVDD1_SR $=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}, 1.34 \mathrm{~V}$ p-p full-scale differential input, $\mathrm{A}_{\text {IN }}=-1.0 \mathrm{dBFS}$, default SPI settings, clock divider $=2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 128 \mathrm{k}$ FFT sample, unless otherwise noted.

Figure 6. Single-Tone FFT with Input Frequency $\left(f_{I_{N}}\right)=10.3 \mathrm{MHz}$

Figure 7. Single-Tone FFT with $f_{I N}=170.3 \mathrm{MHz}$

Figure 8. Single-Tone FFT with $f_{I N}=340.3 \mathrm{MHz}$

Figure 9. Single-Tone FFT with $f_{I N}=450.3 \mathrm{MHz}$

Figure 10. Single-Tone FFT with $f_{N}=737.3 \mathrm{MHz}$

Figure 11. Single-Tone FFT with $f_{I_{N}}=985.3 \mathrm{MHz}$

Figure 12. Single-Tone FFT with $f_{I N}=1213.3 \mathrm{MHz}$

Figure 13. Single-Tone FFT with $f_{I N}=1413.3 \mathrm{MHz}$

Figure 14. SNR/SFDR vs. Sample Rate (f_{s}), $f_{\text {IN }}=170.3 \mathrm{MHz}$; Buffer Current $=3.0 \times$

Figure 15. SNR/SFDR vs. Input Frequency $\left(f_{I N}\right) ; f_{I_{N}}<500 \mathrm{MHz}$; Buffer Current $=3.5 \times$ (Uses Circuit Shown in Figure 63)

Figure 16. SNR/SFDR vs. Input Frequency; $450 \mathrm{MHz}<\mathrm{fiN}_{\mathrm{i}}<1500 \mathrm{MHz}$; Buffer Current $=7.5 \times$ (Uses Circuit Shown in Figure 64)

Figure 17. SNR/SFDR vs. Input Frequency; $1500 \mathrm{MHz}<f_{I N}<2000 \mathrm{MHz}$; Buffer Current $=8.5 \times$ (Uses Circuit Shown in Figure 64)

Figure 18. Two-Tone FFT; $f_{I N 1}=184 \mathrm{MHz}, f_{I_{N 2}}=187 \mathrm{MHz}$

Figure 19. Two-Tone FFT; $f_{\mathrm{IN}_{1}}=338 \mathrm{MHz}, f_{\mathrm{IN}_{2}}=341 \mathrm{MHz}$

Figure 20. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{I N 1}=184 \mathrm{MHz}$ and $f_{\mathrm{IN}_{2}}=187 \mathrm{MHz}$

Figure 21. Two-Tone SFDR/IMD3 vs. Input Amplitude $\left(A_{I N}\right)$ with $f_{i N 1}=338 \mathrm{MHz}$ and $f_{\mathrm{N} 2}=341 \mathrm{MHz}$

Figure 22. SNR/SFDR vs. Analog Input Level, $f_{I N}=10.3 \mathrm{MHz}$; Buffer Current $=2.0 \times$

Figure 23. SNR/SFDR vs. Temperature, $f_{I N}=170.3 \mathrm{MHz}$

Figure 24. $\mathrm{INL}, f_{\mathrm{IN}}=10.3 \mathrm{MHz}$

Figure 25. DNL, $f_{i N}=10 \mathrm{MHz}$

Figure 26. Input Referred Noise Histogram

Figure 27. Power Dissipation vs. Temperature

Figure 28. Power Dissipation vs. Sample Rate (f_{s})

AD9234-500

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 1 _\mathrm{SR}=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}, 1.63 \mathrm{~V} \mathrm{p}-\mathrm{p}$ full-scale differential input, $\mathrm{A}_{\text {IN }}=-1.0 \mathrm{dBFS}$, default SPI settings, clock divider $=2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 128 \mathrm{k}$ FFT sample, unless otherwise noted.

Figure 29. Single-Tone FFT with Input Frequency $\left(f_{I N}\right)=10.3 \mathrm{MHz}$

Figure 30. Single-Tone FFT with $f_{\mathrm{IN}}=170.3 \mathrm{MHz}$

Figure 31. Single-Tone FFT with $f_{I N}=340.3 \mathrm{MHz}$

Figure 32. Single-Tone FFT with $f_{I N}=450.3 \mathrm{MHz}$

Figure 33. Single-Tone FFT with $f_{\mathrm{I}}=737.3 \mathrm{MHz}$

Figure 34. Single-Tone FFT with $f_{I_{N}}=985.3 \mathrm{MHz}$

Figure 35. Single-Tone FFT with $f_{I N}=1213.3 \mathrm{MHz}$

Figure 36. Single-Tone FFT with $f_{\mathrm{IN}}=1413.3 \mathrm{MHz}$

Figure 37. SNR/SFDR vs. Sample Rate (f_{s}), $f_{\text {IN }}=170.3 \mathrm{MHz}$; Buffer Current $=3.0 \times$

Figure 38. SNR/SFDR vs. Input Frequency; $f_{I N}<500 \mathrm{MHz}$; Buffer Current $=2.5 \times$ and $4.5 \times$ (Uses Circuit Shown in Figure 63

Figure 39. SNR/SFDR vs. Input Frequency; $450 \mathrm{MHz}<f_{I N}<1500 \mathrm{MHz}$; Buffer Current $=6.5 \times$ and $8.5 \times$ (Uses Circuit Shown in Figure 64)

Figure 40. SNR/SFDR vs. Input Frequency; $1500 \mathrm{MHz}<f_{I N}<2000 \mathrm{MHz}$; Buffer Current $=8.5 \times$ (Uses Circuit Shown in Figure 64)

Figure 41. Two-Tone FFT; $f_{i N 1}=184 \mathrm{MHz}, f_{I N 2}=187 \mathrm{MHz}$

Figure 42. Two-Tone FFT; $f_{i N 1}=338 \mathrm{MHz}, f_{i N 2}=341 \mathrm{MHz}$

Figure 43. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{i N 1}=184 \mathrm{MHz}$ and $f_{\mathrm{IN}_{2}}=187 \mathrm{MHz}$

Figure 44. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{i N 1}=338 \mathrm{MHz}$ and $f_{\mathrm{IN}_{2}}=341 \mathrm{MHz}$

Figure 45. SNR/SFDR vs. Analog Input Level, $f_{I N}=10.3 \mathrm{MHz}$; Buffer Current $=2.0 \times$

Figure 46. SNR/SFDR vs. Temperature, $f_{I N}=170.3 \mathrm{MHz}$

Figure 47. INL, $f_{I N}=10.3 \mathrm{MHz}$

Figure 48. $D N L, f_{i N}=10 \mathrm{MHz}$

Figure 49. Input Referred Noise Histogram

Figure 50. Power Dissipation vs. Temperature

Figure 51. Power Dissipation vs. Sample Rate (f_{s})

EQUIVALENT CIRCUITS

Figure 52. Analog Inputs

Figure 53. Clock Inputs

Figure 54. SYSREF \pm Inputs

Figure 55. Digital Outputs

Figure 56. SYNCINB \pm Inputs

Figure 57. SCLK Input

Data Sheet

Figure 58. CSB Input

Figure 59. SDIO Input

Figure 61. PDWN/STBY Input

Figure 62. V_1PO Input

Figure 60. FD_A/FD_B Outputs

THEORY OF OPERATION

The AD9234 has two analog input channels and four JESD204B output lane pairs. The ADC is designed to sample wide bandwidth analog signals of up to 2 GHz . The AD9234 is optimized for wide input bandwidth, high sampling rate, excellent linearity, and low power in a small package.
The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth inputs supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations.
The AD9234 has several functions that simplify the AGC function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC. If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly turn down the system gain to avoid an overrange condition at the ADC input.

The Subclass 1 JESD204B-based high speed serialized output data rate can be configured in one-lane ($\mathrm{L}=1$), two-lane ($\mathrm{L}=2$), and four-lane $(\mathrm{L}=4)$ configurations, depending on the sample rate and the decimation ratio. Multiple device synchronization is supported through the SYSREF \pm and SYNCINB \pm input pins.

ADC ARCHITECTURE

The architecture of the AD9234 consists of an input buffered pipelined ADC. The input buffer is designed to provide a termination impedance to the analog input signal. This termination impedance can be changed using the SPI to meet the termination needs of the driver/amplifier. The default termination value is set to 400Ω. The equivalent circuit diagram of the analog input termination is shown in Figure 52. The input buffer is optimized for high linearity, low noise, and low power.
The input buffer provides a linear high input impedance (for ease of drive) and reduces kickback from the ADC. The buffer is optimized for high linearity, low noise, and low power. The quantized outputs from each stage are combined into a final 12 -bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample; at the same time, the remaining stages operate with the preceding samples. Sampling occurs on the rising edge of the clock.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9234 is a differential buffer. The internal common-mode voltage of the buffer is 2.05 V . The clock signal alternately switches the input circuit between sample mode and hold mode. When the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor, in series with each input, helps reduce the peak transient current injected from the output stage of the driving source. In addition, low Q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and, thus, achieve the maximum bandwidth of the ADC. Such use of low Q inductors or ferrite beads is required when driving the converter front end at high IF frequencies. Either a differential capacitor or two single-ended capacitors can be placed on the inputs to provide a matching passive network. This ultimately creates a low-pass filter at the input, which limits unwanted broadband noise. For more information, refer to the AN-742 Application Note, the AN-827 Application Note, and the Analog Dialogue article "TransformerCoupled Front-End for Wideband A/D Converters" (Volume 39, April 2005). In general, the precise values depend on the application.
For best dynamic performance, the source impedances driving VIN $+x$ and VIN-x must be matched such that common-mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC. An internal reference buffer creates a differential reference that defines the span of the ADC core.
Maximum SNR performance is achieved by setting the ADC to the largest span in a differential configuration. In the case of the AD9234, the available span is 1.34 V p-p differential for AD9234-1000 and 1.63 V p-p differential for AD9234-500.

Differential Input Configurations

There are several ways to drive the AD9234, either actively or passively. However, optimum performance is achieved by driving the analog input differentially.
For applications where SNR and SFDR are key parameters, differential transformer coupling is the recommended input configuration (see Figure 63 and Figure 64) because the noise performance of most amplifiers is not adequate to achieve the true performance of the AD9234.
For low to midrange frequencies, a double balun or double transformer network (see Figure 63) is recommended for optimum performance of the AD9234. For higher frequencies in the second and third Nyquist zones, it is better to remove some of the front-end passive components to ensure wideband operation (see Figure 64).

Figure 63. Differential Transformer-Coupled Configuration for Frequencies up to 500 MHz

Figure 64. Differential Transformer-Coupled Configuration for Frequencies $>500 \mathrm{MHz}$

Input Common Mode

The analog inputs of the AD9234 are internally biased to the common mode as shown in Figure 65. The common-mode buffer has a limited range in that the performance suffers greatly if the common-mode voltage drops by more than 100 mV . Therefore, in dc-coupled applications, set the common-mode voltage to $2.05 \mathrm{~V}, \pm 100 \mathrm{mV}$ to ensure proper ADC operation.

Analog Input Controls and SFDR Optimization

The AD9234 offers flexible controls for the analog inputs, such as input termination and buffer current. All of the available controls are shown in Figure 65.

Figure 65. Analog Input Controls

Using Register 0x018, the buffer currents on each channel can be scaled to optimize the SFDR over various input frequencies and bandwidths of interest. As the input buffer currents are set, the amount of current required by the AVDD3 supply changes. This relationship is shown in Figure 66. For a complete list of buffer current settings, see Table 25.

Figure 66. AVDD3 Power (IAvDD3) vs. Buffer Current Setting

Figure 67, Figure 68, and Figure 69 show how the SFDR for AD9234-1000 can be optimized using the buffer current setting in Register 0 x 018 for different Nyquist zones. Figure 70, Figure 71, and Figure 72 show how the SFDR for AD9234-500 can be optimized using the buffer current setting in Register 0x018 for different Nyquist zones. At frequencies greater than 1 GHz , it is better to run the ADC at input amplitudes less than -1 dBFS (-3 dBFS , for example). This greatly improves the linearity of the converted signal without sacrificing SNR performance.

Figure 67. Buffer Current Sweeps, AD9234-1000; SFDR vs. Input Frequency (IBUFF); $f_{I N}<500 \mathrm{MHz}$

Figure 68. Buffer Current Sweeps, AD9234-1000; SFDR vs. Input Frequency (I ${ }_{\text {BUFF }}$); $500 \mathrm{MHz}<f_{I N}<1500 \mathrm{MHz}$

Figure 69. Buffer Current Sweeps, AD9234-1000; SFDR vs. Input Frequency (I IBfFF); $1500 \mathrm{MHz}<f_{\text {IN }}<2000 \mathrm{MHz}$

Figure 70. Buffer Current Sweeps, AD9234-500; SFDR vs. Input Frequency ($l_{B U F F}$); $f_{I N}<500 \mathrm{MHz}$

Figure 71. Buffer Current Sweeps, AD9234-500; SFDR vs. Input Frequency (I IBFFF); $500 \mathrm{MHz}<f_{I N}<1500 \mathrm{MHz}$

Figure 72. Buffer Current Sweeps, AD9234-500;
SFDR vs. Input Frequency (IBuFF); $1500 \mathrm{MHz}<\mathrm{f}_{\mathrm{IN}}<2000 \mathrm{MHz}$
Table 9 shows the recommended buffer current and full-scale voltage settings for the different analog input frequency ranges.

Table 9. SFDR Optimization for Analog Input Frequencies

	Input Buffer Current Control Setting, Register $\mathbf{0 x 0 1 8}$
$<400 \mathrm{MHz}$	$2.5 \times$ or $3.0 \times$
400 MHz to 1 GHz	$4.5 \times$ or $6.5 \times$
$>1 \mathrm{GHz}$	$6.5 \times$ or higher

Absolute Maximum Input Swing

The absolute maximum input swing allowed at the inputs of the AD9234 is 4.3 V p-p differential. Signals operating near or at this level can cause permanent damage to the ADC.

VOLTAGE REFERENCE

A stable and accurate 1.0 V voltage reference is built into the AD9234. This internal 1.0 V reference is used to set the fullscale input range of the ADC. For more information on adjusting the input swing, see Table 25. Figure 73 shows the block diagram of the internal 1.0 V reference controls.

Figure 73. Internal Reference Configuration and Controls
The SPI Register 0x024 enables the user to either use this internal 1.0 V reference, or to provide an external 1.0 V reference. When using an external voltage reference, provide a 1.0 V reference.

The use of an external reference may be necessary, in some applications, to enhance the gain accuracy of the ADC or improve thermal drift characteristics. Figure 74 shows the typical drift characteristics of the internal 1.0 V reference.

Figure 74. Typical V_1P0 Drift
The external reference must be a stable 1.0 V reference. The ADR130 is a good option for providing the 1.0 V reference. Figure 75 shows how the ADR130 can be used to provide the external 1.0 V reference to the AD9234. The grayed out areas show unused blocks within the AD9234 while using the ADR130 to provide the external reference.

Figure 75. External Reference Using ADR130

CLOCK INPUT CONSIDERATIONS

For optimum performance, drive the AD9234 sample clock inputs (CLK+ and CLK-) with a differential signal. This signal is typically ac-coupled to the CLK+ and CLK- pins via a transformer or clock drivers. These pins are biased internally and require no additional biasing.

Figure 76 shows a preferred method for clocking the AD9234. The low jitter clock source is converted from a single-ended signal to a differential signal using an RF transformer.

Figure 76. Transformer-Coupled Differential Clock
Another option is to ac couple a differential CML or LVDS signal to the sample clock input pins, as shown in Figure 77 and Figure 78.

Figure 77. Differential CML Sample Clock

150Ω RESISTORS ARE OPTIONAL.
Figure 78. Differential LVDS Sample Clock

Clock Duty Cycle Considerations

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. In applications where the clock duty cycle cannot be guaranteed to be 50%, a higher multiple frequency clock can be supplied to the device. The AD9234 can be clocked at 2 GHz with the internal clock divider set to 2 . The output of the divider offers a 50% duty cycle, high slew rate (fast edge) clock signal to the internal ADC. See the Memory Map section for more details on using this feature.

Input Clock Divider

The AD9234 contains an input clock divider with the ability to divide the Nyquist input clock by $1,2,4$, and 8 . The divider ratios can be selected using Register 0x10B. This is shown in Figure 79.
The maximum frequency at the CLK \pm inputs is 4 GHz . This is the limit of the divider. In applications where the clock input is a multiple of the sample clock, care must be taken to program the appropriate divider ratio into the clock divider before applying the clock signal. This ensures that the current transients during device startup are controlled.

Figure 79. Clock Divider Circuit
The AD9234 clock divider can be synchronized using the external SYSREF \pm input. A valid SYSREF \pm causes the clock divider to reset to a programmable state. This feature is enabled by setting Bit 7 of Register 0x10D. This synchronization feature allows multiple devices to have their clock dividers aligned to guarantee simultaneous input sampling. See the Deterministic Latency section for more information

Input Clock Divider $1 / 2$ Period Delay Adjust

The input clock divider inside the AD9234 provides phase delay in increments of $1 / 2$ the input clock cycle. Register $0 \times 10 \mathrm{C}$ can be programmed to enable this delay independently for each channel. Changing this register does not affect the stability of the JESD204B link.

Clock Fine Delay Adjust

The AD9234 sampling edge instant can be adjusted by writing to Register 0x117 and Register 0x118. Setting Bit 0 of Register 0x117 enables the feature, and Register 0x118, Bits[7:0] set the value of the delay. This value can be programmed individually for each channel. The clock delay can be adjusted from -151.7 ps to +150 ps in $\sim 1.7 \mathrm{ps}$ increments. The clock delay adjust takes effect immediately when it is enabled via SPI writes. Enabling the clock fine delay adjust in Register 0x117 causes a datapath reset. However, the contents of Register 0x118 can be changed without affecting the stability of the JESD204B link.

CLOCK JITTER CONSIDERATIONS

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency $\left(\mathrm{f}_{A}\right)$ due only to aperture jitter $\left(\mathrm{t}_{\mathrm{J}}\right)$ can be calculated by

$$
S N R=20 \times \log 10\left(2 \times \pi \times f_{A} \times t_{J}\right)
$$

In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 80).

Figure 80. Ideal SNR vs. Analog Input Frequency and Jitter
Treat the clock input as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9234. Separate power supplies for clock drivers from the ADC output driver supplies to avoid modulating the clock signal with digital noise. If the clock is generated from another type of source (by gating, dividing, or other methods), retime the clock by the original clock at the last step. Refer to the AN-501 Application Note and the AN-756 Application Note for more in-depth information about jitter performance as it relates to ADCs.

POWER-DOWN/STANDBY MODE

The AD9234 has a PDWN/STBY pin that can be used to configure the device in power-down or standby mode. The default operation is the PDWN function. The PDWN/STBY pin is a logic high pin. When in power-down mode, the JESD204B link is disrupted. The power-down option can also be set via Register 0x03F and Register 0x040.

In standby mode, the JESD204B link is not disrupted and transmits zeroes for all converter samples. This can be changed using Register 0x571, Bit 7 to select/K/ characters.

TEMPERATURE DIODE

The AD9234 contains a diode-based temperature sensor for measuring the temperature of the die. This diode can output a voltage and serve as a coarse temperature sensor to monitor the internal die temperature.
The temperature diode voltage can be output to the FD_A pin using the SPI. Use Register 0x028, Bit 0 to enable or disable the diode. Register 0x028 is a local register. Channel A must be selected in the device index register (Register 0x008) to enable the temperature diode readout. Configure the FD_A pin to output the diode voltage by programming Register 0x040[2:0]. See Table 25 for more information.
The voltage response of the temperature diode (SPIVDD = 1.8 V) is shown in Figure 81.

Figure 81. Diode Voltage vs. Temperature

ADC OVERRANGE AND FAST DETECT

In receiver applications, it is desirable to have a mechanism to reliably determine when the converter is about to be clipped. The standard overrange bit in the JESD204B outputs provides information on the state of the analog input that is of limited usefulness. Therefore, it is helpful to have a programmable threshold below full scale that allows time to reduce the gain before the clip actually occurs. In addition, because input signals can have significant slew rates, the latency of this function is of major concern. Highly pipelined converters can have significant latency. The AD9234 contains fast detect circuitry for individual channels to monitor the threshold and assert the FD_A and FD_B pins.

ADC OVERRANGE

The ADC overrange indicator is asserted when an overrange is detected on the input of the ADC. The overrange indicator can be embedded within the JESD204B link as a control bit (when CSB >0). The latency of this overrange indicator matches the sample latency.
The AD9234 also records any overrange condition in any of the four virtual converters. For more information on the virtual converters, refer to Figure 87. The overrange status of each virtual converter is registered as a sticky bit in Register 0x563. The contents of Register 0x563 can be cleared using Register 0×562, by toggling the bits corresponding to the virtual converter to set and reset position.

FAST THRESHOLD DETECTION (FD_A AND FD_B)

The FD bit (enabled via the control bits in Register 0x559 and Register $0 \times 55 \mathrm{~A}$) is immediately set whenever the absolute value of the input signal exceeds the programmable upper threshold level. The FD bit is only cleared when the absolute value of the input signal drops below the lower threshold level for greater than the programmable dwell time. This feature provides hysteresis and prevents the FD bit from excessively toggling.

The operation of the upper threshold and lower threshold registers, along with the dwell time registers, is shown in Figure 82.
The FD indicator is asserted if the input magnitude exceeds the value programmed in the fast detect upper threshold registers, located at Register 0x247 and Register 0x248. The selected threshold register is compared with the signal magnitude at the output of the ADC. The fast upper threshold detection has a latency of 28 clock cycles (maximum). The approximate upper threshold magnitude is defined by

```
Upper Threshold Magnitude (dBFS) \(=20 \log\) (Threshold Magnitude/ \(2{ }^{13}\) )
```

The FD indicators are not cleared until the signal drops below the lower threshold for the programmed dwell time. The lower threshold is programmed in the fast detect lower threshold registers, located at Register 0x249 and Register 0x24A. The fast detect lower threshold register is a 13 -bit register that is compared with the signal magnitude at the output of the ADC. This comparison is subject to the ADC pipeline latency, but is accurate in terms of converter resolution. The lower threshold magnitude is defined by

> Lower Threshold Magnitude $(\mathrm{dBFS})=20 \log ($ Threshold Magnitude $\left./ 2^{13}\right)$

For example, to set an upper threshold of -6 dBFS , write 0 xFFF to Register 0x247 and Register 0x248. To set a lower threshold of -10 dBFS , write 0xA1D to Register 0x249 and Register 0x24A.
The dwell time can be programmed from 1 to 65,535 sample clock cycles by placing the desired value in the fast detect dwell time registers, located at Register 0x24B and Register 0x24C. See the Memory Map section (Register 0x040, and Register 0x245 to Register 0x24C in Table 25) for more details.

SIGNAL MONITOR

The signal monitor block provides additional information about the signal being digitized by the ADC. The signal monitor computes the peak magnitude of the digitized signal. This information can be used to drive an AGC loop to optimize the range of the ADC in the presence of real-world signals.
The results of the signal monitor block can be obtained either by reading back the internal values from the SPI port or by embedding the signal monitoring information into the JESD204B interface as special control bits. A global, 24-bit programmable period controls the duration of the measurement. Figure 83 shows the simplified block diagram of the signal monitor block.

Figure 83. Signal Monitor Block
The peak detector captures the largest signal within the observation period. The detector only observes the magnitude of the signal. The resolution of the peak detector is a 13-bit value and the observation period is 24 bits and represents converter output samples. The peak magnitude can be derived by using the following equation:

Peak Magnitude $(\mathrm{dBFS})=20 \log \left(\right.$ Peak Detector Value $\left./ 2^{13}\right)$
The magnitude of the input port signal is monitored over a programmable time period, which is determined by the signal monitor period register (SMPR). The peak detector function is enabled by setting Bit 1 of Register 0x270 in the signal monitor control register. The 24 -bit SMPR must be programmed before activating this mode.
After enabling this mode, the value in the SMPR is loaded into a monitor period timer, which decrements at the decimated clock rate. The magnitude of the input signal is compared with the
value in the internal magnitude storage register (not accessible to the user), and the greater of the two is updated as the current peak level. The initial value of the magnitude storage register is set to the current ADC input signal magnitude. This comparison continues until the monitor period timer reaches a count of 1 .
When the monitor period timer reaches a count of 1 , the 13-bit peak level value is transferred to the signal monitor holding register, which can be read through the memory map or output through the SPORT over the JESD204B interface. The monitor period timer is reloaded with the value in the SMPR, and the countdown is restarted. In addition, the magnitude of the first input sample is updated in the magnitude storage register, and the comparison and update procedure, as explained previously, continues.

SPORT Over JESD204B

The signal monitor data can also be serialized and sent over the JESD204B interface as control bits. These control bits must be deserialized from the samples to reconstruct the statistical data. This function is enabled by setting Bit 1 and Bit 0 of Register 0x279 and Bit 1 of Register 0x27A. Figure 84 shows two different example configurations for the signal monitor control bit locations inside the JESD204B samples. There are a maximum of three control bits that can be inserted into the JESD204B samples; however, only one control bit is required for the signal monitor. Control bits are inserted from MSB to LSB. If only one control bit is to be inserted ($\mathrm{CS}=1$), then only the most significant control bit is used (see Example Configuration 1 and Example Configuration 2 in Figure 84). To select the SPORT over JESD204B option, program Register 0x559, Register 0x55A, and Register 0x58F. See Table 25 for more information on setting these bits.

Figure 85 shows the 25 -bit frame data that encapsulates the peak detector value. The frame data is transmitted MSB first with five 5 -bit subframes. Each subframe contains a start bit that can be used by a receiver to validate the deserialized data. Figure 86 shows the SPORT over JESD204B signal monitor data with a monitor period timer set to 80 samples.

Figure 84. Signal Monitor Control Bit Locations

Figure 85. SPORT over JESD204B Signal Monitor Frame Data

Figure 86. SPORT over JESD204B Signal Monitor Example with Period $=80$ Samples

DIGITAL DOWNCONVERTER (DDC)

The AD9234 includes two digital downconverters (DDC 0 and DDC 1) that provide filtering and reduce the output data rate. This digital processing section includes a half-band decimating filter, a gain stage, and a complex to real conversion stage. Each of these processing blocks has control lines that allow it to be independently enabled and disabled to provide the desired processing function. The digital downconverter can be configured to output either real data or complex output data.

DDC GENERAL DESCRIPTION

The two DDC blocks are used to extract a portion of the full digital spectrum captured by the $\mathrm{ADC}(\mathrm{s})$. They are intended for IF sampling or oversampled baseband radios requiring wide bandwidth input signals.

Figure 87. DDC Detailed Block Diagram

HALF-BAND FILTER

The AD9234 offers one half-band filter per DDC to enable digital signal processing of the ADC converted data.

The decimate by 2, half-band (HB), low-pass FIR filter uses a 55-tap, symmetrical, fixed coefficient filter implementation, optimized for low power consumption. The HB filter is enabled when the DDC is selected. Table 10 and Figure 88 show the coefficients and response of the HB1 filter.

Figure 88. HB1 Filter Response

Table 10. Half-Band Filter Coefficients

HB1 Coefficient Number	Normalized Coefficient	Decimal Coefficient (21-Bit)
C1, C55	-0.000023	-24
C2, C54	0	0
C3, C53	0.000097	102
C4, C52	0	0
C5, C51	-0.000288	-302
C6, C50	0	0
C7, C49	0.000696	730
C8, C48	0	0
C9, C47	-0.0014725	-1544
C10, C46	0	0
C11, C45	0.002827	2964
C12, C44	0	0
C13, C43	-0.005039	-5284
C14, C42	0	0
C15, C41	0.008491	8903
C16, C40	0	0
C17, C39	-0.013717	$-14,383$
C18, C38	0	0
C19, C37	0.021591	22640
C20, C36	0	0
C21, C35	-0.033833	-35476
C22, C34	0	0
C23, C33	0.054806	57468
C24, C32	0	0
C25, C31	-0.100557	-105442
C26, C30	0	0
C27, C29	0.316421	331,792
C28	0.500000	524,288

DDC GAIN STAGE

Each DDC contains an independently controlled gain stage. The gain is selectable as either 0 dB or 6 dB . When mixing a real input signal down to baseband, it is recommended that the user enable the 6 dB of gain to recenter the dynamic range of the signal within the full scale of the output bits.

When mixing a complex input signal down to baseband, the mixer has already recentered the dynamic range of the signal within the full scale of the output bits and no additional gain is necessary. However, the optional 6 dB gain can be used to compensate for low signal strengths. The downsample by 2 portion of the HB1 FIR filter is bypassed when using the complex to real conversion stage (see Figure 89).

DDC COMPLEX TO REAL CONVERSION

Each DDC contains an independently controlled complex to real conversion block. The complex to real conversion block reuses the last filter (HB1 FIR) in the filtering stage, along with an $\mathrm{f}_{\mathrm{s}} / 4$ complex mixer, to upconvert the signal.

After upconverting the signal, the Q portion of the complex mixer is no longer needed and is dropped.
Figure 89 shows a simplified block diagram of the complex to real conversion.

DIGITAL OUTPUTS

INTRODUCTION TO THE JESD204B INTERFACE

The AD9234 digital outputs are designed to the JEDEC standard JESD204B, serial interface for data converters. JESD204B is a protocol to link the AD9234 to a digital processing device over a serial interface with lane rates of up to 10 Gbps . The benefits of the JESD204B interface over LVDS include a reduction in required board area for data interface routing, and an ability to enable smaller packages for converter and logic devices.

JESD204B OVERVIEW

The JESD204B data transmit block assembles the parallel data from the ADC into frames and uses $8 \mathrm{~B} / 10 \mathrm{~B}$ encoding as well as optional scrambling to form serial output data. Lane synchronization is supported through the use of special control characters during the initial establishment of the link. Additional control characters are embedded in the data stream to maintain synchronization thereafter. A JESD204B receiver is required to complete the serial link. For additional details on the JESD204B interface, users are encouraged to refer to the JESD204B standard.
The AD9234 JESD204B data transmit block maps up to two physical ADCs or up to eight virtual converters (when DDCs are enabled) over a link. A link can be configured to use one, two, or four JESD204B lanes. The JESD204B specification refers to a number of parameters to define the link, and these parameters must match between the JESD204B transmitter (the AD9234 output) and the JESD204B receiver (the logic device input).
The JESD204B link is described according to the following parameters:

- $\mathrm{L}=$ number of lanes/converter device (lanes/link) (AD9234 value $=1,2$, or 4)
- $\mathrm{M}=$ number of converters/converter device (virtual converters/link) (AD9234 value $=1,2,4$, or 8)
- $\mathrm{F}=$ octets/frame (AD9234 value $=1,2,4,8$, or 16)
- $\mathrm{N}^{\prime}=$ number of bits per sample (JESD204B word size) (AD9234 value $=8$ or 16)
- $\mathrm{N}=$ converter resolution (AD9234 value $=7$ to 16)
- $\mathrm{CS}=$ number of control bits/sample ($\operatorname{AD9234}$ value $=0,1$, 2, or 3)
- $\mathrm{K}=$ number of frames per multiframe ($\operatorname{AD9234}$ value $=4$, $8,12,16,20,24,28$, or 32)
- $\mathrm{S}=$ samples transmitted/single converter/frame cycle $(\mathrm{AD} 9234$ value $=$ set automatically based on $\mathrm{L}, \mathrm{M}, \mathrm{F}$, and N^{\prime})
- $\mathrm{HD}=$ high density mode (AD9234 $=$ set automatically based on L, M, F, and N^{\prime})
- $\mathrm{CF}=$ number of control words/frame clock cycle/converter device $($ AD9234 value $=0)$

Figure 90 shows a simplified block diagram of the AD9234 JESD204B link. By default, the AD9234 is configured to use two converters and four lanes. Converter A data is output to SERDOUT0 \pm and/or SERDOUT1 \pm, and Converter B is output to SERDOUT2 \pm and/or SERDOUT3 \pm. The AD9234 allows other configurations such as combining the outputs of both converters onto a single lane, or changing the mapping of the A and B digital output paths. These modes are set up via a quick configuration register in the SPI register map, along with additional customizable options.

By default in the AD9234, the 12-bit converter word from each converter is broken into two octets (eight bits of data). Bit 13 (MSB) through Bit 6 are in the first octet. The second octet contains Bit 5 through Bit 0 (LSB) and two tail bits. The tail bits can be configured as zeros or a pseudorandom number (PN) sequence. The tail bits can also be replaced with control bits indicating overrange, SYSREF \pm, signal monitor, or fast detect output.
The two resulting octets can be scrambled. Scrambling is optional; however, it is recommended to avoid spectral peaks when transmitting similar digital data patterns. The scrambler uses a self-synchronizing, polynomial-based algorithm defined by the equation $1+\mathrm{x}^{14}+\mathrm{x}^{15}$. The descrambler in the receiver is a self-synchronizing version of the scrambler polynomial.
The two octets are then encoded with an $8 \mathrm{~B} / 10 \mathrm{~B}$ encoder. The $8 \mathrm{~B} / 10 \mathrm{~B}$ encoder works by taking eight bits of data (an octet) and encoding them into a 10 -bit symbol. Figure 91 shows how the 12-bit data is taken from the ADC, the tail bits are added, the two octets are scrambled, and how the octets are encoded into two 10-bit symbols. Figure 91 illustrates the default data format.

Figure 90. Transmit Link Simplified Block Diagram Showing Full Bandwidth Mode (Register 0x200 $=0 \times 00$)

Figure 92. Data Flow

FUNCTIONAL OVERVIEW

The block diagram in Figure 92 shows the flow of data through the JESD204B hardware from the sample input to the physical output. The processing can be divided into layers that are derived from the open-source initiative (OSI) model widely used to describe the abstraction layers of communications systems. These layers are the transport layer, data link layer, and physical layer (serializer and output driver).

Transport Layer

The transport layer handles packing the data (consisting of samples and optional control bits) into JESD204B frames that are mapped to 8 -bit octets. These octets are sent to the data link layer. The transport layer mapping is controlled by rules derived from the link parameters. Tail bits are added to fill gaps where required. The following equation can be used to determine the number of tail bits within a sample (JESD204B word):

$$
T=N^{\prime}-N-C S
$$

Data Link Layer

The data link layer is responsible for the low level functions of passing data across the link. These include optionally scrambling the data, inserting control characters for multichip synchronization/lane alignment/monitoring, and encoding 8 -bit octets into 10 -bit symbols. The data link layer is also responsible for sending the initial lane alignment sequence (ILAS), which contains the link configuration data used by the receiver to verify the settings in the transport layer.

Physical Layer

The physical layer consists of the high speed circuitry clocked at the serial clock rate. In this layer, parallel data is converted into one, two, or four lanes of high speed differential serial data.

JESD204B LINK ESTABLISHMENT

The AD9234 JESD204B transmitter (Tx) interface operates in Subclass 1 as defined in the JEDEC Standard JESD204B (July 2011 specification). The link establishment process is divided into the following steps: code group synchronization and SYNCINB \pm, initial lane alignment sequence, and user data and error correction.

Code Group Synchronization (CGS) and SYNCINB \pm

The CGS is the process by which the JESD204B receiver finds the boundaries between the 10 -bit symbols in the stream of data. During the CGS phase, the JESD204B transmit block transmits /K28.5/ characters. The receiver must locate /K28.5/ characters in its input data stream using clock and data recovery (CDR) techniques.
The receiver issues a synchronization request by asserting the SYNCINB \pm pin of the AD9234 low. The JESD204B Tx then begins sending / $K /$ characters. After the receiver has synchronized, it waits for the correct reception of at least four consecutive /K/ symbols. It then deasserts SYNCINB \pm. The AD9234 then transmits an ILAS on the following local multiframe clock (LMFC) boundary.

For more information on the code group synchronization phase, refer to the JEDEC Standard JESD204B, July 2011, Section 5.3.3.1.

The SYNCINB \pm pin operation can also be controlled by the SPI. The SYNCINB \pm signal is a differential dc-coupled LVDS mode signal by default, but it can also be driven single-ended. For more information on configuring the SYNCINB \pm pin operation, refer to Register 0x572.

Initial Lane Alignment Sequence (ILAS)

The ILAS phase follows the CGS phase and begins on the next LMFC boundary. The ILAS consists of four multiframes, with an /R/ character marking the beginning and an / $\mathrm{A} /$ character marking the end. The ILAS begins by sending an /R/ character followed by 0 to 255 ramp data for one multiframe. On the second multiframe, the link configuration data is sent, starting with the third character. The second character is a /Q/ character to confirm that the link configuration data follows. All undefined data slots are filled with ramp data. The ILAS sequence is never scrambled.
The ILAS sequence construction is shown in Figure 93. The four multiframes include the following:

- Multiframe 1. Begins with an /R/ character (/K28.0/) and ends with an /A/ character (/K28.3/).
- Multiframe 2. Begins with an $/ \mathrm{R} /$ character followed by a /Q/ (/K28.4/) character, followed by link configuration parameters over 14 configuration octets (see Table 11) and ends with an /A/ character. Many of the parameter values are of the value -1 notation.
- Multiframe 3. Begins with an /R/ character (/K28.0/) and ends with an /A/ character (/K28.3/).
- Multiframe 4. Begins with an /R/ character (/K28.0/) and ends with an /A/ character (/K28.3/).

Figure 93. Initial Lane Alignment Sequence

User Data and Error Detection

After the initial lane alignment sequence is complete, the user data is sent. Normally, within a frame, all characters are considered user data. However, to monitor the frame clock and multiframe clock synchronization, there is a mechanism for replacing characters with /F/ or /A/ alignment characters when the data meets certain conditions. These conditions are different for unscrambled and scrambled data. The scrambling operation is enabled by default, but it can be disabled using the SPI.
For scrambled data, any 0 xFC character at the end of a frame is replaced by an $/ \mathrm{F} /$, and any $0 \times 7 \mathrm{C}$ character at the end of a multiframe is replaced with an /A/. The JESD204B receiver (Rx) checks for /F/ and /A/ characters in the received data stream and verifies that they only occur in the expected locations. If an unexpected /F/ or /A/ character is found, the receiver handles the situation by using dynamic realignment or asserting the SYNCINB \pm signal for more than four frames to initiate a resynchronization. For unscrambled data, if the final character of two subsequent frames is equal, the second character is replaced with an /F/ if it is at the end of a frame, and an /A/ if it is at the end of a multiframe.
Insertion of alignment characters can be modified using SPI. The frame alignment character insertion (FACI) is enabled by default. More information on the link controls is available in the Memory Map section, Register 0x571.

8B/10B Encoder

The 8B/10B encoder converts 8-bit octets into 10-bit symbols and inserts control characters into the stream when needed. The control characters used in JESD204B are shown in Table 11. The $8 \mathrm{~B} / 10 \mathrm{~B}$ encoding ensures that the signal is dc balanced by using the same number of ones and zeros across multiple symbols.
The 8B/10B interface has options that can be controlled via the SPI. These operations include bypass and invert. These options are intended to be troubleshooting tools for the verification of the digital front end (DFE). Refer to the Memory Map section, Register 0x572[2:1] for information on configuring the 8B/10B encoder.

Table 11. AD9234 Control Characters Used in JESD204B

Abbreviation	Control Symbol	8-Bit Value	10-Bit Value, RD $^{\mathbf{1}}=\mathbf{- 1}$	$\mathbf{1 0 - B i t}$ Value, RD $^{1}=+\mathbf{1}$	Description
/R/	/K28.0/	00011100	0011110100	1100001011	Start of multiframe
/A/	/K28.3/	01111100	0011110011	1100001100	Lane alignment
/Q/	/K28.4/	10011100	0011110010	1100001101	Start of link configuration data
/K/	/K28.5/	10111100	0011111010	1100000101	Group synchronization
/F/	/K28.7/	1111100	0011111000	1100000111	Frame alignment

[^3]
PHYSICAL LAYER (DRIVER) OUTPUTS

Digital Outputs, Timing, and Controls

The AD9234 physical layer consists of drivers that are defined in the JEDEC Standard JESD204B, July 2011. The differential digital outputs are powered up by default. The drivers use a dynamic 100Ω internal termination to reduce unwanted reflections.

Place a 100Ω differential termination resistor at each receiver, which results in a nominal 300 mV p-p swing at the receiver (see Figure 94). It is recommended to use ac coupling to connect the AD9234 SERDES outputs to the receiver.

Figure 94. AC-Coupled Digital Output Termination Example
If there is no far-end receiver termination, or if there is poor differential trace routing, timing errors may result. To avoid such timing errors, it is recommended that the trace length be less than six inches, and that the differential output traces be close together and at equal lengths.

Figure 95. Digital Outputs Data Eye, External 100Ω Terminations at 10 Gbps

Figure 95 to Figure 100 show examples of the digital output data eye, time interval error (TIE) jitter histogram, and bathtub curve for one AD9234 lane running at 10 Gbps and 6 Gbps , respectively. The format of the output data is twos complement by default. To change the output data format, see the Memory Map section (Register 0x561 in Table 25).

De-Emphasis

De-emphasis enables the receiver eye diagram mask to be met in conditions where the interconnect insertion loss does not meet the JESD204B specification. Use the de-emphasis feature only when the receiver is unable to recover the clock due to excessive insertion loss. Under normal conditions, it is disabled to conserve power. Additionally, enabling and setting too high a de-emphasis value on a short link may cause the receiver eye diagram to fail. Use the de-emphasis setting with caution because it may increase electromagnetic interference (EMI). See the Memory Map section (Register 0x5C1 to Register 0x5C5 in Table 25) for more details.

Phase-Locked Loop

The PLL is used to generate the serializer clock, which will operate at the JESD204B lane rate. The JESD204B lane rate Register 0x056E[4:3] must be set to correspond with the lane rate.

Figure 96. Digital Outputs Data Eye, External 100 ת Terminations at 6 Gbps

Figure 97. Digital Outputs Histogram, External 100Ω Terminations at 10 Gbps

Figure 98. Digital Outputs Bathtub Curve, External 100Ω Terminations at 10 Gbps

Figure 99. Digital Outputs Histogram, External 100Ω Terminations at 6 Gbps

Figure 100. Digital Outputs Bathtub Curve, External 100Ω Terminations at 6 Gbps

CONFIGURING THE JESD204B LINK

The AD9234 has one JESD204B link. The device offers an easy way to set up the JESD204B link through the quick configuration register (Register 0x570). The serial outputs (SERDOUT0 \pm to SERDOUT3 \pm) are considered part of one JESD204B link. The basic parameters that determine the link setup are

- Number of lanes per link (L)
- Number of converters per link (M)
- Number of octets per frame (F)

The maximum lane rate allowed by the JESD204B specification is 12.5 Gbps . The lane line rate is related to the JESD204B parameters using the following equation:

$$
\text { Lane Line Rate }=\frac{M \times N^{\prime} \times\left(\frac{10}{8}\right) \times f_{\text {OUT }}}{L}
$$

where $f_{\text {OUT }}=f_{A D C _ \text {_Lock }} /$ decimation ratio.
The following steps can be used to configure the output:

1. Power down the link.
2. Select quick configuration options.
3. Configure detailed options.
4. Set output lane mapping (optional).
5. Set additional driver configuration options (optional).
6. Power up the link.

If the lane line rate calculated is less than 6.25 Gbps , select the low line rate option. This is done by programming a value of 0x10 to Register 0x56E.

Table 12 and Table 13 show the JESD204B output configurations supported for both $\mathrm{N}^{\prime}=16$ and $\mathrm{N}^{\prime}=8$ for a given number of virtual converters. Care must be taken to ensure that the serial line rate for a given configuration is within the supported range of 3.125 Gbps to 12.5 Gbps .

Table 12. JESD204B Output Configurations for $\mathrm{N}^{\prime}=16$

No. of Virtual Converters Supported (Same Value as M)	JESD204B Quick Configuration (0x570)	JESD204B Serial Line Rate ${ }^{1}$	JESD204B Transport Layer Settings ${ }^{2}$								
			L	M	F	S	HD	N	N'	CS	K ${ }^{3}$
1	0x01	$20 \times$ fout	1	1	2	1	0	8 to 16	16	0 to 3	Only valid K values that are divisible by 4 are supported
	0x40	$10 \times$ fout	2	1	1	1	1	8 to 16	16	0 to 3	
	0x41	$10 \times$ fout	2	1	2	2	0	8 to 16	16	0 to 3	
	0x80	$5 \times$ fout	4	1	1	2	1	8 to 16	16	0 to 3	
	0x81	$5 \times$ fout	4	1	2	4	0	8 to 16	16	0 to 3	
2	0x0A	$40 \times$ fout	1	2	4	1	0	8 to 16	16	0 to 3	
	0x49	$20 \times$ fout	2	2	2	1	0	8 to 16	16	0 to 3	
	0x88	$10 \times$ fout	4	2	1	1	1	8 to 16	16	0 to 3	
	0x89	$10 \times$ fout	4	2	2	2	0	8 to 16	16	0 to 3	
4	0x13	$80 \times$ fout	1	4	8	1	0	8 to 16	16	0 to 3	
	0x52	$40 \times$ fout	2	4	4	1	0	8 to 16	16	0 to 3	
	0x91	$20 \times$ fout	4	4	2	1	0	8 to 16	16	0 to 3	

[^4]Table 13. JESD204B Output Configurations for $\mathrm{N}^{\prime}=8$

No. of Virtual Converters Supported (Same Value as M)	JESD204B Quick Configuration (0x570)	Serial Line Rate ${ }^{1}$	JESD204B Transport Layer Settings ${ }^{\mathbf{2}}$								
			L	M	F	S	HD	N	N'	CS	K^{3}
1	0×00	$10 \times$ fout	1	1	1	1	0	7 to 8	8	0 to 1	Only valid K values which are divisible by 4 are supported
	0×01	$10 \times$ fout	1	1	2	2	0	7 to 8	8	0 to 1	
	0x40	$5 \times$ fout	2	1	1	2	0	7 to 8	8	0 to 1	
	0×41	$5 \times$ fout	2	1	2	4	0	7 to 8	8	0 to 1	
	0×42	$5 \times$ fout	2	1	4	8	0	7 to 8	8	0 to 1	
	0x80	$2.5 \times$ fout	4	1	1	4	0	7 to 8	8	0 to 1	
	0x81	$2.5 \times$ fout	4	1	2	8	0	7 to 8	8	0 to 1	
2	0x09	$20 \times$ fout	1	2	2	1	0	7 to 8	8	0 to 1	
	0x48	$10 \times$ fout	2	2	1	1	0	7 to 8	8	0 to 1	
	0×49	$10 \times$ fout	2	2	2	2	0	7 to 8	8	0 to 1	
	0×88	$5 \times$ fout	4	2	1	2	0	7 to 8	8	0 to 1	
	0x89	$5 \times$ fout	4	2	2	4	0	7 to 8	8	0 to 1	
	0x8A	$5 \times$ fout	4	2	4	8	0	7 to 8	8	0 to 1	

${ }^{1}$ fout $=$ output sample rate $=$ ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be $\geq 3125 \mathrm{Mbps}$ and $\leq 12,500 \mathrm{Mbps}$; when the serial line rate is $\leq 12.5 \mathrm{Gbps}$ and $\geq 6.25 \mathrm{Gbps}$, the low line rate mode must be disabled (set Bit 4 to 0×0 in Register $0 \times 56 \mathrm{E}$). When the serial line rate is $<6.25 \mathrm{Gbps}$ and $\geq 3.125 \mathrm{Gbps}$, the low line rate mode must be enabled (set Bit 4 to 0×1 in Register 0x56E).
${ }^{2}$ JESD204B transport layer descriptions are as described in the JESD204B Overview section.
${ }^{3}$ For $F=1, K=20,24,28$, and 32 . For $F=2, K=12,16,20,24,28$, and 32 . For $F=4, K=8,12,16,20,24,28$, and 32 . For $F=8$ and $F=16, K=4,8,12,16,20,24,28$, and 32 .
See the Example 1: Full Bandwidth Mode section, the Example 2: Full Bandwidth Mode at 500 MSPS section, and the Example 3: ADC with DDC Option (Two ADCs Plus Two DDCs) section for examples describing which JESD204B transport layer settings are valid for a given chip mode.

Example 1: Full Bandwidth Mode at 1 GSPS

Chip application mode is full bandwidth mode (see Figure 101).

- Two 12 -bit converters at 1000 MSPS
- Full bandwidth application layer mode
- No decimation

JESD204B output configuration includes the following:

- Two virtual converters required (see Table 12)
- Output sample rate $($ fout $)=1000 / 1=1000$ MSPS

JESD204B supported output configurations (see Table 12) include

- $\mathrm{N}^{\prime}=16$ bits
- $\mathrm{N}=12$ bits
- $\mathrm{L}=4, \mathrm{M}=2$, and $\mathrm{F}=1$, or $\mathrm{L}=4, \mathrm{M}=2$, and $\mathrm{F}=2$ (quick configuration $=0 \times 88$ or 0×89)
- $\mathrm{CS}=0$ to 2
- $\mathrm{K}=32$
- Output serial line rate $=10 \mathrm{Gbps}$ per lane, low line rate mode disabled

Figure 101. Full Bandwidth Mode

Example 2: Full Bandwidth Mode at 500 MSPS

Chip application mode is full bandwidth mode (see Figure 101).

- Two 12-bit converters at 500 MSPS
- Full bandwidth application layer mode
- No decimation

JESD204B output configuration includes the following:

- Two virtual converters required (see Table 12)
- Output sample rate $\left(f_{\text {fout }}\right)=500 / 1=500$ MSPS

JESD204B supported output configurations (see Table 12) include

- $\mathrm{N}^{\prime}=16$ bits
- $\mathrm{N}=12$ bits
- $\mathrm{L}=4, \mathrm{M}=2$, and $\mathrm{F}=1$, or $\mathrm{L}=2, \mathrm{M}=2$, and $\mathrm{F}=2$ (quick configuration $=0 \times 88$ or 0×49)
- $\mathrm{CS}=0$ to 2
- $\mathrm{K}=32$
- Output serial line rate
- 5 Gbps per lane for L.M.F $=4.2 .1$, low line rate mode enabled ($0 \times 56 \mathrm{E}=0 \mathrm{x} 00$)
- $\quad 10 \mathrm{Gbps}$ per lane for L.M.F $=2.2 .2$, low line rate mode disabled $(0 \times 56 \mathrm{E}=0 \times 00)$

Example 3: ADC with DDC Option (Two ADCs Plus Two DDCs)

Chip application mode is two-DDC mode. (see Figure 102).

- Two 12-bit converters at 1 MSPS
- Two DDC application layer mode with complex outputs (I/Q)
- Chip decimation ratio $=2$
- $\quad \mathrm{DDC}$ decimation ratio $=2($ see Table 25)

Figure 102. Two-ADC Plus Two DDC Mode

DETERMINISTIC LATENCY

Both ends of the JESD204B link contain various clock domains distributed throughout the transmit and receive systems. Data traversing from one clock domain to another clock domain can lead to ambiguous delays in the JESD204B link. These ambiguities lead to nonrepeatable latencies across the JESD204B link from one power cycle or link reset to the next. The JESD204B specification addresses deterministic latency with mechanisms defined as Subclass 1 and Subclass 2.

The AD9234 supports JESD204B Subclass 0 and Subclass 1 operation. Register 0x0590, Bit 5 sets the subclass mode for the AD9234; the default mode is the Subclass 1 operating mode (Register 0x590, Bit $5=1$). If deterministic latency is not a system requirement, Subclass 0 operation is recommended and the SYSREF \pm signal may not be required. Even in Subclass 0 mode, the SYSREF \pm signal can be required in an application where multiple AD9234 devices must be synchronized with each other (see the Timestamp Mode section.

SUBCLASS 0 OPERATION

If there is no requirement for multichip synchronization while operating in Subclass 0 mode (Register 0x590, Bit $5=0$), the SYSREF \pm input can be left disconnected. In this mode, the relationship of the JESD204B clocks between the JESD204B transmitter and receiver are arbitrary but does not affect the ability of the receiver to capture and align the lanes within the link.

SUBCLASS 1 OPERATION

The JESD204B protocol organizes data samples into octets, frames, and multiframes as described in the Transport Layer Sample Test Mode section. The LMFC is synchronous with the starts of these multiframes. In Subclass 1 operation, the SYSREF \pm signal synchronizes the LMFCs for an individual link or across multiple links (within the AD9234, SYSREF \pm also synchronizes the internal sample dividers), as shown in Figure 103.

The JESD204B receiver uses the multiframe boundaries and buffering to achieve consistent latency across lanes (or even multiple devices), and also to achieve a fixed latency between power cycles and link reset conditions.

Deterministic Latency Requirements

Several key factors are required for achieving deterministic latency in a JESD204B Subclass 1 system.

- SYSREF \pm signal distribution skew within the system must be less than the desired uncertainty for the system.
- SYSREF \pm setup and hold time requirements must be met for each device in the system.
- The total latency variation across all lanes, links, and devices must be ≤ 1 LMFC period (see Figure 103). This includes both variable delays and the variation in fixed delays from lane to lane, link to link and device to device in the system.

Setting Deterministic Latency Registers

The JESD204B receive buffer in the logic device buffers data starting on the LMFC boundary. If the total link latency in the system is near an integer multiple of the LMFC period, it is possible that from one power cycle to the next the data arrival time at the receive buffer can straddle an LMFC boundary. To ensure deterministic latency in this case, perform a phase adjustment of the LMFC at either the transmitter or receiver. Typically, adjustments to accommodate the receive buffer are made to the LMFC of the receiver. In the AD9234, this adjustment can be made using the LMFC offset bits (Register 0x578, Bits[4:0]). These bits delay the LMFC in frame clock increments, depending on the F parameter, which is the number of octets per lane per frame. When $\mathrm{F}=1$, every fourth setting $(0,4,8, \ldots$, for example) results in a one frame clock shift. When $\mathrm{F}=2$, every other setting $(0,2,4, \ldots$, for example) results in a one frame clock shift. For all other values of F , each setting results in a one frame clock shift.

Figure 103. SYSREF \pm and LMFC

Figure 104 shows that, in the case where the link latency is near an LMFC boundary, the local LMFC of the AD9234 can be delayed to delay the data arrival time at the receiver. Figure 105 shows how the LMFC of the receiver is delayed to accommodate the receive buffer timing. Refer to the applicable ASIC or FPGA JESD204B receiver user guide for details on accommodating the receiver buffer timing. If the total latency in the system is not near an integer multiple of the LMFC period, or if the appropriate adjustments are not applied to the LMFC phase at the clock source, it is still possible to have variable latency from one power cycle to the next. In this case, check if the setup and hold time requirements for the SYSREF \pm signal are being met. Perform this check by reading the SYSREF \pm setup and hold
monitor register (Register 0x128). This function is described in the SYSREF \pm Setup/Hold Window Monitor section.
If reading Register 0x128 indicates a timing problem, there are adjustments that can made in the AD9234. Changing the SYSREF \pm level used for alignment is possible using the SYSREF \pm transition select bit (Register 0x120, Bit 4). Also, changing which edge of the clock captures SYSREF \pm can be performed using the clock edge select bit (Register 0x120, Bit 3). Both of these options are described in the SYSREF \pm Control Features section. If neither of these measures help achieve an acceptable setup and hold time, adjusting the phase of SYSREF \pm and/or the device clock ($\mathrm{CLK} \pm$) may be required.

Figure 104. Adjusting the JESD204B Tx LMFC in the AD9234

Figure 105. Adjusting the JESD204B Rx LMFC in the Logic Device

MULTICHIP SYNCHRONIZATION

The flowchart shown in Figure 107 describes the internal mechanism for multichip synchronization in the AD9234. There are two methods by which multichip synchronization can take place, as determined by the chip synchronization mode bit (Register 0x1FF, Bit 0). Both methods involve different SYSREF \pm signal applications.

NORMAL MODE

The default state of the chip synchronization mode bit is 0 , which configures the AD9234 for normal chip synchronization. The JESD204B standard specifies the use of SYSREF \pm to provide deterministic latency within a single link. This same concept, when applied to a system with multiple converters and logic devices, can also provide multichip synchronization. In Figure 107, this is referred to as normal mode. Following the process outlined in Figure 107 ensures the AD9234 is configured appropriately. Consult the respective ASIC or FPGA user intellectual property (IP) guide to ensure the JESD204B receivers are configured appropriately.

TIMESTAMP MODE

For all AD9234 full bandwidth operating modes, the SYSREF input can also timestamp samples, which is another method in which multiple channels and multiple devices can achieve synchronization. This feature is especially effective when synchronizing multiple devices to one or more logic devices. The logic devices buffer the data streams, identify the time stamped samples, and align them.

When the chip synchronization mode bit (0 x 1 FF , Bit 0) is set to 1 , the timestamp method synchronizes multiple channels and/or devices. In timestamp mode, the clocks do not reset, but the coinciding sample is time stamped using the JESD204B control bits of that sample. To operate in timestamp mode, these additional settings are necessary:

- Continuous or N shot SYSREF \pm enabled ($0 \times 120[2: 1]=1$ or 2)
- At least one control bit must be enabled ($\mathrm{CS}>0$, Register 0x58F, Bits[7:6] = 1, 2, or 3)
- Set the function for one of the control bits to SYSREF
- Register 0x559, Bits[2:0] = 5 if using Control Bit 0
- Register 0x559, Bits[6:4] $=5$ if using Control Bit 1
- Register 0x55A, Bits[2:0] = 5 if using Control Bit 2

Control bits must be enabled MSB first. In other words, if only using one control bit ($\mathrm{CS}=1$), Control Bit 2 must be enabled. If two control bits are used, Control Bits[2:1] must be enabled. Figure 106 shows how the input sample coincident with SYSREF \pm is time stamped, and ultimately, the output of the ADC. In this example, there are two control bits and Control Bit 1 is the bit indicating which sample was coincident with the SYSREF \pm rising edge. Note that the pipeline latencies for each channel are identical. If so desired, the SYSREF \pm timestamp delay register (Register 0x123) can be used to adjust the timing of which sample is time stamped.

Note that time stamping is not supported by any AD9234 operating modes that use decimation.

Figure 106. AD9234 Timestamping—CS $=2$ (Register 0x58F, Bits[7:6] = 2), Control Bit 1 is SYSREF \pm (Register 0x559, Bits[6:4] = 5)

Figure 107. SYSREF \pm Capture Scenarios and Multichip Synchronization

SYSREF \pm INPUT

The SYSREF \pm input signal is used as a high accuracy system reference for deterministic latency and multichip synchronization. The AD9234 accepts a single shot or periodic input signal. The SYSREF \pm mode select bits (Register 0x120, Bits[2:1]) select the input signal type and also arm the SYSREF \pm state machine when set. If in single (or N) shot mode (Register 0x120, Bits[2:1] = 2), the SYSREF \pm mode select bit self clears after detecting the appropriate SYSREF \pm transition. The pulse width must have a minimum width of two CLK \pm periods. If the clock divider (Register 0x10B, Bits[2:0]) is set to a value other than divide by 1 , then multiply this minimum pulse width requirement by the divide ratio (for example, if set to divide by 8 , the minimum pulse width is $16 \mathrm{CLK} \pm$ cycles). When using a continuous SYSREF \pm signal (Register 0x120, Bits[2:1] = 1), the period of the SYSREF \pm signal must be an integer multiple of the LMFC. Derive the LMFC using the following formula:

$$
L M F C=A D C \text { Clock } / S \times K
$$

where:
S is the JESD204B parameter for number of samples per converter.
K is JESD204B parameter for number of frames per multiframe.
The input clock divider, DDCs, signal monitor block, and JESD204B link are all synchronized using the SYSREF \pm input when in normal synchronization mode (Register 0x1FF, Bits[1:0] = 0). The SYSREF \pm input can also time stamp an ADC sample to provide a mechanism for synchronizing multiple AD9234 devices in a system. For the highest level of timing accuracy, SYSREF \pm must meet the setup and hold requirements relative to the CLK \pm input. There are several features in the AD9234 to ensure these requirements are met (see the SYSREF \pm Control Features section).

SYSREF \pm Control Features

SYSREF \pm and the input clock (CLK \pm) are part of a source synchronous timing interface that requires setup and hold timing requirements of 117 ps and -96 ps , relative to the input clock (see Figure 108).
The AD9234 has several features to meet these requirements. First, the SYSREF \pm sample event can be defined as either a synchronous low to high transition or synchronous high to low transition. Second, the AD9234 allows the SYSREF \pm signal to be sampled using either the rising edge or falling edge of the input clock. Figure 108, Figure 109, Figure 110, and Figure 111 show all four possible combinations.
The third SYSREF \pm related feature available is the ability to ignore a programmable number (up to 16) of SYSREF \pm events. The SYSREF \pm ignore feature is enabled by setting the SYSREF \pm mode
register (Register 0x120, Bits[2:1]) to 10 , which is labeled as N shot mode. The AD9234 can ignore N SYSREF \pm events, which can handle periodic SYSREF \pm signals that require time to settle after startup. Ignoring SYSREF \pm until the clocks in the system settle avoids an inaccurate SYSREF \pm trigger. Figure 112 shows an example of the SYSREF \pm ignore feature when ignoring three SYSREF \pm events.

Figure 108. SYSREF \pm Setup and Hold Time Requirements; SYSREF \pm Low to High Transition Using the Rising Edge Clock (Default)

Figure 109. SYSREF \pm Low to High Transition Using Falling Edge Clock Capture (Register 0x120, Bit $4=0$ and Register 0×120, Bit $3=1$)

Figure 110. SYSREF \pm High to Low Transition Using Rising Edge Clock Capture (Register 0x120, Bit $4=1$ and Register 0x120, Bit $3=0$)

Figure 111. SYSREF \pm High to Low Transition Using Falling Edge Clock Capture (Register 0x120, Bit $4=1$ and Register 0x120, Bit $3=1$)

Figure 112. SYSREF \pm Ignore Example; SYSREF \pm Ignore Count Bits (Register 0x121, Bits[3:0]) $=3$

When in continuous SYSREF \pm mode (Register 0x120, Bits[2:1] = 1), the AD9234 monitors the placement of the SYSREF \pm leading edge compared to the internal LMFC. If the SYSREF \pm edge is captured with a clock edge other than the one that is aligned with LMFC, the AD9234 initiates a resynchronization of the link.
Because the input clock rates for the AD9234 can range up to 4 GHz , the AD9234 provides another SYSREF \pm related feature that makes it possible to accommodate periodic SYSREF \pm signals where cycle accurate capture is not feasible or is not required. For these scenarios, the AD9234 has a programmable SYSREF \pm skew window that allows the internal dividers to remain undisturbed, unless SYSREF \pm occurs outside the skew window. The resolution of the SYSREF \pm skew window is set in sample clock cycles.

If the SYSREF \pm negative skew window is 1 and the positive skew window is 1 , the total skew window is ± 1 sample clock cycles, meaning that, as long as SYSREF \pm is captured within ± 1 sample clock cycle of the clock that is aligned with the LMFC, the link continues to operate normally. If the SYSREF \pm has jitter, which can cause a misalignment between SYSREF \pm and the LMFC, the system continues to run without a resynchronization, while still allowing the device to monitor for larger errors not caused by jitter. For the AD9234, the positive and negative skew window is controlled by the SYSREF \pm window negative bits (Register 0x122, Bits[3:2]) and the SYSREF \pm window positive bits (Register 0x0122, Bits[1:0]). Figure 113 shows the location of the skew window settings relative to Phase 0 of the internal dividers. Negative skew is defined as occurring before the internal dividers reach Phase 0 and positive skew is defined after the internal dividers reach Phase 0 .

SYSREF \pm SETUP/HOLD WINDOW MONITOR

To ensure a valid SYSREF \pm signal capture, the AD9234 has a SYSREF \pm setup and hold window monitor. This feature allows the system designer to determine the location of the SYSREF \pm signals relative to the CLK \pm signals by reading back the amount of setup and hold margin on the interface through the memory map. Figure 114 and Figure 115 show the setup and hold status values for different phases of SYSREF \pm. The setup detector
returns the status of the SYSREF \pm signal before the CLK \pm edge, and the hold detector returns the status of the SYSREF signal after the CLK \pm edge. Register 0x128 stores the status of SYSREF \pm and lets the user know if the SYSREF \pm signal is captured by the ADC.

Table 14 describes the contents of Register 0x128 and how to interpret them.

Figure 114. SYSREF \pm Setup Detector

Figure 115. SYSREF \pm Hold Detector

Table 14. SYSREF \pm Setup/Hold Monitor, Register 0x128

Register 0x128,Bits[7:4], Hold Status	Register 0x128, Bits[3:0], Setup Status	Description
0×0	0×0 to 0×7	Possible setup error. The smaller this number, the smaller the setup margin.
0×0 to 0×8	0×8	No setup or hold error (best hold margin).
0×8	0×9 to 0xF	No setup or hold error (best setup and hold margin).
0×8	0×0	No setup or hold error (best setup margin).
0×9 to 0xF	0×0	Possible hold error. The larger this number, the smaller the hold margin.
0×0	0×0	Possible setup or hold error.

LATENCY

END TO END TOTAL LATENCY

Total latency in the AD9234 is dependent on the various digital signal processing (DSP) and JESD204B configuration modes. Latency is fixed at 26 encode clocks through the ADC itself; however, the latency through the DSP and JESD204B blocks can vary greatly depending on the configuration. Therefore, total latency must be calculated based on the DSP options selected and the JESD204B configuration.

Table 15 shows the combined latency through the ADC and DSP blocks (including data formatting) for the different application modes supported by the AD9234. Table 16 shows the latency through the JESD204B block for each JESD204B configuration and the various decimation modes supported for those modes. For Table 15 and Table 16, latency is in units of the number of encode clocks. Latency through the JESD204B clock can also be affected by the decimation ratio in some JESD204B configurations. Table 17 shows the latency for these modes for each of the possible decimation ratios.

Table 15. Latency Through the ADC and DSP Blocks

ADC Application Mode	Latency (Number of Encode Clocks), ADC + DSP Total
Full Bandwidth	29
DDC (HB1), no mixer, complex outputs	78

EXAMPLE LATENCY CALCULATION

For a configuration where the ADC application mode is full bandwidth, the decimation ratio $=2, L=4, M=2, F=1$, and S = 1 (JESD204B mode):

$$
\text { Latency }=29+30=59 \text { Encode Clocks }
$$

Table 16. Latency Through JESD204B Block-Full Bandwidth Modes

JESD204B Quick Configuration (Register 0x570)	Decimation Ratio	JESD204B Transport Layer Settings							Latency (Encode Clock)
		L	M	F	S	HD	N	N'	
0×01	1	1	1	2	1	0	8 to 16	16	13
0×40	1	2	1	1	1	1	8 to 16	16	28
0×41	1	2	1	2	2	0	8 to 16	16	28
0x80	1	4	1	1	2	1	8 to 16	16	53
0×81	1	4	1	2	4	0	8 to 16	16	53
$0 \times 0 \mathrm{~A}$	1	1	2	4	1	0	8 to 16	16	7
0×49	1	2	2	2	1	0	8 to 16	16	13
0x88	1	4	2	1	1	1	8 to 16	16	28
0x89	1	4	2	2	2	0	8 to 16	16	28

Table 17. Latency Through JESD204B Block with Decimation

JESD204B Quick Configuration (Register 0x570)	Decimation Ratio	JESD204B Transport Layer Settings							Latency (Encode CLK)
		L	M	F	S	HD	N	N'	
0x88	2	4	2	1	1	1	8 to 16	16	30
0x89	2	4	2	2	2	0	8 to 16	16	30
0×13^{1}	2, 4, 8, 16	1	4	8	1	0	8 to 16	16	4
$0 \times 5{ }^{1}$	2, 4, 8, 16	2	4	4	1	0	8 to 16	16	7
0x911	2, 4, 8, 16	4	4	2	1	0	8 to 16	16	13
$0 \times 1 \mathrm{C}^{1}$	4, 8, 16	1	8	16	1	0	8 to 16	16	2
$0 \times 5 \mathrm{~B}^{1}$	4, 8, 16	2	8	8	1	0	8 to 16	16	4
$0 \times 9{ }^{1}$	4, 8, 16	4	8	4	1	0	8 to 16	16	7

[^5]
TEST MODES

ADC TEST MODES

The AD9234 has various test options that aid in system level implementation. The AD9234 has ADC test modes that are available in Register 0x550. These test modes are described in Table 18. When an output test mode is enabled, the analog section of the ADC is disconnected from the digital back end blocks, and the test pattern is run through the output formatting block. Some of the test patterns are subject to output formatting and some are not. The PN generators from the PN sequence tests can be reset by setting Bit 4 or Bit 5 of Register 0x550.

These tests can be performed with or without an analog signal (if present, the analog signal is ignored); however, they do require an encode clock.
If the application mode is set to select a DDC mode of operation, the test modes must be enabled for each DDC enabled. The test patterns can be enabled via Bit 2 and Bit 0 of Register 0x327 and Register 0x347 depending on which DDCs are selected. The I data uses the test patterns selected for Channel A, and the Q data uses the test patterns selected for Channel B. For more information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

Figure 116. ADC Output Datapath Showing Data Framing
Table 18. ADC Test Modes

Output Test Mode Bit Sequence	Pattern Name	Expression	Default/ Seed Value	Sample (N, N + 1, N + 2, ...)

JESD204B BLOCK TEST MODES

In addition to the ADC pipeline test modes, the AD9234 also has flexible test modes in the JESD204B block. These test modes are listed in Register 0x573 and Register 0x574. These test patterns can be injected at various points along the output datapath. These test injection points are shown in Figure 116. Table 19 describes the various test modes available in the JESD204B block. For the AD9234, a transition from test modes (Register 0x573 $=0 \times 00$) to normal mode (Register $0 \times 573=$ $0 x 00$) requires an SPI soft reset, which is done by writing 0×81 to Register 0x000 (self cleared).

Transport Layer Sample Test Mode

The transport layer samples are implemented in the AD9234 as defined by Section 5.1.6.3 in the JEDEC JESD204B specification. These tests are shown in Register 0x571, Bit 5. The test pattern is equivalent to the raw samples from the ADC .

Interface Test Modes

The interface test modes are described in Register 0x573, Bits[3:0]. These test modes are also explained in Table 19. The interface tests can be injected at various points along the data. See Figure 91 for more information on the test injection points. Register 0x573, Bits[5:4] show where these tests are injected.
Table 20, Table 21, and Table 22 show examples of some of the test modes when injected at the JESD204B sample input, PHY 10-bit input, and scrambler 8-bit input. UPx in the Table 20, Table 21, and Table 22 represent the user pattern control bits from the memory map.

Data Link Layer Test Modes

The data link layer test modes are implemented in the AD9234, defined by Section 5.3.3.8.2 in the JEDEC JESD204B specification. These tests are shown in Register 0x574, Bits[2:0]. Test patterns inserted at this point are useful for verifying the functionality of the data link layer. When the data link layer test modes are enabled, disable SYNCINB \pm by writing 0 xC 0 to Register 0x572.

Table 19. JESD204B Interface Test Modes

Output Test Mode Bit Sequence	Pattern Name	Expression	Default
0000	Off (default)	Not applicable	Not applicable
0001	Alternating checker board	$0 \times 5555,0 \times$ AAAA, $0 \times 5555, \ldots$	Not applicable
0010	$1 / 0$ word toggle	$0 \times 0000,0 \times F F F F, 0 \times 0000, \ldots$	Not applicable
0011	31 -bit PN sequence	$x^{31}+x^{28}+1$	$0 \times 0003 A F F F$
0100	23 -bit PN sequence	$x^{23}+x^{18}+1$	$0 \times 003 A F F$
0101	15 -bit PN sequence	$x^{15}+x^{14}+1$	$0 x 03 A F$
0110	9 -bit PN sequence	$x^{9}+x^{5}+1$	0×092
0111	7 -bit PN sequence	$x^{7}+x^{6}+1$	0×07
1000	Ramp output	$(x) \% 2^{16}$	Ramp size depends on test injection point
1110	Continuous/repeat user test	Register 0x551 to Register 0x558	User Pattern 1 to User Pattern 4, then repeat
1111	Register 0x551 to Register 0x558	User Pattern 1 to User Pattern 4, then zeros	

Table 20. JESD204B Sample Input for $M=2, S=2, N^{\prime}=16$ (Register 0x573, Bits[5:4] = 0)

Frame No.	Converter No.	Sample No.	Alternating Checkerboard	1/0 Word Toggle	Ramp	PN9	PN23	User Repeat	User Single
0	0	0	0x5555	0x0000	(x) \% 2^{16}	0x496F	0xFF5C	UP1[15:0]	UP1[15:0]
0	0	1	0x5555	0x0000	(x) $\% 2^{16}$	0x496F	0xFF5C	UP1[15:0]	UP1[15:0]
0	1	0	0x5555	0x0000	(x) $\% 2^{16}$	0x496F	0xFF5C	UP1[15:0]	UP1[15:0]
0	1	1	0x5555	0x0000	(x) $\% 2^{16}$	$0 \times 496 \mathrm{~F}$	0xFF5C	UP1[15:0]	UP1[15:0]
1	0	0	0xAAAA	0xFFFF	$(x+1) \% 2^{16}$	$0 \times \mathrm{C} 9 \mathrm{~A} 9$	0x0029	UP2[15:0]	UP2[15:0]
1	0	1	0xAAAA	0xFFFF	$(x+1) \% 2^{16}$	$0 \times C 9 A 9$	0x0029	UP2[15:0]	UP2[15:0]
1	1	0	0xAAAA	0xFFFF	$(x+1) \% 2^{16}$	$0 \times C 9 A 9$	0x0029	UP2[15:0]	UP2[15:0]
1	1	1	0xAAAA	0xFFFF	$(x+1) \% 2^{16}$	0xC9A9	0x0029	UP2[15:0]	UP2[15:0]
2	0	0	0x5555	0x0000	$(x+2) \% 2^{16}$	0x980C	0xB80A	UP3[15:0]	UP3[15:0]
2	0	1	0x5555	0x0000	$(x+2) \% 2^{16}$	0x980C	0xB80A	UP3[15:0]	UP3[15:0]
2	1	0	0x5555	0x0000	$(x+2) \% 2^{16}$	0x980C	0xB80A	UP3[15:0]	UP3[15:0]
2	1	1	0x5555	0x0000	$(x+2) \% 2^{16}$	0x980C	0xB80A	UP3[15:0]	UP3[15:0]
3	0	0	0xAAAA	0xFFFF	$(x+3) \% 2^{16}$	0x651A	0x3D72	UP4[15:0]	UP4[15:0]
3	0	1	0xAAAA	0xFFFF	$(x+3) \% 2^{16}$	0x651A	0x3D72	UP4[15:0]	UP4[15:0]
3	1	0	0xAAAA	0xFFFF	$(x+3) \% 2^{16}$	0x651A	0x3D72	UP4[15:0]	UP4[15:0]
3	1	1	0xAAAA	0xFFFF	$(x+3) \% 2^{16}$	0x651A	0x3D72	UP4[15:0]	UP4[15:0]

Frame No.	Converter No.	Sample No.	Alternating Checkerboard	1/0 Word Toggle	Ramp	PN9	PN23	User Repeat	User Single
4	0	0	0×5555	0×0000	$(x+4) \% 2^{16}$	0×5 FD1	$0 \times 9 B 26$	UP1[15:0]	0×0000
4	0	1	0×5555	0×000	$(x+4) \% 2^{16}$	$0 \times 5 F D 1$	$0 \times 9 B 26$	UP1[15:0]	0×0000
4	1	0	0×5555	0×0000	$(x+4) \% 2^{16}$	$0 \times 5 F D 1$	$0 \times 9 B 26$	UP1[15:0]	0×0000
4	1	1	0×5555	0×0000	$(x+4) \% 2^{16}$	$0 \times 5 F D 1$	$0 \times 9 B 26$	UP1[15:0]	0×0000

Table 21. Physical Layer 10-Bit Input (Register 0x573, Bits[5:4] = 1)

10-Bit Symbol No.	Alternating Checkerboard	1/0 Word Toggle	Ramp	PN9	PN23	User Repeat	User Single
0	0x155	0x000	(x) \% 2^{10}	0x125	0x3FD	UP1[15:6]	UP1[15:6]
1	$0 \times 2 \mathrm{AA}$	0x3FF	$(x+1) \% 2^{10}$	0x2FC	0x1C0	UP2[15:6]	UP2[15:6]
2	0x155	0x000	$(x+2) \% 2^{10}$	0x26A	0x00A	UP3[15:6]	UP3[15:6]
3	0x2AA	0x3FF	$(x+3) \% 2^{10}$	0x198	0x1B8	UP4[15:6]	UP4[15:6]
4	0x155	0x000	$(x+4) \% 2^{10}$	0x031	0x028	UP1[15:6]	0x000
5	0x2AA	0x3FF	$(x+5) \% 2^{10}$	0x251	0x3D7	UP2[15:6]	0x000
6	0x155	0x000	$(x+6) \% 2^{10}$	0x297	0x0A6	UP3[15:6]	0x000
7	0x2AA	0x3FF	$(x+7) \% 2^{10}$	0x3D1	0x326	UP4[15:6]	0x000
8	0x155	0x000	$(x+8) \% 2^{10}$	0x18E	0x10F	UP1[15:6]	0x000
9	0x2AA	0x3FF	$(x+9) \% 2^{10}$	0x2CB	0x3FD	UP2[15:6]	0x000
10	0x155	0x000	$(x+10) \% 2^{10}$	0x0F1	0x31E	UP3[15:6]	0x000
11	0x2AA	0x3FF	$(x+11) \% 2^{10}$	0x3DD	0x008	UP4[15:6]	0x000

Table 22. Scrambler 8-Bit Input (Register 0x573, Bits[5:4] = 0)

8-Bit Octet No.	Alternating Checkerboard	1/0 Word Toggle	Ramp	PN9	PN23	User Repeat	User Single
0	0x55	0x00	(x) \% 2^{8}	0x49	0xFF	UP1[15:9]	UP1[15:9]
1	0xAA	0xFF	$(x+1) \% 2^{8}$	0x6F	0x5C	UP2[15:9]	UP2[15:9]
2	0x55	0x00	$(x+2) \% 2^{8}$	0xC9	0x00	UP3[15:9]	UP3[15:9]
3	0xAA	0xFF	$(x+3) \% 2^{8}$	0xA9	0x29	UP4[15:9]	UP4[15:9]
4	0x55	0x00	$(x+4) \% 2^{8}$	0x98	0xB8	UP1[15:9]	0x00
5	0xAA	0xFF	$(x+5) \% 2^{8}$	0x0C	0x0A	UP2[15:9]	0x00
6	0x55	0x00	$(x+6) \% 2^{8}$	0x65	0x3D	UP3[15:9]	0x00
7	0xAA	0xFF	$(x+7) \% 2^{8}$	$0 \times 1 \mathrm{~A}$	0x72	UP4[15:9]	0x00
8	0x55	0x00	$(x+8) \% 2^{8}$	0x5F	0x9B	UP1[15:9]	0x00
9	0xAA	0xFF	$(x+9) \% 2^{8}$	0xD1	0x26	UP2[15:9]	0x00
10	0x55	0x00	$(x+10) \% 2^{8}$	0x63	0x43	UP3[15:9]	0x00
11	0xAA	0xFF	$(x+11) \% 2^{8}$	0xAC	0xFF	UP4[15:9]	0x00

SERIAL PORT INTERFACE

The AD9234 SPI allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. The SPI gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from via the port. Memory is organized into bytes that can be further divided into fields. These fields are documented in the Memory Map section. For detailed operational information, see the Serial Control Interface Standard (Rev. 1.0).

CONFIGURATION USING THE SPI

Three pins define the SPI of the AD9234 ADC: the SCLK pin, the SDIO pin, and the CSB pin (see Table 23). The SCLK pin synchronizes the read and write data presented from/to the ADC. The SDIO (serial data input/output) pin is a dual-purpose pin that allows data to be sent and read from the internal ADC memory map registers. The CSB (chip select bar) pin is an active low control that enables or disables the read and write cycles.

Table 23. Serial Port Interface Pins

Pin	Function
SCLK	Serial clock. The serial shift clock input that synchronizes serial interface, reads, and writes.
SDIO	Serial data input/output. A dual-purpose pin that typically serves as an input or an output, depending on the instruction being sent and the relative position in the timing frame. Chip select bar. An active low control that gates the read and write cycles.

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Figure 3 and Table 5.

Other modes involving the CSB pin are available. The CSB pin can be held low indefinitely, which permanently enables the device; this is called streaming. The CSB pin can stall high between bytes to allow additional external timing. When CSB is tied high, SPI functions are placed in a high impedance mode. This mode turns on any SPI pin secondary functions.
All data is composed of 8 -bit words. The first bit of each individual byte of serial data indicates whether a read or
write command is issued, allowing the SDIO pin to change direction from an input to an output.
In addition to word length, the instruction phase determines whether the serial frame is a read or write operation, allowing the serial port to be used both to program the chip and to read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the SDIO pin to change direction from an input to an output at the appropriate point in the serial frame.
Data can be sent in MSB first mode or in LSB first mode. MSB first is the default on power-up and can be changed via the SPI port configuration register. For more information about this and other features, see the Serial Control Interface Standard (Rev. 1.0).

HARDWARE INTERFACE

The pins described in Table 23 comprise the physical interface between the user programming device and the serial port of the AD9234. The SCLK pin and the CSB pin function as inputs when using the SPI. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.

The SPI is flexible enough to be controlled by either FPGAs or microcontrollers. One method for SPI configuration is described in detail in the AN-812 Application Note, Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.
Do not activate the SPI port during periods when the full dynamic performance of the converter is required. Because the SCLK signal, the CSB signal, and the SDIO signal are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD9234 to prevent these signals from transitioning at the converter inputs during critical sampling periods.

SPI ACCESSIBLE FEATURES

Table 24 provides a brief description of the general features that are accessible via the SPI. These features are described in detail in the Serial Control Interface Standard (Rev. 1.0). The AD9234 device-specific features are described in the Memory Map section.

Table 24. Features Accessible Using the SPI

Feature Name	Description
Mode	Allows the user to set either power-down mode or standby mode.
Clock	Allows the user to access the clock divider via the SPI.
DDC	Allows the user to set up decimation filters for different applications.
Test Input/Output	Allows the user to set test modes to have known data on output bits.
Output Mode	Allows the user to set up outputs.
SERDES Output Setup	Allows the user to vary SERDES settings such as swing and emphasis.

MEMORY MAP

READING THE MEMORY MAP REGISTER TABLE

Each row in the memory map register table has eight bit locations. The memory map is divided into four sections: the Analog Devices SPI registers (Register 0x000 to Register 0x00D), the ADC function registers (Register 0x015 to Register 0x27A), The DDC function registers (Register 0x300 to Register 0x347), and the digital outputs and test modes registers (Register 0x550 to Register 0x5C5).

Table 25 (see the Memory Map section) documents the default hexadecimal value for each hexadecimal address shown. The column with the heading Bit 7 (MSB) is the start of the default hexadecimal value given. For example, Address 0×561, the output mode register, has a hexadecimal default value of 0 x 01 . This means that Bit $0=1$, and the remaining bits are 0s. This setting is the default output format value, which is twos complement. For more information on this function and others, see the Table 25.

Open and Reserved Locations

All address and bit locations that are not included in Table 25 are not currently supported for this device. Write unused bits of a valid address location with 0 s unless the default value is set otherwise. Writing to these locations is required only when part of an address location is unassigned (for example, Address 0x561). If the entire address location is open (for example, Address 0x013), do not write to this address location.

Default Values

After the AD9234 is reset, critical registers are loaded with default values. The default values for the registers are given in Table 25.

Logic Levels

An explanation of logic level terminology follows:

- "Bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit."
- "Clear a bit" is synonymous with "bit is set to Logic 0 " or "writing Logic 0 for the bit."
- X denotes a don't care bit.

Channel-Specific Registers

Some channel setup functions, such as the input termination (Register 0x016), can be programmed to a different value for each channel. In these cases, channel address locations are internally duplicated for each channel. These registers and bits are designated in Table 25 as local. These local registers and bits can be accessed by setting the appropriate Channel A or Channel B bits in Register 0x008. If both bits are set, the subsequent write affects the registers of both channels. In a read cycle, set only Channel A or Channel B to read one of the two registers. If both bits are set during an SPI read cycle, the device returns the value for Channel A. Registers and bits designated as global in Table 25 affect the entire device and the channel features for which independent settings are not allowed between channels. The settings in Register 0x005 do not affect the global registers and bits.

SPI Soft Reset

After issuing a soft reset by programming 0×81 to Register 0×000, the AD9234 requires 5 ms to recover. When programming the AD9234 for application setup, ensure that an adequate delay is programmed into the firmware after asserting the soft reset and before starting the device setup.

MEMORY MAP REGISTER TABLE

All address locations that are not included in Table 25 are not currently supported for this device and must not be written.
Table 25. Memory Map Registers

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
Analog Devices SPI Registers											
0x000	INTERFACE CONFIG_A	Soft reset (self clearing)	$\begin{array}{\|l\|} \hline L S B \text { first } \\ 0=M S B \\ 1=L S B \\ \hline \end{array}$	Address ascension	0	0	Address ascension	$\begin{aligned} & \hline \text { LSB first } \\ & 0=\text { MSB } \\ & 1=\text { LSB } \end{aligned}$	Soft reset (self clearing)	0x00	
0x001	INTERFACE CONFIG_B	Single instruction	0	0	0	0	0	Datapath soft reset (self clearing)	0	0x00	
0x002	DEVICE CONFIG (local)	0	0	0	0	0	0	$\begin{array}{r} \hline 00=\text { norn } \\ 10= \\ 11=\mathrm{pc} \end{array}$	al operation standby wer-down	0x00	
0x003	CHIP_TYPE	0	0	0	0	011 = high speed ADC				0x03	Read only
0x004	$\begin{aligned} & \text { CHIP_ID (low } \\ & \text { byte) } \end{aligned}$	1	1	0	0	1	1	1	0	0xCE	Read only
0x005	CHIP_ID (high byte)	0	0	0	0	0	0	0	0	0x00	Read only
0x006	CHIP_GRADE	$\begin{gathered} 1010=1000 \mathrm{MSPS} \\ 0101=500 \mathrm{MSPS} \end{gathered}$				X	X	X	X	0xAX for AD9234- 1000 0x5X for AD9234- 500	Read only
0x008	Device index	0	0	0	0	0	0	Channel B	Channel A	0x03	
0x00A	Scratch pad	0	0	0	0	0	0	0	0	0x00	
0x00B	SPI revision	0	0	0	0	0	0	0	1	0x01	
0x00C	Vendor ID (low byte)	0	1	0	1	0	1	1	0	0x56	Read only
0x00D	Vendor ID (high byte)	0	0	0	0	0	1	0	0	0x04	Read only
ADC Function Registers											
0×015	Analog Input (local)	0	0	0	0	0	0	0	Input disable 0 = normal operation 1 = input disabled	0x00	
0x016	Input termination (local)	Analog input differential termination$\begin{gathered} 0000=400 \Omega \\ 0001=200 \Omega \\ 0010=100 \Omega \\ 0110=50 \Omega \end{gathered}$				$\begin{gathered} 0011 \text { = AD9234-1000 } \\ 0001 \text { = AD9234-500 } \end{gathered}$				0x03 for AD9234- $1000 ;$ 0×01 for AD9234- 500	
0x018	Input buffer current control (local)	$0000=1.0 \times$ buffer current $0001=1.5 \times$ buffer current $0010=2.0 \times$ buffer current $0011=2.5 \times$ buffer current $0100=3.0 \times$ buffer current $0101=3.5 \times$ buffer current $1111=8.5 \times$ buffer current				0	0	0	0	0x30 for AD9234- 1000 ; 0×20 for AD9234- 500	
0x024	V_1P0 control	0	0	0	0	0	0	0	1.0 V reference select 0 = internal 1 = external	0x00	

AD9234

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x028	Temperature diode (local)	0	0	0	0	0	0	0	Diode selection $0=$ no diode selected $1=$ temperature diode selected	0x00	Used in conjunction with Reg. 0×040
0x03F	PDWN/ STBY pin control (local)	$0=$ PDWN/ STBY enabled 1 = disabled	0	0	0	0	0	0	0	0x00	Used in conjunction with Reg. 0×040
0x040	Chip pin control	$\begin{array}{r} \hline \text { PDWN/S } \\ 00=\mathrm{po} \\ 01= \\ 10= \end{array}$	Y function wer down tandby disabled			B) output C output nal SYNC~ d	$\begin{array}{r} 000 \\ 001= \\ 010= \end{array}$ 01	Dete Fast D ESD20 SD204 ou temp $111=$	D_A) output C output nal SYNC~ diode d	0x3F	
0x10B	Clock divider	0	0	0	0	0		$\begin{aligned} & 100= \\ & 101= \\ & 11= \\ & 11= \end{aligned}$		0x00	
0x10C	Clock divider phase (local)	0	0	0	0	Indep	ently control clock divid $00=0$ input $1 / 2$ input $10=1$ input $1=1 \frac{1}{2}$ input $00=2$ input $1=21 / 2$ input $1=71 / 2 \text { input }$	Chann phas ock cy ock cy ock cy lock cy ock cyc lock cy ...	d Channel B ayed ayed ayed layed ayed layed layed	0x00	
0x10D	Clock divider and SYSREF control	Clock divider auto phase adjust $0=$ disabled 1 = enabled	0	0	0	$\begin{array}{r} \text { Clock di } \\ \text { ske } \\ 00=\text { no } \\ 01=1 \mathrm{~d} \\ \text { neg } \\ 10=2 \mathrm{~d} \\ \text { neg } \\ 11=3 \mathrm{~d} \\ \text { neg } \end{array}$	der negative window gative skew ice clock of ve skew ce clocks of ve skew ice clocks of ve skew		der positive window ositive skew vice clock of ve skew ice clocks of ve skew ice clocks of ve skew	0x00	Clock divider must be >1
0×117	Clock delay control	0	0	0	0	0	0	0	Clock fine delay adjust enable $0=$ disabled 1 = enabled	0x00	Enabling the clock fine delay adjust causes a datapath reset
0x118	Clock fine delay (local)	Clock fine delay adjust[7:0], twos complement coded control to adjust the fine sample clock skew in $\sim 1.7 \mathrm{ps}$ steps $\begin{aligned} & \leq-88=-151.7 \text { ps skew } \\ &-87=-150 \text { ps skew } \\ & \ldots \\ & 0=0 \text { ps skew } \\ & \ldots \\ & \geq+87=+150 \text { ps skew } \end{aligned}$								0x00	Used in conjunction with Reg. 0×0117
0x11C	Clock status	0	0	0	0	0	0	0	$0=$ no input clock detected 1 = input clock detected	Read only	

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x120	SYSREF \pm Control 1	0	SYSREF \pm flag reset $0=$ normal operation 1 = flags held in reset	0	SYSREF \pm transition select 0 = low to high 1 = high to low	$\begin{aligned} & \text { CLK } \pm \text { edge } \\ & \text { select } \\ & 0=\text { rising } \\ & 1=\text { falling } \end{aligned}$	$\begin{gathered} \hline \text { SYSREF } \pm \\ 00= \\ 01=\mathrm{cc} \\ 10= \end{gathered}$	mode select sabled tinuous N shot	0	0x00	
0x121	SYSREF \pm Control 2	0	0	0	0	$\begin{array}{r} \text { SYS } \\ 0001= \\ 0010=i s \\ 1111=i \end{array}$	EF \pm N-shot $0000=$ nex ignore the nore the firs gnore the fir	nore coun SYSREF \pm st SYSREF two SYSRE 16 SYSRE	select ansitions transitions transitions	0x00	Mode select, Reg. 0x120, Bits[2:1], must be N shot
0x122	SYSREF \pm Control 3	0	0	0	0	Negative (measure clocks); nu cycles sample clo capture transition $00=n c$ skew - SY be captur $01 \text { = } 1 \text { san }$ negat $10=2 \mathrm{sam}$ negat 11 = 3 sam negat	ew window in sample mber of clock efore the ck by which SYSREF \pm are ignored negative REF \pm must d accurately ple clock of ve skew ple clocks of ve skew le clocks of ve skew	Positive (measu clocks); n cycles be clock by SYSREF \pm $00=$ skew - SY captur $\begin{array}{r} 01=1 \mathrm{~s} \\ \text { pos } \\ 10=2 \mathrm{sa} \\ \text { pos } \\ 11=3 \mathrm{~s} \end{array}$ pos	kew window d in sample mber of clock re the sample hich captured ransitions are nored o positive $R E F \pm$ must be d accurately mple clock of ive skew ple clocks of ive skew ple clocks of ive skew	0x00	
0x123	SYSREF \pm timestamp delay control	0	$\begin{gathered} \text { SYSREF } \pm \text { timestamp delay, Bits[6:0] } \\ 0 \times 00=\text { no delay } \\ 0 \times 01=1 \text { clock delay } \\ \ldots \\ 0 \times 7 \mathrm{~F}=127 \text { clocks delay } \end{gathered}$							0x00	Ignored when Reg. 0x01FF $=0 \times 00$
0x128	SYSREF \pm Status 1	SYSREF \pm hold status, Register 0x128[7:4], refer to Table 14				SYSREF \pm setup status, Register 0x128[3:0], refer to Table 14				Read only	
0x129	SYSREF \pm and clock divider status	0	0	0	0	Clock div $0001=$ 0010	der phase wh 0000 YSREF \pm is $1 / 2$ SYSREF \pm is 1 $1=11 / 2$ input $00=2$ input $1=21 / 2$ input $1=71 / 2$ input	SYSREF \pm in-phase ycle delaye ycle delaye lock cycles ock cycles lock cycles lock cycles	as captured from clock from clock elayed layed layed elayed	Read only	
0x12A	SYSREF \pm counter	SYSREF \pm counter, Bits[7:0] increments when a SYSREF \pm signal is captured								Read only	
0x1FF	Chip sync mode	0	0	0	0	0	0	Synchro 00 $01=$	zation mode normal mestamp	0x00	
0x200	Chip application mode	0	0	Chip Q ignore $0=$ normal (I/Q) $1=$ ignore (l- only)	0	0	0	Chip ope $\begin{array}{r} 00=\text { ful } \\ 01= \\ 10=\text { DDC } \end{array}$	rating mode bandwidth mode DC 0 on 0 and DDC 1	0x00	
0x201	Chip decimation ratio	0	0	0	0	0	$000=\text { full }$	decimation sample rat $1=$ decim	tio select decimate = 1) by 2	0x00	
0x228	Customer offset	Offset adjust in LSBs from +127 to -128 (twos complement format)								0x00	

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x245	Fast detect (FD) control (local)	0	0	0	0	Force FD_A/FD_B pins; $0=$ normal function; 1 = force to value	Force value of FD_A/ FD_B pins if force pins is true, this value is output on FD pins	0	Enable fast detect output	0x00	
0x247	FD upper threshold LSB (local)	Fast detect upper threshold, Bits[7:0]								0x00	
0x248	FD upper threshold MSB (local)	0	0	0	Fast detect upper threshold, Bits[12:8]					0x00	
0x249	FD lower threshold LSB (local)	Fast detect lower threshold, Bits[7:0]								0x00	
0x24A	FD lower threshold MSB (local)	0	0	0	Fast detect lower threshold, Bits[12:8]					0x00	
0x24B	FD dwell time LSB (local)	Fast detect dwell time, Bits[7:0]								0x00	
0x24C	FD dwell time MSB (local)	Fast detect dwell time, Bits[15:8]								0x00	
0x26F	Signal ,onitor synchronizatio n control	0	0	0	0	0	0	Synchronization mode $00=$ disabled 01 = continuous 11 = one shot		0x00	Refer to the Signal Monitor section
0x270	Signal monitor control (local)	0	0	0	0	0	0	Peak detector 0 = disabled 1 = enabled	0	0x00	
0x271	Signal Monitor Period Register 0 (local)	Signal monitor period, Bits[7:0]								0x80	In decimate d output clock cycles
0x272	Signal Monitor Period Register 1 (local)	Signal monitor period, Bits[15:8]								0x00	In decimate d output clock cycles
0x273	Signal Monitor Period Register 2 (local)	Signal monitor period, Bits[23:16]								0x00	In decimate d output clock cycles
0x274	Signal monitor result control (local)	0	0	0	Result update 1 = update results (self clear)	0	0	0	Result selection $0=$ reserved 1 = peak detector	0x01	
0x275	Signal Monitor Result Register 0 (local)	Signal monitor result, Bits[7:0] When Register $0 \times 0274[0]=1$, result bits [19:7] = peak detector absolute value [12:0]; result bits [6:0] = 0								Read only	Updated based on Reg. 0x274[4]
0x276	Signal Monitor Result Register 1 (local)	Signal monitor result, Bits[15:8]								Read only	Updated based on Reg. $0 \times 274[4]$

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x277	Signal Monitor Result Register 1 (local)	0	0	0	0	Signal monitor result, Bits[19:16]				Read only	Updated based on Reg. $0 \times 274[4]$
0x278	Signal monitor period counter result (local)	Period count result, Bits[7:0]								Read only	Updated based on Reg. $0 \times 274[4]$
0x279	Signal monitor SPORT over JESD204B control (local)	0	0	0	0	0	0	$\begin{gathered} 00=\text { reserved } \\ 11=\text { enable } \end{gathered}$		0x00	
0x27A	SPORT over JESD204B input selection (local)	0	0	0	0	0	0	Peak detector $0=$ disabled 1 = enabled	0	0x00	
DDC Function Registers (See the Digital Downconverter (DDC) Section)											
0x300	DDC synch control	0	0	0	DDC NCO soft reset $0=$ normal operation 1 = reset	0	0	Synchronization mode (triggered by SYSREF \pm) $00=$ disabled 01 = continuous 11 = 1 -shot			
0×310	DDC 0 control	Mixer select $0=$ real mixer $1=$ complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	IF (intermediate frequency) mode $00=$ variable IF mode (mixers and NCO enabled) $01=0 \mathrm{~Hz}$ IF mode (mixer bypassed, NCO disabled) $10=f_{A D C} / 4 \mathrm{~Hz}$ IF mode ($\mathrm{f}_{\mathrm{ADC}} / 4$ downmixing mode) 11 = test mode (mixer inputs forced to +FS, NCO enabled)		Complex to real enable $0=$ disabled 1 = enabled	0	Decimation rate select (complex to real disabled) 11 = decimate by 2 (complex to real enabled) 11 = decimate by 1		0x00	
0x311	DDC 0 input selection	0	0	0	0	0	Q input select $\begin{aligned} & 0=\text { Ch } A \\ & 1=\text { Ch B } \end{aligned}$	0	$\begin{aligned} & \text { I input select } \\ & 0=\text { Ch A } \\ & 1=\text { Ch B } \end{aligned}$	0x00	
0x314	DDC 0 frequency LSB	DDC 0 NCO frequency value, Bits[7:0], twos complement								0x00	
0x315	DDC0 frequency MSB	X	X	X	X	DDC 0 NCO frequency value, Bits[11:8], twos complement				0x00	
0x320	DDC 0 phase LSB	DDC 0 NCO phase value, Bits[7:0], twos complement								0x00	
0x321	DDC 0 phase MSB	X	X	X	X	DDC 0 NCO phase value, Bits[11:8], twos complement				0x00	
0x327	DDC 0 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch B	0	I output test mode enable $0=$ disabled 1 = enabled from Ch A	0x00	

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x330	DDC 1 control	Mixer select $0=$ real mixer $1=$ complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	$\begin{array}{r} \text { IF (int } \\ \text { freque } \\ 00=\text { varia } \\ \text { (mixer } \\ \text { en } \\ 01=0 \\ \text { (mixer by } \\ \text { dis } \\ 10=\mathrm{f}_{\mathrm{ADC}} \\ \left(\mathrm{f}_{\mathrm{ADC}} / 4 \mathrm{~d}\right. \\ \mathrm{m} \\ 11=\text { test } \\ \text { inputs fo } \\ \mathrm{NCO} \end{array}$	rmediate cy) mode ble IF mode and NCO bled) z IF mode passed, NCO bled) Hz IF mode wnmixing de) mode (mixer ced to +FS, nabled)	Complex to real enable $0=$ disabled $1=$ enabled	0		n rate select lex to real abled) cimate by 2 lex to real abled) imate by 1	0x00	
0x331	DDC 1 input selection	0	0	0	0	0	Q input select $\begin{aligned} & 0=\text { Ch } A \\ & 1=\text { Ch B } \end{aligned}$	0	$\begin{aligned} & \text { I input select } \\ & 0=\text { Ch } A \\ & 1=\text { Ch B } \end{aligned}$	0x00	
0x334	DDC 1 frequency LSB	DDC 1 NCO frequency value, Bits[7:0], twos complement								0x00	
0x335	DDC 1 frequency MSB	X	X	X	X	DDC 1 NCO frequency value, Bits[11:8], twos complement				0x00	
0x340	DDC 1 phase LSB	DDC 1 NCO phase value, Bits[7:0], twos complement								0x00	
0x341	DDC 1 phase MSB	X	X	X	X	DDC 1 NCO phase value, Bits[11:8], twos complement				0x00	
0x347	DDC 1 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch B	0	I output test mode enable $0=$ disabled 1 = enabled from Ch A	0x00	
Digital Outputs and Test Modes											
0x550	ADC test modes (local)	User pattern selection $0=$ continuous repeat 1 = single pattern	0	Reset PN long gen $0=$ long PN enable 1 = long PN reset	Reset PN short gen $0=$ short PN enable 1 = short PN reset	100 Reg	$\begin{array}{r} \text { Test mo } \\ 0000=\text { off, } \mathrm{r} \\ 0001=\mathrm{n} \\ 0010=\mathrm{po} \\ 0011=\text { ne } \\ 100=\text { alterna } \\ 0101=\mathrm{PN} \\ 0110=\mathrm{PN} \\ 0111=1 / \\ \text { the user patt } \\ \text { r 0x550, Bit } 7 \\ \text { registers), } 11 \end{array}$	e selec rmal op dscale tive full ative full ing che equenc quenc word t n test m d user = ram	oard used with $\mathrm{n}(1,2,3,4)$ ut	0x00	
0x551	$\begin{aligned} & \text { User Pattern } 1 \\ & \text { LSB } \end{aligned}$	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0×573
0x552	User Pattern 1 MSB	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0x573
0x553	$\begin{aligned} & \text { User Pattern } 2 \\ & \text { LSB } \end{aligned}$	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0×573

Reg Addr (Hex)	Register Name	$\begin{aligned} & \text { Bit } 7 \\ & \text { (MSB) } \end{aligned}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x554	User Pattern 2 MSB	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0x573
0x555	User Pattern 3 LSB	0	0	0	0	0	0	0	0	0×00	Used with Reg. 0x550 and Reg. 0x573
0x556	User Pattern 3 MSB	0	0	0	0	0	0	0	0	0×00	Used with Reg. 0x550 and Reg. 0x573
0x557	User Pattern 4 LSB	0	0	0	0	0	0	0	0	0×00	Used with Reg. 0x550 and Reg. 0x573
0x558	User Pattern 4 MSB	0	0	0	0	0	0	0	0	0×00	Used with Reg. 0x550 and Reg. 0x573
0x559	Output Mode Control 1	0	Conve 01 01 (R	r control Bit 0 = tie low 1 = overrang = signal mon fast detect 101 = SYSRE nly used whe ister 0x58F)	```1 selection 'b0) e bit itor bit (FD) bit \pm CS 2 or 3```	0	Conve 01 01	er control B $00=$ tie low 01 = overran = signal mo = fast detec 101 = SYSR nly used wh egister 0x58	```O selection 'b0) e bit itor bit (FD) bit # CS)=3```	0×00	
0x55A	Output Mode Control 2	0	0	0	0	0	Convert 00 00 010 011 Used when	er control B $00=$ tie low 01 = overran = signal mo = fast detec $101=S Y S F$ CS (Regist or 3	2 selection 'b0) e bit nitor bit (FD) bit F $0 \times 58 F)=1,2$	0×01	
0x561	Output mode	0	0	0	0	0	Sample invert $0=$ normal 1 = sample invert	$\begin{array}{r} \quad \begin{array}{l} \text { Data } \\ 00= \\ 01=\text { two } \end{array} \end{array}$	mat select set binary complement	0×01	
0x562	Output overrange (OR) clear	Virtual Converter 7 OR $0=\mathrm{OR}$ bit enabled $1=$ OR bit cleared	Virtual Converter 6 OR $0=$ OR bit enabled 1 = OR bit cleared	Virtual Converter 5 OR $0=$ OR bit enabled 1 = OR bit cleared	Virtual Converter 4 OR $0=$ OR bit enabled 1 = OR bit cleared	Virtual Converter 3 OR $0=$ OR bit enabled $1=$ OR bit cleared	Virtual Converter 2 OR $0=$ OR bit enabled 1 = OR bit cleared	Virtual Converter 1 OR $0=\mathrm{OR}$ bit enabled $1=$ OR bit cleared	Virtual Converter r 0 OR $0=O R$ bit enabled $1=$ OR bit cleared	0x00	
0x563	Output OR status	Virtual Converter 7 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 6 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 5 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 4 OR $\begin{aligned} & 0=\text { no OR } \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 3 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 2 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 1 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	Virtual Converter 0 OR $\begin{aligned} & 0=\text { no } O R \\ & 1=O R \end{aligned}$ occurred	0×00	Read only

AD9234

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x564	Output channel select	0	0	0	0	0	0	0	Converter channel swap $0=$ normal channel ordering 1 = channel swap enabled	0x00	
0x56E	JESD204B lane rate control	0	0	0	0 = serial lane rate \geq 6.25 Gbps and ≤ 12.5 Gbps 1 = serial lane rate must be \geq 3.125 Gbps and \leq 6.25 Gbps	0	0	0	0	$\begin{aligned} & \hline 0 \times 00 \text { for } \\ & \text { AD9234- } \\ & 1000 ; \\ & 0 \times 10 \text { for } \\ & \text { AD9234- } \\ & 500 \end{aligned}$	
0x56F	JESD204B PLL lock status	PLL lock $0=$ not locked $1=$ locked	0	0	0	0	0	0	0	0x00	Read only
0x570	JESD204B quick configuration	$\begin{gathered} \text { JESD204B quick configuration } \\ \mathrm{L}=\text { number of lanes }=2^{\text {Register } 0 \times 570, \text { Bit }[7: 6]} \\ \mathrm{M}=\text { number of converters }=2^{\text {Register } 0 \times 570, B \mathrm{Bits}[5: 3]} \\ \mathrm{F}=\text { number of octets/frame }=2^{\text {Register } 0 \times 570, \text { Bits }[2: 0]} \end{gathered}$								0×88	Refer to Table 12 and Table 13
0x571	JESD204B Link Mode Control 1	Standby mode $0=$ all converter outputs 0 $1=$ CGS (/K28.5/)	$\begin{aligned} & \text { Tail bit }(\mathrm{t}) \\ & \text { PN } \\ & 0= \\ & \text { disable } \\ & 1= \\ & \text { enable } \\ & \mathrm{T}=\mathrm{N}^{\prime}-\mathrm{N} \\ & -\mathrm{CS} \end{aligned}$	Long transport layer test $0=$ disable 1 = enable	Lane synchronization $0=$ disable FACl uses /K28.7/ 1 = enable FACl uses /K28.3/ and /K28.7/	$\begin{aligned} & \text { ILAS } \\ & 00=I I \\ & 01=I L \\ & 11=I L \\ & \text { mode } \end{aligned}$	ce mode abled abled ways on test	$\begin{array}{\|l} \hline \text { FACI } \\ 0= \\ \text { enabled } \\ 1= \\ \text { disabled } \end{array}$	Link control $0=$ active 1 = power down	0x14	
0x572	JESD204B Link Mode Control 2	SYNCINB \pm pin control $00=$ normal $10=$ ignore SYNCINB \pm (force CGS) 11 = ignore SYNCINB \pm (force ILAS/user data)		SYNCINB \pm pin invert 0 = active low 1 = active high	$\begin{aligned} & \text { SYNCINB } \pm \\ & \text { pin type } \\ & 0= \\ & \text { differential } \\ & 1=\text { cmos } \end{aligned}$	0	$\begin{aligned} & 8 \mathrm{~B} / 10 \mathrm{~B} \\ & \text { bypass } \\ & 0=\text { normal } \\ & 1=\text { bypass } \end{aligned}$	8B/10B bit invert $0=$ normal 1 = invert the $\mathrm{a} . . . \mathrm{j}$ symbols	0	0×00	
0x573	JESD204B Link Mode Control 3	CHKSUM mode $00=$ sum of all 8-bit link config registers 01 = sum of individual link config fields $10=$ checksum set to zero		Test injection point $00=\mathrm{N}^{\prime}$ sample input $01=10$-bit data at 8B/10B output (for PHY testing) $10=8$-bit data at scrambler input		JESD204B test mode patterns $0000=$ normal operation (test mode disabled) 0001 = alternating checker board $0010=1 / 0$ word toggle $0011=31$-bit PN sequence- $X^{31}+X^{28}+1$ $0100=23$-bit PN sequence- $X^{23}+X^{18}+1$ $0101=15$-bit PN sequence- $X^{15}+X^{14}+1$ $0110=9$-bit PN sequence- $X^{9}+X^{5}+1$ $0111=7$-bit PN sequence- $X^{7}+X^{6}+1$ 1000 = ramp output 1110 = continuous/repeat user test 1111 = single user test				0×00	
0x574	JESD204B Link Mode Control 4	ILAS delay $0000=$transmit ILAS on first LMFC after SYNCINB \pm deasserted $0001=$ transmit ILAS on second LMFC after SYNCINB \pm deasserted \cdots $1111=$ transmit ILAS on $16^{\text {th }}$ LMFC after SYNCINB \pm deasserted 0				0	Link layer test mode $000=$ normal operation (link layer test mode disabled) 001 = continuous sequence of /D21.5/ characters $100=$ modified RPAT test sequence $101=$ JSPAT test sequence $110=$ JTSPAT test sequence			0×00	
0x578	JESD204B LMFC offset	0	0	0		LMFC phase offset value, Bits[4:0]				0×00	

Reg Addr (Hex)	Register Name	$\begin{array}{\|l\|l} \text { Bit } 7 \\ \text { (MSB) } \end{array}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x580	$\begin{array}{\|l\|} \hline \text { JESD204B DID } \\ \text { config } \end{array}$	JESD204B Tx DID value, Bits[7:0]								0x00	
0x581	$\begin{aligned} & \text { JESD204B BID } \\ & \text { config } \end{aligned}$	0	0	0	0	JESD204B Tx BID value, Bits[7:0]				0×00	
0x583	$\begin{aligned} & \text { JESD204B LID } \\ & \text { Config } 1 \\ & \hline \end{aligned}$	0	0	0	Lane 0 LID value, Bits[4:0]					0×00	
0x584	$\begin{aligned} & \text { JESD204B LID } \\ & \text { Config } 2 \end{aligned}$	0	0	0	Lane 1 LID value, Bits[4:0]					0×01	
0x585	$\begin{aligned} & \text { JESD204B LID } \\ & \text { Config } 3 \end{aligned}$	0	0	0	Lane 2 LID value, Bits[4:0]					0×01	
0x586	JESD204B LID Config 4	0	0	0	Lane 3 LID value, Bits[4:0]					0×03	
0x58B	$\begin{array}{\|l\|} \text { JESD204B } \\ \text { parameters } \\ \text { SCR/L } \end{array}$	$\begin{array}{\|l} \hline \text { JESD204B } \\ \text { scramblin } \\ \mathrm{g} \text { (SCR) } \\ 0= \\ \text { disabled } \\ 1= \\ \text { enabled } \end{array}$	0	0	0	0	0		4B lanes (L) 1 lane 2 lanes 4 lanes only, see er 0×570	0x8X	
0x58C	$\begin{aligned} & \text { JESD204B F } \\ & \text { config } \end{aligned}$	Number of octets per frame, F = Register 0x58C, Bits[7:0] + 1								0×88	Read only, see Reg. 0x570
0x58D	JESD204B K config	0	0	0	Number of frames per multiframe, $\mathrm{K}=$ Register 0x58D, Bits[4:0] + 1 Only values where ($\mathrm{F} \times \mathrm{K}$) $\bmod 4=0$ are supported					0x1F	See Reg. 0x570
0x58E	JESD204B M config	Number of converters per link, Bits[7:0] $0 \times 00=$ link connected to one virtual converter $(M=1)$ $0 \times 01=$ link connected to two virtual converters $(M=2)$ $0 \times 03=$ link connected to four virtual converters ($M=4$) $0 \times 07=$ link connected to eight virtual converters ($M=8$)									Read only
0x58F	JESD204B CS/N config	Number of control bits (CS) per sample $00=$ no control bits ($\mathrm{CS}=0$) $01=1$ control bit (CS = 1); Control Bit 2 only $10=2$ control bits (CS = 2); Control Bit 2 and Control Bit 1 only $11=3$ control bits (CS $=3$); all control bits (2 , 1,0)		0	ADC converter resolution (N) $0 \times 06=7$-bit resolution $0 \times 07=8$-bit resolution $0 \times 08=9$-bit resolution $0 \times 09=10$-bit resolution $0 \times 0 A=11$-bit resolution $0 \times 0 B=12$-bit resolution $0 \times 0 C=13$-bit resolution $0 \times 0 \mathrm{D}=14$-bit resolution $0 \times 0 E=15$-bit resolution $0 \times 0 F=16$-bit resolution					0x0F	
0×0590	JESD204B N' config	Subclass support (Subclassversion)$000=$ Subclass 0 (no deterministiclatency)$001=$ Subclass 1			ADC number of bits per sample (N^{\prime})$\begin{gathered} 0 \times 7=8 \text { bits } \\ 0 \times F=16 \text { bits } \end{gathered}$					0x2F	
0x591	$\begin{aligned} & \text { JESD204B S } \\ & \text { config } \\ & \hline \end{aligned}$	0	0	1	Samples per converter frame cycle (S) S value = Register 0x591[4:0] +1						Read only
0x592	JESD204B HD and CF configuration	HD value $0=$ disabled 1 = enabled	0	0	Control words per frame clock cycle per link (CF) CF value $=$ Register 0x592, Bits[4:0]					0x80	Read only
0x5A0	$\begin{array}{\|l\|} \hline \text { JESD204B } \\ \text { CHKSUM } 0 \\ \hline \end{array}$	CHKSUM value for SERDOUT0 \pm, Bits[7:0]								0x81	Read only
0x5A1	$\begin{aligned} & \text { JESD204B } \\ & \text { CHKSUM } 1 \end{aligned}$	CHKSUM value for SERDOUT1 \pm, Bits[7:0]								0×82	Read only
0x5A2	$\begin{aligned} & \text { JESD204B } \\ & \text { CHKSUM } 2 \end{aligned}$	CHKSUM value for SERDOUT2 \pm, Bits[7:0]								0x82	Read only
0x5A3	$\begin{aligned} & \text { JESD204B } \\ & \text { CHKSUM } 3 \end{aligned}$	CHKSUM value for SERDOUT3 \pm, Bits[7:0]								0×84	Read only

AD9234

Reg Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x5B0	JESD204B lane power-down	1	SERD- OUT3 \pm $\begin{aligned} & 0=\text { on } \\ & 1=\text { off } \end{aligned}$	1	$\begin{aligned} & \text { SERD- } \\ & \text { OUT2 } \pm \\ & 0=\text { on } \\ & 1=\text { off } \end{aligned}$	1	SERD- OUT1 \pm $0=$ on 1 = off	1	$\begin{aligned} & \text { SERDOUTO } \pm \\ & 0=\text { on } \\ & 1=\text { off } \end{aligned}$	0xAA	
0x5B2	JESD204B lane SERDOUTO \pm assign	X	X	X	X	0	$\overline{\text { SERD }}$	$\begin{aligned} & U T O \\ & 1=L \\ & 1=L \\ & 0=L \\ & 1=L \end{aligned}$	signment ne 0 ne 1 ne 2 ne 3	0×00	
0x5B3	JESD204B lane SERDOUT1 \pm assign	X	X	X	X	0	$\overline{\text { SERL }}$	$\begin{aligned} & U T 1 \pm \\ & 10=L \\ & 1=L \\ & 0=L \\ & 1=L \end{aligned}$	ssignment ne 0 ne 1 ne 2 ne 3	0×11	
0x5B5	JESD204B lane SERDOUT2 \pm assign	X	X	X	X	0	SERD	$\begin{aligned} & \begin{array}{l} \text { UT2 } \\ 10 \\ 1 \end{array}=L \\ & 1=L \\ & 0=L \\ & 1=L \end{aligned}$	ssignment ne 0 ne 1 ne 2 ne 3	0x22	
0x5B6	JESD204B lane SERDOUT3 \pm assign	X	X	X	X	0	SERD	$\begin{aligned} & U T 3 \\ & 10=L \\ & 1=L \\ & 0=L \\ & 1=L \end{aligned}$	signment ne 0 ne 1 ne 2 ne 3	0×33	
0x5BF	JESD serializer drive adjust	0	0	0	0		Swing $0000=$ 0001 $0010=$ 0011 $0100=$ $0101=300$ $0110=$ 0111 $1000=$ 1001 $1010=$ 1011 $1100=$ 1101 $1110=$ 1111	volta 237.5 250 m 262.5 275 m 287.5 mV (312.5 325 m 337.5 350 m 362.5 375 m 387.5 400 m 412.5 425 m		0×05	
0x5C1	De-emphasis select	0	SERD- OUT3 \pm $0=$ disable 1 = enable	0	$\begin{aligned} & \text { SERD- } \\ & \text { OUT2 } \pm \\ & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	0	SERD- OUT1 \pm $0=$ disable 1 = enable	0	$\begin{aligned} & \text { SERDOUT0 } \pm \\ & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$	0x00	
0x5C2	De-emphasis setting for SERDOUT0 \pm	0	0	0	0		$\begin{array}{r} \hline \text { SERDOUTO } \pm \mathrm{de} \\ 000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \end{array}$	$\begin{aligned} & \text { emph } \\ & =0 \mathrm{~d} \\ & =0.3 \mathrm{~d} \\ & =0.8 \mathrm{~d} \\ & =1.4 \mathrm{~d} \\ & =2.2 \mathrm{~d} \\ & =3.0 \mathrm{~d} \\ & =4.0 \mathrm{~d} \\ & =5.0 \mathrm{~d} \end{aligned}$	ings:	0×00	
0x5C3	De-emphasis setting for SERDOUT1 \pm	0	0	0	0		$\begin{array}{r} \hline \text { SERDOUT1 } \pm \mathrm{de} \\ 000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \end{array}$	$\begin{aligned} & \text { emph } \\ & =0 \mathrm{~d} \\ & =0.3 \mathrm{~d} \\ & =0.8 \mathrm{~d} \\ & =1.4 \mathrm{~d} \\ & =2.2 \mathrm{~d} \\ & =3.0 \mathrm{~d} \\ & =4.0 \mathrm{~d} \\ & =5.0 \mathrm{~d} \end{aligned}$	ings:	0x00	

Reg Addr (Hex)	Register Name	$\begin{array}{\|l\|} \hline \text { Bit } 7 \\ \text { (MSB) } \end{array}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x5C4	De-emphasis setting for SERDOUT2 \pm	0	0	0	0		SERDOUT2 \pm de-emphasis settings:$\begin{gathered} 0000=0 \mathrm{~dB} \\ 0001=0.3 \mathrm{~dB} \\ 0010=0.8 \mathrm{~dB} \\ 0011=1.4 \mathrm{~dB} \\ 0100=2.2 \mathrm{~dB} \\ 0101=3.0 \mathrm{~dB} \\ 0110=4.0 \mathrm{~dB} \\ 0111=5.0 \mathrm{~dB} \end{gathered}$			0×00	
0x5C5	De-emphasis setting for SERDOUT3 \pm	0	0	0	0		SERDOUT3 \pm de-emphasis settings:$\begin{gathered} 0000=0 \mathrm{~dB} \\ 0001=0.3 \mathrm{~dB} \\ 0010=0.8 \mathrm{~dB} \\ 0011=1.4 \mathrm{~dB} \\ 0100=2.2 \mathrm{~dB} \\ 0101=3.0 \mathrm{~dB} \\ 0110=4.0 \mathrm{~dB} \\ 0111=5.0 \mathrm{~dB} \end{gathered}$			0×00	

APPLICATIONS INFORMATION

POWER SUPPLY RECOMMENDATIONS

The AD9234 must be powered by the following seven supplies: AVDD1 $=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}$, AVDD1_SR $=$ $1.25 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, and SPIVDD $=1.8 \mathrm{~V}$. For applications requiring an optimal high power efficiency and low noise performance, it is recommended that the ADP2164 and ADP2370 switching regulators be used to convert the 3.3 V , 5.0 V , or 12 V input rails to an intermediate rail (1.8 V and 3.8 V). These intermediate rails are then postregulated by very low noise, low dropout (LDO) regulators (ADP1741, ADM7172, and ADP125). Figure 117 shows the recommended power supply scheme for AD9234.

Figure 117. High Efficiency, Low Noise Power Solution for the AD9234
It is not necessary to split all of these power domains in all cases. The recommended solution shown in Figure 117 provides the lowest noise, highest efficiency power delivery system for the AD9234. If only one 1.25 V supply is available, route to AVDD1 first and then tap it off and isolate it with a ferrite bead or a filter choke, preceded by decoupling capacitors for AVDD1_SR, SPIVDD, DVDD, and DRVDD, in that order. The user can employ several different decoupling capacitors to cover both high and low frequencies. These must be located close to the point of entry at the PCB level and close to the devices, with minimal trace lengths.

EXPOSED PAD THERMAL HEAT SLUG RECOMMENDATIONS

It is required that the exposed pad on the underside of the ADC be connected to ground to achieve the best electrical and thermal performance of the AD9234. Connect an exposed continuous copper plane on the PCB to the AD9234 exposed pad, Pin 0. The copper plane must have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. These vias must be solder filled or plugged. The number of vias and the fill determine the resultant $\theta_{\text {J }}$ measured on the board, which is shown in Table 7.

To maximize the coverage and adhesion between the ADC and PCB, partition the continuous copper plane by overlaying a silkscreen on the PCB into several uniform sections. This provides several tie points between the ADC and PCB during the reflow process, whereas using one continuous plane with no partitions only guarantees one tie point. See Figure 118 for a PCB layout example. For detailed information on packaging and the PCB layout of chip scale packages, see the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).

Figure 118. Recommended PCB Layout of Exposed Pad for the AD9234

AVDD1_SR (PIN 57) AND AGND (PIN 56 AND PIN 60)

AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60) can be used to provide a separate power supply node to the SYSREF \pm circuits of AD9234. If running in Subclass 1, the AD9234 can support periodic one shot or gapped signals. To minimize the coupling of this supply into the AVDD1 supply node, adequate supply bypassing is needed.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WMMD

Figure 119. 64-Lead Lead Frame Chip Scale Package [LFCSP]
$9 \mathrm{~mm} \times 9 \mathrm{~mm}$ Body and 0.75 Package Height
(CP-64-15)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9234BCPZ-500	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-64-15
AD9234BCPZRL7-500	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Lead Frame Chip Scale Package [LFCSP]	CP-64-15
AD9234BCPZ-1000	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Lead Frame Chip Scale Package [LFCSP]	CP-64-15
AD9234BCPZRL7-1000	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Lead Frame Chip Scale Package [LFCSP]	CP-64-15
AD9234-500EBZ		Evaluation Board for AD9234-500 (Optimized for Full Analog Input	
AD9234-1000EBZ		Frequency Range)	
AD9234-LF500EBZ		Evaluation Board for AD9234-1000 (Optimized for Full Analog Input	
AD9234-LF1000EBZ		Frequency Range)	

[^6]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.
 ${ }^{2}$ Noise density is measured at a low analog input frequency (30 MHz).
 ${ }^{3}$ See Table 9 for recommended settings for the buffer current setting optimized for SFDR.
 ${ }^{4}$ Crosstalk is measured at 170 MHz with a -1.0 dBFS analog input on one channel and no input on the adjacent channel.
 ${ }^{5}$ Measured with circuit shown in Figure 64.

[^1]: ${ }^{1}$ Differential and common-mode return loss is measured from 100 MHz to $0.75 \mathrm{MHz} \times$ baud rate.

[^2]: ${ }^{1}$ To ensure proper ADC operation, connect AVDD1_SR and AGND separately from the AVDD1 and EPAD connection. For more information, refer to the Applications Information section.

[^3]: ${ }^{1}$ RD means running disparity.

[^4]: ${ }^{1}$ fout $=$ output sample rate $=$ ADC sample rate/chip decimation ratio. The JESD204B serial line rate must be $\geq 3.125 \mathrm{Gbps}$ and $\leq 12.5 \mathrm{Gbps}$; when the serial line rate is $\leq 12.5 \mathrm{Gbps}$ and $\geq 6.25 \mathrm{Gbps}$, the low line rate mode must be disabled (set Bit 4 to 0×0 in $0 \times 56 \mathrm{E}$). When the serial line rate is $<6.25 \mathrm{Gbps}$ and $\geq 3.125 \mathrm{Gbps}$, the low line rate mode must be enabled (set Bit 4 to 0×1 in Register 0x56E).
 ${ }^{2}$ JESD204B transport layer descriptions are as described in the JESD204B Overview section.
 ${ }^{3}$ For $F=1, K=20,24,28$, and 32 . For $F=2, K=12,16,20,24,28$, and 32 . For $F=4, K=8,12,16,20,24,28$, and 32 . For $F=8$ and $F=16, K=4,8,12,16,20,24,28$, and 32 .

[^5]: ${ }^{1}$ For these modes, changing decimation does not affect latency.

[^6]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

