Enhanced Product

FEATURES

1.8 V analog supply operation
 1.8 V to 3.3 V output supply
 SNR

77.6 dBFS at 9.7 MHz input
76.4 dBFS at 70 MHz input

SFDR
94 dBc at 9.7 MHz input
93 dBc at 70 MHz input
Low power
111 mW at 65 MSPS
Differential input with 700 MHz bandwidth
On-chip voltage reference and sample-and-hold circuit
$2 \mathbf{V}$ p-p differential analog input
DNL = -0.5/+1.0 LSB
Interleaved data output for reduced pin-count interface
Serial port control options
Offset binary, Gray code, or twos complement data format
Optional clock duty cycle stabilizer
Integer 1 to 8 input clock divider
Built-in selectable digital test pattern generation
Energy-saving power-down modes
Data clock output (DCO) with programmable clock and data alignment

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Communications

Diversity radio systems
Multimode digital receivers
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA
Smart antenna systems
Battery-powered instruments
Handheld scope meters
Portable medical imaging
Ultrasound
Radar/LIDAR
PET/SPECT imaging

Figure 1.

PRODUCT HIGHLIGHTS

1. The AD9266-EP operates from a single 1.8 V analog power supply and features a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families.
2. The sample-and-hold circuit maintains excellent performance at high input frequencies and is designed for low cost, low power, and ease of use.
3. A standard serial port interface supports various product features and functions, such as data output formatting, internal clock divider, power-down, DCO and data output (D15_D14 to D1_D0) timing and offset adjustments, and voltage reference modes.
4. The AD9266-EP is packaged in a 32-lead RoHS-compliant LFCSP that is pin compatible with the AD9609 10-bit ADC, the AD9629 12-bit ADC, and the AD9649 14-bit ADC, enabling a simple migration path between 10 -bit and 16 -bit converters sampling at 65 MSPS.
[^0]
AD9266-EP

TABLE OF CONTENTS

Features1
Enhanced Product Features 1
Applications 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
General Description 3
Specifications 4
DC Specifications 4
AC Specifications 5
REVISION HISTORY
3/16-Rev. A to Rev. B
Change to Product Highlights 1
Changes to General Description 3
Change to Pipeline Delay (Latency) Parameter, Table 4 7
Changes to Figure 3 and Table 8 10
7/12—Rev. 0 to Rev. A
Changes to Resolution Parameter, Table 1 and Note 3, Table 1 4
Digital Specifications 6
Switching Specifications 7
Timing Specifications 8
Absolute Maximum Ratings 9
Thermal Characteristics 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Outline Dimensions 11
Ordering Guide 11

1/12—Revision 0: Initial Version

AD9266-EP

GENERAL DESCRIPTION

The AD9266-EP is a monolithic, single-channel 1.8 V supply, 16-bit, 65 MSPS analog-to-digital converter (ADC). It features a high performance sample-and-hold circuit and on-chip voltage reference.
The product uses multistage differential pipeline architecture with output error correction logic to provide 16-bit accuracy at 65 MSPS data rates and to guarantee no missing codes over the full operating temperature range.

The ADC contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. The available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user-defined test patterns entered via the serial port interface (SPI).

A differential clock input with a selectable internal 1-to-8 divide ratio controls all internal conversion cycles. An optional duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance.
The interleaved digital output data is presented in offset binary, gray code, or twos complement format. A data clock output (DCO) is provided to ensure proper latch timing with receiving logic. CMOS levels from 1.8 V through 3.3 V are supported.

The AD9266-EP is available in a 32 -lead RoHS compliant LFCSP and is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
Additional application and technical information can be found in the AD9266 data sheet.

SPECIFICATIONS

DC SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}, 50 \%$ duty cycle clock, DCS disabled, unless otherwise noted.

Table 1.

Parameter	Temp	Min	Typ	Max	Unit
RESOLUTION	Full	16			Bits
ACCURACY No Missing Codes Offset Error Gain Error ${ }^{1}$ Differential Nonlinearity (DNL) ${ }^{2}$ Integral Nonlinearity (INL) ${ }^{2}$	Full Full $25^{\circ} \mathrm{C}$ Full $25^{\circ} \mathrm{C}$ Full $25^{\circ} \mathrm{C}$		$\begin{aligned} & \text { Guaranteed } \\ & +0.05 \\ & -1.3 \\ & -0.5 /+1.0 \\ & \pm 2.6 \end{aligned}$	$\begin{aligned} & \pm 0.30 \\ & -0.9 /+1.7 \\ & \pm 6.5 \end{aligned}$	$\begin{aligned} & \text { \% FSR } \\ & \% \text { FSR } \\ & \text { LSB } \\ & \hline \end{aligned}$
TEMPERATURE DRIFT Offset Error	Full		± 2		ppm $/{ }^{\circ} \mathrm{C}$
INTERNAL VOLTAGE REFERENCE Output Voltage (1 V Mode) Load Regulation Error at 1.0 mA	$\begin{aligned} & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	0.983	$\begin{aligned} & 0.995 \\ & 2 \end{aligned}$	1.007	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
INPUT-REFERRED NOISE $\text { VREF }=1.0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		2.8		LSB rms
ANALOG INPUT Input Span, VREF $=1.0 \mathrm{~V}$ Input Capacitance ${ }^{3}$ Input Common-Mode Voltage Input Common-Mode Range	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	0.5	$\begin{aligned} & 2 \\ & 6.5 \\ & 0.9 \end{aligned}$	1.3	$\begin{aligned} & \text { Vp-p } \\ & \text { pF } \\ & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
REFERENCE INPUT RESISTANCE	Full		7.5		k Ω
POWER SUPPLIES Supply Voltage AVDD DRVDD Supply Current IAVDD ${ }^{2}$ IDRVDD $^{2}(1.8 \mathrm{~V})$ IDRVDD $^{2}(3.3 \mathrm{~V})$	Full Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & \\ & 56.3 \\ & 5.2 \\ & 9.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 3.6 \\ & 62.2 \end{aligned}$	V V mA mA mA
POWER CONSUMPTION DC Input Sine Wave Input ${ }^{2}($ DRVDD $=1.8 \mathrm{~V})$ Sine Wave Input ${ }^{2}$ (DRVDD $=3.3 \mathrm{~V}$) Standby Power ${ }^{4}$ Power-Down Power	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 107 \\ & 111 \\ & 132 \\ & 44 \\ & 0.5 \end{aligned}$	122	mW mW mW mW mW

[^1]
Enhanced Product

AC SPECIFICATIONS

AVDD $=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}, 50 \%$ duty cycle clock, DCS disabled, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	Temp	Min	Typ	Max	Unit
SIGNAL-TO-NOISE RATIO (SNR) $\begin{aligned} & f_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}^{\prime}=30.5 \mathrm{MHz} \\ & \mathrm{fiN}^{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	76.5	$\begin{aligned} & 77.6 \\ & 77.4 \\ & 76.4 \end{aligned}$		dBFS dBFS dBFS dBFS
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) $\begin{aligned} & f_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}=30.5 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	76.0	$\begin{aligned} & 77.4 \\ & 77.2 \\ & \\ & 76.3 \end{aligned}$		dBFS dBFS dBFS dBFS
$\begin{aligned} & \text { EFFECTIVE NUMBER OF BITS (ENOB) } \\ & \mathrm{f}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{I}}=30.5 \mathrm{MHz} \\ & \\ & \mathrm{fiN}_{\mathrm{I}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	12.3	$\begin{aligned} & 12.6 \\ & 12.5 \\ & \\ & 12.4 \end{aligned}$		Bits Bits Bits Bits
WORST SECOND OR THIRD HARMONIC $\begin{aligned} & \mathrm{fiN}_{\mathrm{I}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}=30.5 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -94 \\ & -93 \\ & -93 \end{aligned}$	-80	dBc dBc dBc dBc
SPURIOUS-FREE DYNAMIC RANGE (SFDR) $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}=30.5 \mathrm{MHz} \\ & \mathrm{fiN}^{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	80	$\begin{aligned} & 94 \\ & 93 \\ & 93 \end{aligned}$		dBc dBc dBc dBc
WORST OTHER (HARMONIC OR SPUR) $\begin{aligned} & \mathrm{fiN}_{\mathrm{I}}=9.7 \mathrm{MHz} \\ & \mathrm{fiN}=30.5 \mathrm{MHz} \\ & \mathrm{fiN}^{\mathrm{IN}}=70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -92 \\ & -101 \\ & -98 \end{aligned}$	-88	dBc dBc dBc dBc
TWO-TONE SFDR $\mathrm{f}_{\mathrm{IN}}=30.5 \mathrm{MHz}(-7 \mathrm{dBFS}), 32.5 \mathrm{MHz}(-7 \mathrm{dBFS})$	$25^{\circ} \mathrm{C}$		90		dBc
ANALOG INPUT BANDWIDTH	$25^{\circ} \mathrm{C}$		700		MHz

${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.

DIGITAL SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}, 50 \%$ duty cycle clock, DCS disabled, unless otherwise noted.

Table 3.

Parameter	Temp	Min	Typ	Max	Unit
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK-)					
Logic Compliance			CMO		
Internal Common-Mode Bias	Full		0.9		V
Differential Input Voltage	Full	0.2		3.6	Vp-p
Input Voltage Range	Full	GND - 0.3		AVDD + 0.2	V
High Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Low Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Input Resistance	Full	8	10	12	$\mathrm{k} \Omega$
Input Capacitance	Full		4		pF
LOGIC INPUTS (SCLK/DFS, MODE, SDIO/PDWN) ${ }^{1}$					
High Level Input Voltage	Full	1.2		DRVDD + 0.3	V
Low Level Input Voltage	Full	0		0.8	V
High Level Input Current	Full	-50		-75	$\mu \mathrm{A}$
Low Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Input Resistance	Full		30		$k \Omega$
Input Capacitance	Full		2		pF
LOGIC INPUTS (CSB) ${ }^{2}$					
High Level Input Voltage	Full	1.2		DRVDD +0.3	V
Low Level Input Voltage	Full	0		0.8	V
High Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Low Level Input Current	Full	40		135	$\mu \mathrm{A}$
Input Resistance	Full		26		$\mathrm{k} \Omega$
Input Capacitance	Full		2		pF
DIGITAL OUTPUTS					
DRVDD $=3.3 \mathrm{~V}$					
High Level Output Voltage, $\mathrm{I}_{\text {OH }}=50 \mu \mathrm{~A}$	Full	3.29			V
High Level Output Voltage, $\mathrm{l}_{\text {о }}=0.5 \mathrm{~mA}$	Full	3.25			V
Low Level Output Voltage, lol $=1.6 \mathrm{~mA}$	Full			0.2	V
Low Level Output Voltage, loL $=50 \mu \mathrm{~A}$	Full			0.05	V
DRVDD $=1.8 \mathrm{~V}$					
High Level Output Voltage, l он $=50 \mu \mathrm{~A}$	Full	1.79			V
High Level Output Voltage, $\mathrm{l}_{\text {о }}=0.5 \mathrm{~mA}$	Full	1.75			V
Low Level Output Voltage, loL $=1.6 \mathrm{~mA}$	Full			0.2	V
Low Level Output Voltage, loL $=50 \mu \mathrm{~A}$	Full			0.05	V

[^2]
Enhanced Product

SWITCHING SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V} ; \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; $\mathrm{AIN}=-1.0 \mathrm{dBFS}, 50 \%$ duty cycle clock, DCS disabled, unless otherwise noted.

Table 4.

Parameter	Temp	Min	Typ	Max	Unit
CLOCK INPUT PARAMETERS					
Input Clock Rate	Full			520	MHz
Conversion Rate ${ }^{1}$	Full	3		65	MSPS
CLK Period—Divide by 1 Mode (tcık)	Full	15.38			ns
CLK Pulse Width High (tch)			7.69		ns
Aperture Delay (t_{A})	Full		1.0		ns
Aperture Uncertainty (Jitter, t_{J})	Full		0.1		ps rms
DATA OUTPUT PARAMETERS					
Data Propagation Delay ($\mathrm{tpD}^{\text {) }}$	Full		3		ns
DCO Propagation Delay (toco)	Full		3		ns
DCO to Data Skew (tskew)	Full		0.1		ns
Pipeline Delay (Latency)	Full		8		Cycles
Wake-Up Time ${ }^{2}$	Full		350		$\mu \mathrm{s}$
Standby	Full		300		ns
OUT-OF-RANGE RECOVERY TIME	Full		2		Cycles

${ }^{1}$ Conversion rate is the clock rate after the CLK divider.
${ }^{2}$ Wake-up time is dependent on the value of the decoupling capacitors.

Figure 2. CMOS Output Data Timing

AD9266-EP

TIMING SPECIFICATIONS

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SPI TIMING REQUIREMENTS					
$\mathrm{t}_{\text {DS }}$	Setup time between the data and the rising edge of SCLK	2			ns
$\mathrm{t}_{\text {DH }}$	Hold time between the data and the rising edge of SCLK	2			ns
tcık	Period of the SCLK	40			ns
t_{5}	Setup time between CSB and SCLK	2			ns
t_{H}	Hold time between CSB and SCLK	2			ns
thigh	SCLK pulse width high	10			ns
tow	SCLK pulse width low	10			ns
ten_sdo	Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge	10			ns
$\mathrm{t}_{\text {DIS_SDIO }}$	Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge	10			ns

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
AVDD to AGND	-0.3 V to +2.0 V
DRVDD to AGND	-0.3 V to +3.9 V
VIN+, VIN- to AGND	-0.3 V to AVDD +0.2 V
CLK+, CLK- to AGND	-0.3 V to AVDD +0.2 V
VREF to AGND	-0.3 V to AVDD +0.2 V
SENSE to AGND	-0.3 V to AVDD +0.2 V
VCM to AGND	-0.3 V to AVDD +0.2 V
RBIAS to AGND	-0.3 V to AVDD +0.2 V
CSB to AGND	-0.3 V to DRVDD +0.3 V
SCLK/DFS to AGND	-0.3 V to DRVDD +0.3 V
SDIO/PDWN to AGND	-0.3 V to DRVDD +0.3 V
MODE/OR to AGND	-0.3 V to DRVDD +0.3 V
D1_D0 Through D15_D14 to AGND	-0.3 V to DRVDD +0.3 V
DCO to AGND	-0.3 V to DRVDD +0.3 V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(Ambient)	$150^{\circ} \mathrm{C}$
Maximum Junction Temperature	
\quad Under Bias	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
(Ambient)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

The exposed paddle is the only ground connection for the chip. The exposed paddle must be soldered to the AGND plane of the circuit board. Soldering the exposed paddle to the board also increases the reliability of the solder joints and maximizes the thermal capability of the package.

Table 7. Thermal Resistance

Package Type	Airflow Velocity (m/sec)	$\theta_{\text {JA }}{ }^{1,2}$	$\theta_{\mathrm{Jc}}{ }^{1,3}$	$\theta_{\text {SB }}{ }^{1,4}$	$\Psi_{\text {JT }}{ }^{1,2}$	Unit
32-Lead LFCSP	0	37.1	3.1	20.7	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$	1.0	32.4			0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	2.5	29.1			0.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.
${ }^{2}$ Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
${ }^{3}$ Per MIL-Std 883, Method 1012.1.
${ }^{4}$ Per JEDEC JESD51-8 (still air).
Typical θ_{JA} is specified for a 4-layer printed circuit board (PCB) with a solid ground plane. As shown in Table 7, airflow improves heat dissipation, which reduces $\theta_{\mathrm{J} A}$. In addition, metal in direct contact with the package leads from metal traces, through holes, ground, and power planes reduces the $\theta_{\text {JA }}$.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1.ONC $=$ Do Not connect
2. THE EXPOSED PADDLE IS THE ONLY GROUND CONNECTION

ON THE DEVICE. IT MUST BE SOLDERED TO THE ANALOG ON THE DEVICE. IT MUST BE SOLDERED TO THE ANALOG
GROUND OF THE PCB TO ENSURE PROPER FUNCTIONALITY HEAT DISSIPATION, NOISE, AND MECHANICAL STRENGTH.

Figure 3. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
0	EPAD	Exposed Paddle. The exposed paddle is the only ground connection on the device. It must be soldered to the analog ground of the PCB to ensure proper functionality, heat dissipation, noise, and mechanical strength.
1,2	CLK+, CLK-	Differential Encode Clock for PECL, LVDS, or 1.8V CMOS Inputs.
3, 24, 29, 32	AVDD	1.8V Supply Pin for ADC Core Domain.
4	CSB	SPI Chip Select. Active low enable, $30 \mathrm{k} \Omega$ internal pull-up.
5	SCLK/DFS	SPI Clock Input in SPI Mode (SCLK). 30 k 隹 internal pull-down.
		Data Format Select in Non SPI Mode (DFS). Static control of data output format. $30 \mathrm{k} \Omega$ internal pull-down. DFS high = twos complement output; DFS low = offset binary output.
6	SDIO/PDWN	SPI Data Input/Output (SDIO). Bidirectional SPI data I/O with $30 \mathrm{k} \Omega$ internal pull-down. Non-SPI Mode Power-Down (PDWN). Static control of chip power-down with $30 \mathrm{k} \Omega$ internal pull-down.
7 to 12	DNC	Do Not Connect.
13	DRVDD	1.8 V to 3.3 V Supply Pin for Output Driver Domain.
14 to 21	D1_D0 (LSB) to (MSB) D15_D14	ADC Digital Outputs.
22	DCO	Data Clock Digital Output.
23	MODE/OR	Chip Mode Select Input (MODE)/Out-of-Range Digital Output in SPI Mode (OR).
		Default = out-of-range (OR) digital output (SPI Register 0x2A, Bit $0=1$).
		Option = chip mode select input (SPI Register $0 \times 2 \mathrm{~A}$, Bit $0=0$)
		Chip power-down (SPI Register 0x08, Bits[7:5] = 100b).
		Chip standby (SPI Register 0x08, Bits[7:5] = 101b).
		Normal operation, output disabled (SPI Register 0x08, Bits[7:5] = 110b).
		Normal operation, output enabled (SPI Register 0x08, Bits[7:5] = 111b).
		Out-of-range (OR) digital output only in non-SPI mode.
25	VREF	1.0 V Voltage Reference Input/Output.
26	SENSE	Reference Mode Selection.
27	VCM	Analog Output Voltage at Mid AVDD Supply. Sets common mode of the analog inputs.
28	RBIAS	Set Analog Current Bias. Connect to $10 \mathrm{k} \Omega$ (1\% tolerance) resistor to ground.
30, 31	VIN-, VIN+	ADC Analog Inputs.

Enhanced Product

OUTLINE DIMENSIONS

FOR PROPER CONNECTION OF THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
*COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5 WITH EXCEPTION TO EXPOSED PAD DIMENSION.

Figure 4. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-32-12)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9266TCPZ-65EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 -Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
AD9266TCPZRL7-65EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32 -Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12

[^3]
NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012-2016 Analog Devices, Inc. All rights reserved. Technical Support

[^1]: ${ }^{1}$ Measured with 1.0 V external reference.
 ${ }^{2}$ Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.
 ${ }^{3}$ Input capacitance refers to the effective capacitance between the differential inputs.
 ${ }^{4}$ Standby power is measured with a dc input and the CLK active.

[^2]: ${ }^{1}$ Internal $30 \mathrm{k} \Omega$ pull-down
 ${ }^{2}$ Internal $30 \mathrm{k} \Omega$ pull-up.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

