8-Bit, 500 MSPS, 1.8 V
 Analog-to-Digital Converter (ADC)

Data Sheet

FEATURES

Single 1.8 V supply operation
SNR: $\mathbf{4 9 . 3}$ dBFS at $\mathbf{2 0 0} \mathbf{~ M H z}$ input at 500 MSPS
SFDR: 65 dBc at 200 MHz input at 500 MSPS
Low power: $\mathbf{3 1 5} \mathbf{~ m W}$ at $\mathbf{5 0 0}$ MSPS
On-chip interleaved clocking
On-chip reference and track-and-hold
1.2 V p-p analog input range for each channel

Differential input with 500 MHz bandwidth
LVDS-compliant digital output
On-chip voltage reference and sample-and-hold circuit
DNL: ± 0.2 LSB
Serial port control options
Interleaved clock timing adjustment
Offset binary, Gray code, or twos complement data format
Optional clock duty cycle stabilizer
Built-in selectable digital test pattern generation
Pin-programmable power-down function
Available in 48-lead LFCSP

APPLICATIONS

Battery-powered instruments
Handheld scope meters
Low cost digital oscilloscopes
OTS: video over fiber

GENERAL DESCRIPTION

The AD9286 is an 8-bit, monolithic sampling, analog-to-digital converter (ADC) that supports interleaved operation and is optimized for low cost, low power, and ease of use. Each ADC operates at up to a 250 MSPS conversion rate with outstanding dynamic performance.

The AD9286 takes a single sample clock and, with an on-chip clock divider, time interleaves the two ADC cores (each running at one-half the clock frequency) to achieve the rated 500 MSPS. By using the SPI, the user can accurately adjust the timing of the sampling edge per ADC to minimize the image spur energy.

The ADC requires a single 1.8 V supply and an encode clock for full performance operation. No external reference components are required for many applications. The digital outputs are LVDS compatible.
The AD9286 is available in a Pb -free, 48 -lead LFCSP that is specified over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PRODUCT HIGHLIGHTS

1. Integrated 8 -Bit, 500 MSPS ADC.
2. Single 1.8 V Supply Operation with LVDS Outputs.
3. Power-Down Option Controlled via a Pin-Programmable Setting.

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Product Highlights 1
Functional Block Diagram 1
Revision History 2
Specifications 3
DC Specifications 3
AC Specifications 4
Digital Specifications 5
Switching Specifications 6
SPI Timing Specifications 6
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Typical Performance Characteristics 12
Equivalent Circuits 14
Theory of Operation 15
ADC Architecture 15
Analog Input Considerations 15
REVISION HISTORY
11/2020—Rev. C to Rev. D
Changed CP-48-12 to CP-48-14 Throughout
Changes to Figure 6 10
Updated Outline Dimensions 27
Changes to Ordering Guide 27
1/2015—Rev. B to Rev. C Changes to Table 13 24
Voltage Reference 15
RBIAS. 15
Clock Input Considerations 16
Digital Outputs 18
Built-In Self-Test (BIST) and Output Test 19
Built-In Self-Test (BIST) 19
Output Test Modes 19
Serial Port Interface (SPI) 20
Configuration Using the SPI 20
Hardware Interface 21
Configuration Without the SPI 21
SPI Accessible Features 21
Memory Map 22
Reading the Memory Map Register Table 22
Memory Map Register Table. 23
Memory Map Register Descriptions 25
Applications Information 26
Design Guidelines 26
Outline Dimensions 27
Ordering Guide 27
6/2013-Rev. A to Rev. B
Changes to Clock Input Parameters, Table 4 6
Changes to Clocking Modes Section. 16
Changes to Table 9 17
Changes to Register 0x09, Table 13 23
3/2011-Rev. 0 to Rev. AChanges to General Description, ADC Conversion Rate. 1
1/2011—Revision 0: Initial Version

SPECIFICATIONS

DC SPECIFICATIONS

AVDD $=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 1.0 \mathrm{~V}$ internal ADC reference, unless otherwise noted.
Table 1.

Parameter ${ }^{1}$	Temperature	Min	Typ	Max	Unit
RESOLUTION	Full	8			Bits
DC ACCURACY Differential Nonlinearity Integral Nonlinearity No Missing Codes Offset Error Gain Error	Full Full Full Full Full		$\begin{aligned} & \pm 0.2 \\ & \pm 0.1 \\ & \text { Guaranteed } \\ & \pm 0.4 \\ & \pm 2 \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 0.3 \\ \pm 2.1 \\ \pm 2.8 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { \% FS } \\ & \% \text { FS } \end{aligned}$
MATCHING CHARACTERISTICS Offset Error ${ }^{2}$ Gain Error	Full Full	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 2.1 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \% \text { FS } \\ & \% \text { FS } \end{aligned}$
TEMPERATURE DRIFT Offset Error Gain Error	Full Full		$\begin{aligned} & \pm 2 \\ & \pm 20 \end{aligned}$		$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
ANALOG INPUT Input Span Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance (Differential) Full Power Bandwidth	Full Full Full Full Full		$\begin{aligned} & 1.2 \\ & 1.4 \\ & 16 \\ & 250 \\ & 700 \end{aligned}$		$\begin{aligned} & \text { Vp-p } \\ & \text { V } \\ & \mathrm{k} \Omega \\ & \mathrm{fF} \\ & \mathrm{MHz} \end{aligned}$
VOLTAGE REFERENCE Internal Reference Input Resistance	Full Full	0.97	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	1.03	$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$
POWER SUPPLIES Supply Voltage AVDD DRVDD Supply Current IAvdD IDRvDD	Full Full Full Full	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & \\ & 125 \\ & 51 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.9 \\ & 130 \\ & 54 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
POWER CONSUMPTION Sine Wave Input ${ }^{3}$ Power-Down Power	Full Full		$\begin{aligned} & 315 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 330 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

[^0]
AD9286

AC SPECIFICATIONS

AVDD $=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 1.0 \mathrm{~V}$ internal ADC reference, $\mathrm{VIN}=-1.0 \mathrm{dBFS}$ differential input, optimum timing value set, unless otherwise noted.

Table 2.

Parameter	Temperature	Min	Typ	Max	Unit
SIGNAL-TO-NOISE RATIO (SNR) $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}=70 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=96.6 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	48.8	$\begin{aligned} & 49.3 \\ & 49.3 \\ & 49.3 \\ & 49.3 \\ & \hline \end{aligned}$		dBFS dBFS dBFS dBFS
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) $\begin{aligned} & \mathrm{fiN}_{\mathrm{I}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{I}}=70 \mathrm{MHz} \\ & \mathrm{fiN}=96.6 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	48.7	$\begin{aligned} & 49.2 \\ & 49.2 \\ & 49.2 \\ & 49.2 \end{aligned}$		dBFS dBFS dBFS dBFS
$\begin{aligned} & \text { EFFECTIVE NUMBER OF BITS (ENOB) } \\ & \mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{N}}=70 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=96.6 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	7.8	$\begin{aligned} & 7.9 \\ & 7.9 \\ & 7.9 \\ & 7.9 \end{aligned}$		Bits Bits Bits Bits
WORST SECOND OR THIRD HARMONIC $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{I}}=70 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=96.6 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \\ & -69 \\ & -65 \end{aligned}$	-61	dBc dBc dBc dBc
SPURIOUS-FREE DYNAMIC RANGE (SFDR) ${ }^{1}$ $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{N}}=70 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=96.6 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	61	$\begin{aligned} & 70 \\ & 70 \\ & 68 \\ & 65 \end{aligned}$		dBc $d B c$ dBc dBc
WORST OTHER HARMONIC OR SPUR $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=10.3 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=70 \mathrm{MHz} \\ & \mathrm{fiN}=96.6 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=220 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -71 \\ & -71 \\ & -71 \\ & -67 \end{aligned}$	-64	dBC dBc dBc dBc
CROSSTALK	Full		-80		dBc

${ }^{1}$ Excludes offset and alias spur (see the Interleave Performance section).

DIGITAL SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 1.0 \mathrm{~V}$ internal ADC reference, $\mathrm{AIN}=5 \mathrm{MHz}$, full temperature, unless otherwise noted.
Table 3.

Parameter ${ }^{1}$	Temperature	Min	Typ	Max	Unit
CLOCK INPUTS (CLK+, CLK-, AUXCLK+, AUXCLK-)					
Logic Compliance			LVDS/PECL		
Internal Common-Mode Bias	Full		1.2		V
Differential Input Voltage ${ }^{2}$	Full	0.2		6	$\checkmark \mathrm{p}$-p
Input Voltage Range	Full	AVDD - 0.3		AVDD + 1.6	V
High Level Input Voltage	Full	1.2		3.6	V
Low Level Input Voltage	Full	0		0.8	V
High Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Low Level Input Current	Full	-10		+10	$\mu \mathrm{A}$
Input Resistance (Differential)	$25^{\circ} \mathrm{C}$		20		$k \Omega$
Input Capacitance	$25^{\circ} \mathrm{C}$		4		pF
LOGIC INPUTS					
CSB					
High Level Input Voltage	Full	1.2		DRVDD +0.3	V
Low Level Input Voltage	Full	0		0.8	V
High Level Input Current	Full	-5	-0.4	+5	$\mu \mathrm{A}$
Low Level Input Current	Full	-80	-63	-50	$\mu \mathrm{A}$
Input Resistance	$25^{\circ} \mathrm{C}$		30		$k \Omega$
Input Capacitance	$25^{\circ} \mathrm{C}$		2		pF
SCLK, SDIO/PWDN, AUXCLKEN, $\overline{O E}$					
High Level Input Voltage	Full	1.2		DRVDD +0.3	V
Low Level Input Voltage	Full	0		0.8	V
High Level Input Current	Full	50	57	70	$\mu \mathrm{A}$
Low Level Input Current	Full	-5	-0.4	+5	$\mu \mathrm{A}$
Input Resistance	$25^{\circ} \mathrm{C}$		30		$\mathrm{k} \Omega$
Input Capacitance	$25^{\circ} \mathrm{C}$		2		pF
DIGITAL OUTPUTS (D7+, D7- to D0+, D0-), LVDS					
DRVDD $=1.8 \mathrm{~V}$					
Differential Output Voltage (Vod)	Full	290	345	400	mV
Output Offset Voltage (Vos)	Full	1.15	1.25	1.35	V
Output Coding (Default)			Offset binary		

[^1]
AD9286

SWITCHING SPECIFICATIONS

$\mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum sample rate, -1.0 dBFS differential input, 1.0 V internal reference, unless otherwise noted.
Table 4.

Parameter	Temperature	Min	Typ	Max	Unit
CLOCK INPUT PARAMETERS					
Input Clock Rate	Full	60		500	MHz
CLK Period (tcık)	Full	2			Ns
CLK Pulse Width High (tch)	Full		1		Ns
DATA OUTPUT PARAMETERS					
Data Propagation Delay (tpo)			3.7		ns
DCO Propagation Delay ($\mathrm{t}_{\text {cco }}$)	Full		3.7		ns
DCO to Data Skew (tskew)	Full	-280	-60	100	ps
Pipeline Delay (Latency)	Full		11		Cycles
Aperture Delay (t_{A})	Full		1.0		ns
Aperture Uncertainty (Jitter, $\mathrm{t}_{\text {J }}$)	Full		0.1		ps rms
Wake-Up Time ${ }^{1}$	Full		500		$\mu \mathrm{s}$
OUT-OF-RANGE RECOVERY TIME	Full		4		Cycles

${ }^{1}$ Wake-up time is dependent on the value of the decoupling capacitors.

SPI TIMING SPECIFICATIONS

Table 5.

Parameter	Description	Min	Typ	Max	Unit
SPI TIMING REQUIREMENTS					
tos	Setup time between the data and the rising edge of SCLK	2			ns
$\mathrm{t}_{\text {DH }}$	Hold time between the data and the rising edge of SCLK	2			ns
tclk	Period of the SCLK	40			ns
t_{5}	Setup time between CSB and SCLK	2			ns
t_{H}	Hold time between CSB and SCLK	2			ns
tHIGH	SCLK pulse width high	10			ns
tow	SCLK pulse width low	10			ns
ten_SDIO	Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge	10			ns
$t_{\text {DIS_SDIO }}$	Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge	10			ns

Timing Diagrams

Figure 2. Output Timing Diagram, Sample Mode = Interleaved (Default)

Figure 3. Output Timing Diagram, Sample Mode $=$ Simultaneous, $A \cup X C L K E N=0$

Figure 4. Output Timing Diagram, Sample Mode $=$ Simultaneous, $A U X C L K E N=1, C L K$ and AUXCLK in Phase

Figure 5. Output Timing Diagram, Sample Mode $=$ Simultaneous, $A U X C L K E N=1, C L K$ and AUXCLK Out of Phase

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Electrical	-0.3 V to +2.0 V
AVDD to AGND	-0.3 V to +2.0 V
DRVDD to DRGND	-0.3 V to +0.3 V
AGND to DRGND	-2.0 V to +2.0 V
AVDD to DRVDD	-0.3 V to DRVDD +0.3 V
D0+/D0- through D7+/D7-	-0.3 V to DRVDD +0.3 V
to DRGND	-0.3 V to AVDD +0.2 V
DCO+, DCO- to DRGND	-0.3 V to AVDD +0.2 V
CLK+, CLK- to AGND	-0.3 V to AVDD +0.2 V
AUXCLK+, AUXCLK- to AGND	
VIN1 \pm, VIN2 \pm to AGND	-0.3 V to DRVDD +0.3 V
SDIO/PWDN to DRGND	-0.3 V to DRVDD +0.3 V
CSB to AGND	-0.3 V to DRVDD +0.3 V
SCLK to AGND	
Environmental	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature	
\quad (Soldering, 10 sec)	$150^{\circ} \mathrm{C}$
Junction Temperature	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied.
Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

$\theta_{J A}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance

Package Type	θ_{JA}	θ_{Jc}	Unit
48-Lead LFCSP (CP-48-14)	30.4	2.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1. THE EXPOSED PADDLE MUST BE SOLDERED TO THE PCB ANALOG GROUND TO ENSURE PROPER FUNCTIONALITY AND HEAT DISSIPATION, NOISE, AND MECHANICAL STRENGTH BENEFITS.

Figure 6. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
ADC Power Pins			
$\begin{aligned} & 1,2,35,36,37,40,42, \\ & 44,45,48 \end{aligned}$	AVDD	Supply	Analog Power Supply (1.8 V Nominal).
8,27	DRVDD	Supply	Digital Output Driver Supply (1.8 V Nominal).
7,28	DRGND	Ground	Digital Output Ground.
0	AGND	Ground	Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package. This is the only ground connection, and it must be soldered to the PCB analog ground to ensure proper functionality and heat dissipation, noise, and mechanical strength benefits.
ADC Analog Pins			
39	VIN1+	Input	Differential Analog Input Pin (+) for Channel 1.
38	VIN1-	Input	Differential Analog Input Pin (-) for Channel 1.
46	VIN2+	Input	Differential Analog Input Pin (+) for Channel 2.
47	VIN2-	Input	Differential Analog Input Pin (-) for Channel 2.
43	VREF	Input/output	Voltage Reference Input/Output.
5	RBIAS	Input/output	External Reference Bias Resistor. Connect $10 \mathrm{k} \Omega$ from RBIAS to AGND.
41	VCM	Output	Common-Mode Level Bias Output for Analog Inputs.
34	CLK+	Input	ADC Clock Input-True.
33	CLK-	Input	ADC Clock Input-Complement.
3	AUXCLK+	Input	Auxiliary ADC Clock Input-True.
4	AUXCLK-	Input	Auxiliary ADC Clock Input-Complement.
Digital Inputs			
6	AUXCLKEN	Input	Auxiliary Clock Input Enable.
29	$\overline{\mathrm{OE}}$	Input	Digital Enable (Active Low) to Tristate Output Data Pins.
Digital Outputs			
26	D7+ (MSB)	Output	Output Data 7-True.
25	D7- (MSB)	Output	Output Data 7-Complement.
24	D6+	Output	Output Data 6-True.
23	D6-	Output	Output Data 6-Complement.
22	D5+	Output	Output Data 5-True.
21	D5-	Output	Output Data 5-Complement.
20	D4+	Output	Output Data 4-True.
19	D4-	Output	Output Data 4-Complement.

Pin No.	Mnemonic	Type	Description
16	D3+	Output	Output Data 3—True.
15	D3-	Output	Output Data 3—Complement.
14	D2+	Output	Output Data 2—True.
13	D2-	Output	Output Data 2—Complement.
12	D1+	Output	Output Data 1—True.
11	D1-	Output	Output Data 1—Complement.
10	D0+ (LSB)	Output	Output Data 0—True.
9	D0- (LSB)	Output	Output Data 0—Complement.
18	DCO+	Output	Data Clock Output—True.
17	DCO-	Output	Data Clock Output—Complement.
31	SPI Control Pins	Input	
32	SDIO/PWDN	Input/output	SPI Serial Clock.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, sample rate $=500 \mathrm{MSPS}, \mathrm{DCS}$ enable, 1.2 V p-p differential input, VIN $=-1.0 \mathrm{dBFS}, 64 \mathrm{k}$ sample, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 7. Single-Tone FFT with $f_{I N}=4.3 \mathrm{MHz}$

Figure 8. Single-Tone FFT with $f_{I N}=220.3 \mathrm{MHz}$

Figure 9. SFDR/SNR vs. Input Amplitude (AIN) with $f_{i N}=2.2 \mathrm{MHz}$

Figure 10. Single-Tone FFT with $f_{I N}=96.6 \mathrm{MHz}$

Figure 11. Two-Tone FFT with $f_{I N 1}=29.1 \mathrm{MHz}$ and $f_{I N 2}=32.1 \mathrm{MHz}$

Figure 12. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{I_{N 1}}=29.1 \mathrm{MHz}$ and $f_{I_{N 2}}=32.1 \mathrm{MHz}$

Figure 13. SNRFS/SFDR vs. Input Frequency $\left(f_{i N}\right)$ and Temperature

Figure 14. Supply Current and Power vs. Encode

Figure 15. DNL Error with $f_{I N}=4.3 \mathrm{MHz}$

Figure 16. Alias Spur vs. Coarse Timing Adjustment and Temperature

Figure 17. INL Error with $f_{I N}=4.3 \mathrm{MHz}$

EQUIVALENT CIRCUITS

Figure 18. Clock Inputs

Figure 19. Analog Inputs ($V_{C M L}=\sim 1.4 \mathrm{~V}$)

Figure 21. SCLK, $\overline{O E}, ~ A U X C L K E N$

Figure 22. SDIO

Figure 23. LVDS Output Driver

THEORY OF OPERATION

The AD9286 is a pipeline-type converter. The input buffers are differential, and both sets of inputs are internally biased. This allows the use of ac or dc input modes. A sample-and-hold amplifier is incorporated into the first stage of the multistage pipeline converter core. The output staging block aligns the data, carries out error correction for the pipeline stages, and feeds that data to the output interleave block and, finally, to the output buffers. All user-selected options are programmed through dedicated digital input pins or a serial port interface (SPI).

ADC ARCHITECTURE

Each interleaving channel of the AD9286 consists of a differential input buffer followed by a sample-and-hold amplifier (SHA). This SHA is followed by a pipeline switched-capacitor ADC. The quantized outputs from each stage are combined into a final 8 -bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample, whereas the remaining stages operate on preceding samples.
Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched-capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage consists of a flash ADC.
The input stage contains a differential SHA that can be ac- or dc-coupled in differential or single-ended mode. The output staging block aligns the data, carries out the error correction, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.
The outputs from both interleaving channels are time interleaved to achieve an effective 500 MSPS.

ANALOG INPUT CONSIDERATIONS

The analog inputs of the AD9286 are differentially buffered. For best dynamic performance, the source impedances driving VIN1+, VIN1-, VIN2+, and VIN2- should be matched such that common-mode settling errors are symmetrical. Because the AD9286 interleaves two ADC cores, special attention should be given, during board layout, to the symmetry of the two analog paths. Mismatch introduces undesired distortion. The analog inputs are optimized to provide superior wideband performance and must be driven differentially. SNR and SINAD performance degrades significantly if the analog inputs are driven with a single-ended signal.
A wideband transformer, such as Mini-Circuits ${ }^{\circ}$ ADT1-1WT, can provide the differential analog inputs for applications that require a single-ended-to-differential conversion. Both analog inputs are self-biased by an on-chip resistor divider to a nominal 1.4 V .

Differential Input Configurations

Optimum performance is achieved when driving the AD9286 in a differential input configuration. For baseband applications, the ADA4937-1 differential driver provides excellent performance and a flexible interface to the ADC (see Figure 24). The output common-mode voltage of the AD9286 is easily set to 1.4 V , and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal.

Figure 24. Differential Input Configuration Using the ADA4937-1
The AD9286 can also be driven passively with a differential transformer-coupled input (see Figure 25). To bias the analog input, the VCM voltage can be connected to the center tap of the secondary winding of the transformer.

Figure 25. Differential Transformer-Coupled Configuration
The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few megahertz (MHz). Excessive signal power can also cause core saturation, which leads to distortion.

VOLTAGE REFERENCE

An internal differential voltage reference creates positive and negative reference voltages that define the 1.2 V p-p fixed span of the ADC core. This internal voltage reference can be adjusted by means of SPI control. It can also be driven externally with an off-chip stable reference. See the Memory Map Register Descriptions section for more details.

RBIAS

The AD9286 requires the user to place a $10 \mathrm{k} \Omega$ resistor between the RBIAS pin and ground. This resistor, which is used to set the master current reference of the ADC core, should have a 1% tolerance.

CLOCK INPUT CONSIDERATIONS

For optimum performance, clock the AD9286 sample clock inputs, CLK+ and CLK- (and, optionally, AUXCLK+ and AUXCLK-), with a differential signal. The signal is typically ac-coupled into the CLK+ and CLK- pins via a transformer or capacitors.

Clock Input Options

The AD9286 has a very flexible clock input structure. The clock input can be an LVDS, LVPECL, or sine wave signal. Each configuration that is described in this section applies to both CLK+ and CLK- and AUXCLK+ and AUXCLK-, when necessary.
Figure 26 and Figure 27 show two preferred methods for clocking the AD9286. A low jitter clock source is converted from a single-ended signal to a differential signal using either an RF transformer or an RF balun. The back-to-back Schottky diodes across the transformer/balun secondary limit clock excursions into the AD9286 to approximately 0.8 V p-p differential.
This limit helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9286, while preserving the fast rise and fall times of the signal that are critical to low jitter performance.

Figure 26. Transformer-Coupled Differential Clock

Figure 27. Balun-Coupled Differential Clock
If a low jitter clock source is not available, another option is to ac couple a differential PECL signal to the sample clock input pins, as shown in Figure 28. The AD9510/AD9511/AD9512/ AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer excellent jitter performance.

A third option is to ac couple a differential LVDS signal to the sample clock input pins, as shown in Figure 29. The AD9510/ AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer excellent jitter performance.

Clocking Modes

The AD9286 powers up as a single-channel converter with interleaving enabled. In this mode, a single high speed clock, driving CLK+ and CLK-, is divided down into two half-speed clocks running 180° out of phase with each other, each driving their respective ADC core. By strapping the two analog inputs together externally, the AD9286 operates as a single 500 MSPS ADC.
Because the high sample rate is achieved by interleaving two ADC cores, mismatch between the cores, board layout, and clock timing can cause unwanted distortion. The AD9286 has been designed with two well-matched ADC cores to minimize mismatch. To aid the user in removing timing errors, the AD9286 provides both fine and coarse timing adjustments, per channel, through SPI. These features are available at Register 0x37 (fine) and Register 0x38 (coarse).
The AD9286 supports a mode that allows the user to provide two separate half-speed clocks, bypassing the internal clock timing circuits and permitting external control of the clock timing relationship for each interleave channel. When the sample mode is set to simultaneous (Address 0×09, Bit $3=1$) and the AUXCLKEN pin is tied to DRVDD, the AD9286 expects a second clock on its auxiliary clock input (AUXCLK+, AUXCLK-).

In this mode, the AD9286 can also function as a dual 8-bit, 250 MSPS converter. This may be useful in applications where both a single 8-bit, 500 MSPS and a dual 8-bit, 250 MSPS converter are needed. The clock management block requires that CLK \pm and AUXCLK \pm be either 0° or 180°, relative to each other. If this requirement is satisfied, the circuit correctly time aligns the data coming out of each ADC core.

If the user desires to operate the AD9286 as a dual 8-bit, 250 MSPS converter and supply only a single clock, this is achieved by setting sample mode to simultaneous, with the AUXCLKEN pin tied to AGND. In this mode, the two ADC cores sample simultaneously. For a summary of all supported clocking modes, see Table 9.
The AD9286 supports the clocking of each internal ADC with separate clocks. By setting AUXCLKEN to DRVDD, the user can supply a differential auxiliary clock to AUXCLK+ and AUXCLK-. In this mode, each internal ADC core has a maximum sample rate of 250 MSPS. This mode bypasses the internal timing adjustment blocks.

Interleave Performance

The AD9286 achieves 500 MSPS conversion by time interleaving two 250 MSPS ADC channels. Although this technique is sufficient in achieving 8 -bit performance, quantifiable errors are introduced. These errors come from three sources: gain mismatch, imperfect out-of-phase sampling, and offset mismatch between the two channels. Distortion appears spectrally in two distinct ways: gain and timing mismatch appear as an alias spur (see Equation 1), and offset mismatch appears as a spur located at the Nyquist rate of the converter (see Equation 2).

$$
\begin{equation*}
f_{A L I A S_{-} S U U R}=f_{S} / 2-f_{I N} \tag{1}
\end{equation*}
$$

where:
f_{s} is the interleaved sample rate.
$f_{I N}$ is the analog input frequency.

$$
\begin{equation*}
f_{\text {OFFSET_SPUR }}=f_{s} / 2 \tag{2}
\end{equation*}
$$

where f_{s} is the interleaved sample rate.
The magnitude of the alias spur (AS) contributed by a gain error is shown in Equation 3.

$$
\begin{equation*}
A S_{G A I N}(\mathrm{dBc})=20 \times \log \left(A S_{G A I N}\right)=20 \times \log \left(G_{E} / 2\right) \tag{3}
\end{equation*}
$$

where:
$G_{E}=$ Gain_Error_Ratio $=1-V_{F S I} / V_{F S 2}$.
$V_{F S n}$ is the full-scale voltage of Core n.
$\mathrm{AS}_{\mathrm{GAIN}}$, as a function of gain mismatch, is shown in Figure 30.

Figure 30. $A S_{G A I N}$ as a Function of Gain Mismatch
The magnitude of the alias spur (AS) contributed by a timing error is shown in Equation 4.

$$
\begin{equation*}
A S_{\text {TIMING }}(\mathrm{dBc})=20 \times \log \left(A S_{\text {TIMING }}\right)=20 \times \log \left(\theta_{E P} / 2\right) \tag{4}
\end{equation*}
$$

where $\theta_{E P}=\omega_{A} \times \Delta t_{E}$ (Radians), with ω_{A} as the analog input frequency and Δt_{E} as the clock skew error.
$\mathrm{AS}_{\text {Timing }}$, as a function of timing error, is shown in Figure 31.

Figure 31. AStiming as a Function of Timing Error
The total magnitude of the alias spur (AS) is shown in Equation 5.

$$
\begin{equation*}
A S_{\text {TOTAL }}(\mathrm{dB})=20 \times \log \sqrt{ }\left(\left(A S_{G A I N}\right)^{2}+\left(A S_{\text {TIMING }}\right)^{2}\right) \tag{5}
\end{equation*}
$$

Table 9. Supported Clocking Modes

Effective Number of Channels	Maximum CLK Frequency	AUXCLK Frequency	AUXCLK Phase Relative to CLK	AUXCLKEN	SPI Register, Address 0x09, Bit 3	Clock Timing Adjust
One	500 MSPS	N/A	N/A	Low	0	Internal
Two	250 MSPS	N/A	N/A	Low	1	N/A
Two	250 MSPS	CLK	0°	High	1	N/A
One	250 MSPS	CLK	180°	High	1	External

The magnitude of the offset spur (OS) is shown in Equation 6.

$$
\begin{equation*}
\operatorname{OS}_{\text {OFFSET }}(\mathrm{dBFS})=20 \times \log \left(\text { OFFSET } \times 2 / 2^{\text {RESOLUTION }}\right) \tag{6}
\end{equation*}
$$

where:
OFFSET is the channel-to-channel offset in codes.
RESOLUTION is the resolution of the converter (eight bits).
OS $_{\text {offset }}$, as a function of offset mismatch, is shown in Figure 32.

Figure 32. OS offset as a Function of Offset Mismatch

Due to the orthogonal relationship between the gain and timing errors, it is impossible to correct for one with the other. To minimize channel-to-channel gain error, the AD9286 is designed to have very close gain matching between the two channels. Address 0x37 and Address 0×38 of the SPI provide the ability to add delay to either clock path to realize a minimum clock skew error. Also provided via the SPI, in Address 0x10, is the ability to minimize the channel-to-channel offset error.

DIGITAL OUTPUTS

Digital Output Enable Function ($\overline{(O E)}$

The AD9286 has a flexible three-state ability for the digital output pins. The three-state mode is enabled using the $\overline{\mathrm{OE}}$ pin. When $\overline{\mathrm{OE}}$ is set to logic level high, the output drivers for both data buses are placed into a high impedance state.

BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST

The AD9286 includes a built-in self-test feature that is designed to enable verification of the integrity of each channel, as well as facilitate board level debugging. A built-in self-test (BIST) feature that verifies the integrity of the digital datapath of the AD9286 is included. Various output test options are also provided to place predictable values on the outputs of the AD9286.

BUILT-IN SELF-TEST (BIST)

The BIST is a thorough test of the digital portion of the selected AD9286 signal path. Perform the BIST test after a reset to ensure that the part is in a known state. During BIST, data from an internal pseudorandom noise (PN) source is driven through the digital datapath of both channels, starting at the ADC block output. At the datapath output, CRC logic calculates a signature from the data. The BIST sequence runs for 512 cycles and then stops. When the test is completed, the BIST compares the signature results with a predetermined value. If the signatures match, the BIST sets Bit 0 of Register 0x0E, signifying that the test passed. If the BIST test fails, Bit 0 of Register 0x0E is cleared. The outputs are connected during this test, so the PN sequence can be observed as it runs.

Writing a value of $0 x 05$ to Register 0x0E runs the BIST. This enables the Bit 0 (BIST enable) of Register 0x0E and resets the PN sequence generator, Bit 2 (BIST init) of Register 0x0E. At the completion of the BIST, Bit 0 of Register $0 \times 0 \mathrm{E}$ is automatically cleared. The PN sequence can be continued from its last value by writing a 0 to Bit 2 of Register 0x0E. However, if the PN sequence is not reset, the signature calculation does not equal the predetermined value at the end of the test. At that point, the user must rely on verifying the output data.

OUTPUT TEST MODES

The output test options are described in Table 13 at Address 0x0D. When an output test mode is enabled, the analog section of the ADC is disconnected from the digital back-end blocks and the test pattern is run through the output formatting block. Some test patterns are subject to output formatting, and some are not. The PN generators from the PN sequence tests can be reset by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be performed with or without an analog signal (if present, the analog signal is ignored), but they do require an encode clock. For more information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

SERIAL PORT INTERFACE (SPI)

The AD9286 serial port interface (SPI) allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. The SPI gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from via the port. Memory is organized into bytes that can be further divided into fields, which are documented in the Memory Map section. For detailed operational information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

CONFIGURATION USING THE SPI

Three pins define the SPI of this ADC: SCLK, SDIO, and CSB (see Table 10). SCLK (a serial clock) is used to synchronize the read and write data presented from and to the ADC. SDIO (serial data input/output) is a dual-purpose pin that allows data to be sent to and read from the internal ADC memory map registers. CSB (chip select bar) is an active low control that enables or disables the read and write cycles.

Table 10. Serial Port Interface Pins

Pin	Function
SCLK	Serial clock. A serial shift clock input that is used to synchronize serial interface reads and writes.
SDIOSerial data input/output. A dual-purpose pin that typically serves as an input or an output, depending on the instruction being sent and the relative position in the timing frame. Chip select bar. An active low control that gates the read and write cycles.	

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Figure 33.
Other modes involving CSB are available. The CSB pin can be held low indefinitely, which permanently enables the device; this is called streaming. CSB can stall high between bytes to allow for additional external timing. When the CSB pin is tied high, SPI functions are placed in high impedance mode. This mode turns on any SPI pin secondary functions.
During the instruction phase, a 16-bit instruction is transmitted. Data follows the instruction phase, and its length is determined by the W0 and W1 bits, as shown in Figure 33.

All data is composed of 8-bit words. The first bit of the first byte in a multibyte serial data transfer frame indicates whether a read command or a write command is issued. This allows the serial data input/output (SDIO) pin to change direction, from an input to an output, at the appropriate point in the serial frame.
In addition to word length, the instruction phase determines whether the serial frame is a read or write operation, allowing the serial port to be used both to program the chip and to read the contents of the on-chip memory. If the instruction is a readback operation, the serial data input/output (SDIO) pin changes direction, from an input to an output, at the appropriate point in the serial frame.
Data can be sent in MSB-first mode or in LSB-first mode. MSB first is the default on power-up and can be changed via the SPI port configuration register. For more information about this and other features, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

Figure 33. Serial Port Interface Timing Diagram

HARDWARE INTERFACE

The pins described in Table 10 constitute the physical interface between the programming device of the user and the serial port of the AD9286. The SCLK and CSB pins function as inputs when using the SPI interface. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.
The SPI interface is flexible enough to be controlled by either FPGAs or microcontrollers. One method for SPI configuration is described in detail in the AN-812 Application Note, Micro-controller-Based Serial Port Interface (SPI) Boot Circuit.
The SPI port should not be active during periods when the full dynamic performance of the converter is required. Because the SCLK, CSB, and SDIO signals are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD9286 to prevent these signals from transitioning at the converter inputs during critical sampling periods.
SDIO/PWDN serves a dual function when the SPI interface is not being used. When the pin is strapped to AVDD or ground during device power-on, it is associated with a specific function. The mode selection table (see Table 11) describes the strappable functions that are supported on the AD9286.

Table 11. Mode Selection

Pin	External Voltage	Configuration
SDIO/PWDN	AVDD (default)	Chip in full power-down
$\overline{\mathrm{OE}}$	AGND	Normal operation
	AVDD	Outputs in high impedance
	AGND (default)	Outputs enabled

MEMORY MAP

READING THE MEMORY MAP REGISTER TABLE

Each row in the memory map register table (see Table 13) has eight bit locations. The memory map is roughly divided into three sections: the chip configuration registers (Address 0×00 to Address 0x02), the device index and transfer registers (Address 0×05 and Address 0 xFF), and the program registers (Address 0x08 to Address 0x38).
Table 13 documents the default hexadecimal value for each hexadecimal address shown. The column with the heading Bit 7 (MSB) is the start of the default hexadecimal value given. For more information on this function and others, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI. This document details the functions controlled by Register 0×00 to Register 0xFF.

Open Locations

All address and bit locations that are not included in the SPI map are not currently supported for this device. Unused bits of a valid address location should be written with 0 s. Writing to these locations is required only when part of an address location is open. If the entire address location is open, it is omitted from the SPI map (for example, Address 0x13) and should not be written.

Default Values

After the AD9286 is reset, critical registers are loaded with default values. The default values for the registers are given in the memory map register table (see Table 13).

Logic Levels

An explanation of logic level terminology follows:

- "Bit is set" is synonymous with "bit is set to Logic 1 " or "writing Logic 1 for the bit."
- "Bit is cleared" is synonymous with "bit is set to Logic 0" or "writing Logic 0 for the bit."

Transfer Register Map

Address 0×08 to Address 0×38 are shadowed. Writes to these addresses do not affect part operation until a transfer command is issued by writing 0 x 01 to Address 0 xFF , setting the transfer bit. Setting the transfer bit allows these registers to be updated internally and simultaneously. The internal update takes place when the transfer bit is set, and then the bit autoclears.

Channel-Specific Registers

Some channel setup functions can be programmed differently for each channel. In these cases, channel address locations are internally duplicated for each channel. These registers and bits are designated in the memory map register table as local. These local registers and bits can be accessed by setting the appropriate Channel 1 (Bit 0) or Channel 2 (Bit 1) bits in Register 0x05.
If both bits are set, the subsequent write affects the registers of both channels. In a read cycle, set only Channel 1 or Channel 2 to read one of the two registers. If both bits are set during an SPI read cycle, the part returns the value for Channel 1. Registers and bits designated as global in the memory map register table affect the entire part or the channel features for which independent settings are not allowed between channels. The settings in Register 0x05 do not affect the global registers and bits.

AD9286

MEMORY MAP REGISTER TABLE

All address and bit locations that are not included in Table 13 are not currently supported for this device.
Table 13. Memory Map Registers

Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$	Default Value (Hex)	Default Notes/ Comments
0x0F	ADC input (global/local)	Open					Analog disconnect (local)	Commonmode input enable (global)	Open	0x02	
0x10	Offset (local)	Open				Offset adjust (twos complement format)$\begin{gathered} 0111:+7 \\ 0110:+6 \\ \ldots \\ 0001:+1 \\ 0000: 0 \\ 1111:-1 \\ \ldots \\ 1001:-7 \\ 1000:-8 \end{gathered}$				0x00	Device offset trim
0x14	Output mode (local)		Open		Output enable	Open	Output invert	Data form 00: offset 01: twos co 10: Gray 11: reserv	at select binary mplement de d	0x00	Configures the outputs and the format of the data
0x16	Output phase (global)	DCO invert	Open							0x00	
0x18	Voltage reference (global)	Open			Voltage reference and input full-scale adjustment (see Table 14)					0x00	Selects/ adjusts $\mathrm{V}_{\text {ReF }}$
0x24	MISR LSB (local)	LSBs of multiple input shift register (MISR)								0x00	MISR least significant byte; read only
0×25	MISR MSB (local)	MSBs of multiple input shift register (MISR)								0x00	MISR most significant byte; read only
0x37	Timing adjust (local)	Open				$\begin{gathered} \text { Fine timing skew } \\ \text { 0000: } 0.0 \mathrm{ps} \\ 0001: 0.075 \mathrm{ps} \\ \ldots \\ \text { 1111: } 1.125 \mathrm{ps} \end{gathered}$				0x00	Determines the clock delay that is introduced into the sampling path
0x38		Open				$\begin{gathered} \text { Coarse timing skew } \\ \text { 0000: } 0.0 \mathrm{ps} \\ 0001: 1.2 \mathrm{ps} \\ \ldots \\ 1111: 18 \mathrm{ps} \end{gathered}$				0x00	Determines the clock delay that is introduced into the sampling path

MEMORY MAP REGISTER DESCRIPTIONS

For more information about functions controlled in Register 0x00 to Register 0xFF, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.
Voltage Reference (Register 0x18)
Bits[7:5]—Reserved
Bits[4:0]-Voltage Reference
Bits[4:0] scale the internally generated voltage reference and, consequently, the full scale of the analog input. Within this register, the reference driver can be configured to be more easily driven externally by reducing the capacitive loading.

The relationship between the $V_{\text {ref }}$ voltage and the input full scale is described by Equation 7 . See Table 14 for a complete list of register settings.

Input_Full_Scale $=V_{\text {REF }} \times 1.2$

Table 14. $\mathrm{V}_{\text {ref }}$ and Input Full Scale (Register 0x18)

Value	VREF (V)	Full Scale (V)
0x14	0.844	1.013
0x15	0.857	1.028
0x16	0.87	1.044
0x17	0.883	1.060
0x18	0.896	1.075
0x19	0.909	1.091
0x1A	0.922	1.106
0x1B	0.935	1.122
0x1C	0.948	1.138
0x1D	0.961	1.153
0x1E	0.974	1.169
0x1F	0.987	1.184
0x00	1	1.200
0x01	1.013	1.216
0x02	1.026	1.231
0x03	1.039	1.247
0x04	1.052	1.262
0x05	1.065	1.278
0x06	1.078	1.294
0x07	1.091	1.309
0x08	1.104	1.325
0x09	1.117	1.340
0x0A	1.13	1.356
0x0B	1.143	1.372
0x0C	1.156	1.387
0x0D	1.169	1.403
0x0E	1.182	1.418
0x0F	1.195	1.434
0x10	1.208	1.450
0x11	1.221	1.465
0x12	1.234	1.481
0x13	External	External $\times 1.2$

APPLICATIONS INFORMATION
 DESIGN GUIDELINES

Before starting design and layout of the AD9286 as a system, it is recommended that the designer become familiar with these guidelines, which discuss the special circuit connections and layout requirements that are needed for certain pins.

Power and Ground Recommendations

When connecting power to the AD9286, it is strongly recommended that two separate supplies be used. Use one 1.8 V supply for analog (AVDD); use a separate 1.8 V supply for the digital output supply (DRVDD). If a common 1.8 V AVDD and DRVDD supply must be used, the AVDD and DRVDD domains must be isolated with a ferrite bead or filter choke and separate decoupling capacitors. Several different decoupling capacitors can be used to cover both high and low frequencies. Locate these capacitors close to the point of entry at the printed circuit board (PCB) level and close to the pins of the part, with minimal trace length.
A single PCB ground plane should be sufficient when using the AD9286. With proper decoupling and smart partitioning of the PCB analog, digital, and clock sections, optimum performance is easily achieved.

Exposed Paddle Thermal Heat Sink Recommendations

The exposed paddle ($\operatorname{Pin} 0$) is the only ground connection for the AD9286; therefore, it must be connected to analog ground (AGND) on the customer PCB. To achieve the best electrical and thermal performance, mate an exposed (no solder mask), continuous copper plane on the PCB to the AD9286 exposed paddle, Pin 0.

The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. Fill or plug these vias with nonconductive epoxy.

To maximize the coverage and adhesion between the ADC and the PCB, a silkscreen should be overlaid to partition the continuous plane on the PCB into several uniform sections. This provides several tie points between the ADC and the PCB during the reflow process. Using one continuous plane with no partitions guarantees only one tie point between the ADC and the PCB. For detailed information about packaging and PCB layout of chip scale packages, see the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP), at www.analog.com.

VCM

The VCM pin should be decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor.

RBIAS

The AD9286 requires that a $10 \mathrm{k} \Omega$ resistor be placed between the RBIAS pin and ground. This resistor, which sets the master current reference of the ADC core, should have at least a 1% tolerance.

Reference Decoupling

Decouple the VREF pin externally to ground with a low ESR, $1.0 \mu \mathrm{~F}$ capacitor in parallel with a low ESR, $0.1 \mu \mathrm{~F}$ ceramic capacitor.

SPI Port

The SPI port should not be active during periods when the full dynamic performance of the converter is required. Because the SCLK, CSB, and SDIO signals are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD9286 to prevent these signals from transitioning at the converter inputs during critical sampling periods.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-2
Figure 34. 48-Lead Lead Frame Chip Scale Package [LFCSP]
$7 \mathrm{~mm} \times 7 \mathrm{~mm}$ Body and 0.75 mm Package Height
Dimensions shown in millimeters

ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature Range	Package Description	Package Option
AD9286BCPZ-500	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-48-14
AD9286BCPZRL7-500	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48-Lead Lead Frame Chip Scale Package [LFCSP]	CP-48-14
AD9286-500EBZ		Evaluation Board	

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and an explanation of how these tests were completed.
 ${ }^{2}$ See the Interleave Performance section.
 ${ }^{3}$ Measured with a low frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

[^1]: ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and an explanation of how these tests were completed.
 ${ }^{2}$ Specified for LVDS and LVPECL only.

