Data Sheet

FEATURES

Parallel LVDS (DDR) outputs
1.1 W total power per channel at 500 MSPS (default settings)

SFDR $=\mathbf{8 5}$ dBFS at $170 \mathrm{MHz} \mathrm{fin}^{(500 \mathrm{MSPS})}$
SNR = 68.6 dBFS at $\left.170 \mathrm{MHz} \mathrm{fiN}^{(500} \mathbf{~ M S P S}\right)$
ENOB $=10.9$ bits at $170 \mathrm{MHz} \mathrm{f}_{\mathrm{iN}}$
DNL $= \pm 0.5$ LSB
INL = ± 2.5 LSB
Noise density $=-153 \mathrm{dBFS} / \mathrm{Hz}$ at 500 MSPS
1.25 V, 2.50 V, and 3.3 V supply operation

No missing codes

Internal analog-to-digital converter (ADC) voltage reference
Flexible input range and termination impedance
1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal)
$400 \Omega, 200 \Omega, 100 \Omega$, and 50Ω differential
SYNC \pm input allows multichip synchronization
DDR LVDS (ANSI-644 levels) outputs
2 GHz usable analog input full power bandwidth
>96 dB channel isolation/crosstalk
Amplitude detect bits for efficient AGC implementation
Two integrated wideband digital processors per channel
12-bit numerically controlled oscillator (NCO)
3 cascaded half-band filters
Differential clock inputs
Serial port control
Integer clock divide by 2, 4, or 8
Small signal dither

APPLICATIONS

Communications

Diversity multiband, multimode digital receivers 3G/4G, TD-SCDMA, W-CDMA, MC-GSM, LTE
General-purpose software radios
Ultrawideband satellite receiver
Instrumentation (spectrum analyzers, network analyzers, integrated RF test solutions)
Radar
Digital oscilloscopes
High speed data acquisition systems
DOCSIS CMTS upstream receiver paths
HFC digital reverse path receivers

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The AD9684 is a dual, 14 -bit, 500 MSPS ADC. The device has an on-chip buffer and a sample-and-hold circuit designed for low power, small size, and ease of use. This product is designed for sampling wide bandwidth analog signals. The AD9684 is optimized for wide input bandwidth, a high sampling rate, excellent linearity, and low power in a small package.
The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth buffered inputs, supporting a variety of user selectable input ranges. An integrated voltage reference eases design considerations. Each ADC data output is internally connected to an optional decimate by 2 block.

The analog input and clock signals are differential inputs. Each ADC data output is internally connected to two digital downconverters (DDCs). Each DDC consists of four cascaded signal processing stages: a 12-bit frequency translator (NCO), and three half-band decimation filters supporting a divide by factor of two, four, and eight.

Rev. 0

AD9684

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Product Highlights 3
Specifications 4
DC Specifications 4
AC Specifications 5
Digital Specifications 6
Switching Specifications 7
Timing Specifications 8
Absolute Maximum Ratings 16
Thermal Characteristics 16
ESD Caution 16
Pin Configuration and Function Descriptions 17
Typical Performance Characteristics 19
Equivalent Circuits 22
Theory of Operation 24
ADC Architecture 24
Analog Input Considerations 24
Voltage Reference 26
Clock Input Considerations 27
Power-Down/Standby Mode. 28
Temperature Diode 28
ADC Overrange and Fast Detect. 29
ADC Overrange 29
Fast Threshold Detection (FD_A and FD_B) 29
Signal Monitor 30
Digital Downconverters (DDCs) 31
DDC I/Q Input Selection 31

REVISION HISTORY

5/15—Revision 0: Initial Version

DDC I/Q Output Selection 31
DDC General Description 31
Frequency Translation 37
General Description 37
DDC NCO Plus Mixer Loss and SFDR 38
Numerically Controlled Oscillator 38
FIR Filters 40
General Description 40
Half-Band Filters 41
DDC Gain Stage 42
DDC Complex to Real Conversion Block 42
DDC Example Configurations 43
Digital Outputs 47
Digital Outputs 47
ADC Overrange 47
Multichip Synchronization 48
SYNC \pm Setup and Hold Window Monitor. 49
Test Modes 51
ADC Test Modes 51
Serial Port Interface (SPI) 52
Configuration Using the SPI 52
Hardware Interface 52
SPI Accessible Features 52
Memory Map 53
Reading the Memory Map Register Table 53
Memory Map Register Table 54
Applications Information 63
Power Supply Recommendations 63
Outline Dimensions 64
Ordering Guide 64

The AD9684 has several functions that simplify the automatic gain control (AGC) function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC . If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly reduce the system gain to avoid an overrange condition at the ADC input. In addition to the fast detect outputs, the AD9684 also offers signal monitoring capability. The signal monitoring block provides additional information about the signal that the ADC digitized.
The dual ADC output data is routed directly to the one external, 14-bit LVDS output port, supporting double data rate (DDR) formatting. An external data clock and status bit are offered for data capture flexibility.
The LVDS outputs have several configurations, depending on the acceptable rate of the receiving logic device and the sampling rate of the ADC. Multiple device synchronization is supported through the SYNC \pm input pins.

The AD9684 has flexible power-down options that allow significant power savings when desired. All of these features can be programmed using a 1.8 V to 3.4 V capable 3 -wire serial port interface (SPI).
The AD9684 is available in a Pb -free, 196-ball ball grid array (BGA) and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range. This product is protected by a U.S. patent.

PRODUCT HIGHLIGHTS

1. Wide full power bandwidth supports intermediate frequency (IF) sampling of signals up to 2 GHz .
2. Buffered inputs with programmable input termination ease filter design and implementation.
3. Four integrated wideband decimation filters and NCO blocks supporting multiband receivers.
4. Flexible SPI controls various product features and functions to meet specific system requirements.
5. Programmable fast overrange detection and signal monitoring.
6. SYNC \pm input allows synchronization of multiple devices.
7. $12 \mathrm{~mm} \times 12 \mathrm{~mm}, 196$-ball BGA_ED.

AD9684

SPECIFICATIONS

DC SPECIFICATIONS

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}$, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

Parameter	Temperature	Min	Typ	Max	Unit
RESOLUTION	Full	14			Bits
ACCURACY					
No Missing Codes	Full	Guaranteed			
Offset Error	Full	-0.3	0	+0.3	\% FSR
Offset Matching	Full		0	+0.3	\% FSR
Gain Error	Full	-6.5	0	+6.5	\% FSR
Gain Matching	Full		0	+5.0	\% FSR
Differential Nonlinearity (DNL)	Full	-0.6	± 0.5	+0.7	LSB
Integral Nonlinearity (INL)	Full	-4.5	± 2.5	+5.0	LSB
TEMPERATURE DRIFT					
Offset Error	$25^{\circ} \mathrm{C}$	± 3			ppm $/{ }^{\circ} \mathrm{C}$
Gain Error	$25^{\circ} \mathrm{C}$	-39			ppm/ ${ }^{\circ} \mathrm{C}$
INTERNAL VOLTAGE REFERENCE	Full	1.0			V
INPUT-REFERRED NOISE		2.63			
$\mathrm{V}_{\text {REF }}=1.0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$				LSB rms
ANALOG INPUTS					V p-p
Differential Input Voltage Range (Programmable)	Full		$2.06 \quad 2.06$		
Common-Mode Voltage (V_{cm})	$25^{\circ} \mathrm{C}$				
Differential Input Capacitance ${ }^{1}$	$25^{\circ} \mathrm{C}$		1.5		pF
Analog Input Full Power Bandwidth	$25^{\circ} \mathrm{C}$		2		GHz
POWER SUPPLY					
AVDD1	Full	1.22	1.25	1.28	V
AVDD2	Full	2.44	2.50	2.56	V
AVDD3	Full	3.2	3.3	3.4	V
DVDD	Full	1.22	1.25	1.28	V
DRVDD	Full	1.22	1.25	1.28	V
SPIVDD	Full	1.22	1.8	3.4	V
$\mathrm{I}_{\text {avdd }}$	Full		448	503	mA
IAvDD^{2}	Full		396	455	mA
lavdd	Full		103	124	mA
lovid	Full		108	127	mA
Idrvdo	Full		106	119	mA
Ispivd	Full		2	6	mA
POWER CONSUMPTION					
Total Power Dissipation ${ }^{2}$	Full		2.2		W
Power-Down Dissipation	Full		710		mW
Standby	Full		1.0		W

[^0]
Data Sheet

AC SPECIFICATIONS

$\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, SPIVDD $=1.8 \mathrm{~V}$, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	Temperature	Min	Typ	Max	Unit
ANALOG INPUT FULL SCALE	Full		2.06		$V \mathrm{p}$-p
NOISE DENSITY ${ }^{2}$	Full		-153		dBFS/Hz
SIGNAL-TO-NOISE RATIO (SNR) ${ }^{3}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	67.5	$\begin{aligned} & 69.2 \\ & 68.6 \\ & 68.4 \\ & 68.0 \\ & 64.4 \\ & 63.8 \\ & 60.5 \end{aligned}$		dBFS dBFS dBFS dBFS dBFS dBFS dBFS
SIGNAL-TO-NOISE RATIO AND DISTORTION RATIO (SINAD) ${ }^{3}$	$25^{\circ} \mathrm{C}$ Full $25^{\circ} \mathrm{C}$	67	$\begin{aligned} & 68.7 \\ & 68.5 \\ & 67.6 \\ & 67.2 \\ & 63.8 \\ & 62.5 \\ & 58.3 \end{aligned}$		dBFS dBFS dBFS dBFS dBFS dBFS dBFS
EFFECTIVE NUMBER OF BITS (ENOB) $\begin{aligned} & f_{\text {IN }}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{N}}=340 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{NH}}=765 \mathrm{MHz} \\ & \mathrm{fiN}=985 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=1950 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	10.8	$\begin{aligned} & 11.1 \\ & 10.9 \\ & 10.8 \\ & 10.8 \\ & 10.3 \\ & 10.1 \\ & 9.5 \end{aligned}$		Bits Bits Bits Bits Bits Bits Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) ${ }^{3}$ $\begin{aligned} & f_{f_{N}}=10 \mathrm{MHz} \\ & f_{\mathrm{N}}=170 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=340 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=765 \mathrm{MHz} \\ & \mathrm{fiN}=985 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=1950 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	76	$\begin{aligned} & 83 \\ & 85 \\ & 82 \\ & 86 \\ & 81 \\ & 76 \\ & 69 \end{aligned}$		dBFS dBFS dBFS dBFS dBFS dBFS dBFS
WORST HARMONIC, SECOND ORTHIRD ${ }^{3}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -83 \\ & -85 \\ & -82 \\ & -86 \\ & -81 \\ & -76 \\ & -69 \end{aligned}$	-76	dBFS dBFS dBFS dBFS dBFS dBFS dBFS

AD9684

Parameter ${ }^{1}$	Temperature	Min	Typ	Max	Unit
WORST OTHER, EXCLUDING SECOND ORTHIRD HARMONIC ${ }^{3}$					
$\mathrm{f}_{\mathrm{iN}}=10 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-93		dBFS
$\mathrm{fiN}_{\text {in }}=170 \mathrm{MHz}$	Full		-92	-76	dBFS
$\mathrm{fiN}_{\text {I }}=340 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-90		dBFS
$\mathrm{fiN}_{\mathrm{I}}=450 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-92		dBFS
$\mathrm{fiN}^{\text {¢ }}=765 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-89		dBFS
$\mathrm{fiN}^{\text {¢ }}=985 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-89		dBFS
$\mathrm{fiN}=1950 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-85		dBFS
TWO-TONE INTERMODULATION DISTORTION (IMD), $\mathrm{A}_{\text {IN1 }}$ AND $\mathrm{A}_{\text {IN } 2}=-7 \mathrm{dBFS}$					
$\mathrm{fiN}^{1}=185 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=188 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-88		dBFS
$\mathrm{ff}_{\mathrm{IN} 1}=338 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{IN} 2}=341 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		-87		dBFS
CROSSTALK ${ }^{4}$	$25^{\circ} \mathrm{C}$		96		dB
FULL POWER BANDWIDTH	$25^{\circ} \mathrm{C}$		2		GHz

${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.
${ }^{2}$ Noise density is measured at a low analog input frequency (30 MHz).
${ }^{3}$ See Table 9 for the recommended settings for full-scale voltage and buffer current control.
${ }^{4}$ Crosstalk is measured at 170 MHz with a -1.0 dBFS analog input on one channel and no input on the adjacent channel.

DIGITAL SPECIFICATIONS

AVDD1 $=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}$, specified maximum sampling rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Temperature	Min	Typ	Max	Unit
CLOCK INPUTS (CLK+, CLK-) Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance	Full Full Full Full Full	600	$\begin{aligned} & \quad \text { LVDS/LVPECL } \\ & 1200 \\ & 0.85 \\ & 35 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m V p-p \\ & V \\ & k \Omega \\ & p F \\ & \hline \end{aligned}$
SYNC INPUTS (SYNC+, SYNC-) Logic Compliance Differential Input Voltage Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance (Differential)	Full Full Full Full Full	$\begin{aligned} & 400 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \quad \text { LVDS/LVPECL } \\ & 1200 \\ & 0.85 \\ & 35 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m V p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY) Logic Compliance Logic 1 Voltage Logic 0 Voltage Input Resistance	Full Full Full Full	0	CMOS $0.8 \times$ SPIVDD $0.2 \times$ SPIVDD 30		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$
LOGIC OUTPUT (SDIO) Logic Compliance Logic 1 Voltage (loн $=800 \mu \mathrm{~A}$) Logic 0 Voltage (loL $=50 \mu \mathrm{~A})$	Full Full Full		CMOS $\begin{aligned} & 0.8 \times \text { SPIVDD } \\ & 0.2 \times \text { SPIVDD } \end{aligned}$		
LOGIC OUTPUTS (FD_A,FD_B) Logic Compliance Logic 1 Voltage Logic 0 Voltage Input Resistance	Full Full Full Full	0.8 0	CMOS SPIVDD 0 30		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$

Parameter	Temperature	Min	Typ	Max	Unit
DIGITAL OUTPUTS (Dx $\pm{ }^{1} \mathrm{DCO} \pm$, STATUS \pm)		LVDS			mV p-p
Logic Compliance	Full				
Differential Output Voltage	Full	230		430	
Output Common-Mode Voltage ($\mathrm{V}_{\text {cM }}$)					
AC-Coupled	$25^{\circ} \mathrm{C}$	0		1.8	V
Short-Circuit Current (IDSHORT)	$25^{\circ} \mathrm{C}$	-100		+100	mA
Differential Return Loss (RLDIFF) ${ }^{2}$	$25^{\circ} \mathrm{C}$	8			dB
Common-Mode Return Loss (RLcm) ${ }^{2}$	$25^{\circ} \mathrm{C}$	6			dB
Differential Termination Impedance	Full	80	100	120	Ω

${ }^{1}$ Where $\mathrm{x}=0$ to 13.
${ }^{2}$ Differential and common-mode return loss is measured from 100 MHz to $0.75 \mathrm{MHz} \times$ baud rate.

SWITCHING SPECIFICATIONS

AVDD1 $=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, SPIVDD $=1.8 \mathrm{~V}$, specified maximum sampling rate, 1.7 V p-p full-scale differential input, 1.0 V internal reference, $\mathrm{A}_{\mathrm{IN}}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Temperature	Min	Typ	Max	Unit
CLOCK					
Clock Rate (at CLK+/CLK- Pins)	Full	0.25		4	GHz
Maximum Sample Rate ${ }^{1}$	Full	500			MSPS
Minimum Sample Rate ${ }^{2}$	Full	250			MSPS
Clock Pulse Width					
High	Full	1000			ps
Low	Full	1000			ps
LVDS DATA OUTPUT PARAMETERS					
Data Propagation Delay (tpD) ${ }^{3}$	Full		2.225		ns
DCO \pm Propagation Delay (toco) ${ }^{3}$	Full		2.2		ns
DCO \pm to Data Skew					
Rising Edge Data (tskewr 3	Full	-150	-25	+100	ps
Falling Edge Data ($\left.\mathrm{t}_{\text {skewF }}\right)^{3}$	Full	850	1.025	1100	ps
STATUS \pm Propagation Delay (tstatus) ${ }^{4}$	Full		2.2		ns
DCO \pm to STATUS \pm Skew (trrame) ${ }^{4}$	Full	-150	-25	+100	ps
Data Propagation Delay (tpo ${ }^{3}$	Full		2.225		ns
DCO \pm Propagation Delay (toco ${ }^{3}$	Full		2.2		ns
LATENCY ${ }^{5}$					
Pipeline Latency	Full		35		Clock cycles
Fast Detect Latency	Full			28	Clock cycles
HB1 Filter Latency ${ }^{3}$	Full		50		Clock cycles
HB1 + HB2 Filter Latency ${ }^{3}$	Full		101		Clock cycles
HB1 + HB2 + HB3 Filter Latency ${ }^{3}$	Full		217		Clock cycles
HB1 + HB2 + HB3 + HB4 Filter Latency ${ }^{3}$	Full		433		Clock cycles
Fast Detect Latency	Full		28		Clock cycles
Wake-Up Time ${ }^{6}$					
Standby	$25^{\circ} \mathrm{C}$		1		ms
Power-Down	$25^{\circ} \mathrm{C}$			4	ms

AD9684

Parameter	Temperature	Min	Typ \quad Max
Unit			
APERTURE			
Aperture Delay $\left(\mathrm{t}_{\mathrm{A}}\right)$	Full	530	ps
Aperture Uncertainty (Jitter, $\left.\mathrm{t}_{\mathrm{j}}\right)$	Full	55	fs rms
Out of Range Recovery Time	Full	1	Clock Cycles

${ }^{1}$ The maximum sample rate is the clock rate after the divider.
${ }^{2}$ The minimum sample rate operates at 300 MSPS.
${ }^{3}$ This specification is valid for parallel interleaved, channel multiplexed, and byte mode output modes.
${ }^{4}$ This specification is valid for byte mode output mode only.
${ }^{5}$ No DDCs used.
${ }^{6}$ Wake-up time is defined as the time required to return to normal operation from power-down mode or standby mode.

TIMING SPECIFICATIONS

Table 5.

Parameter	Description	Min	Typ	Max	Unit
CLK \pm to SYNC \pm TIMING REQUIREMENTS	See Figure 2				
tsu_SR	Device clock to SYNC \pm setup time		117		ps
$\mathrm{t}_{\text {__SR }}$	Device clock to SYNC \pm hold time		-96		ps
SPI TIMING REQUIREMENTS	See Figure 3				
$t_{\text {DS }}$	Setup time between the data and the rising edge of SCLK	2			ns
t_{DH}	Hold time between the data and the rising edge of SCLK	2			ns
tcık	Period of the SCLK	40			ns
ts	Setup time between CSB and SCLK	2			ns
t_{H}	Hold time between CSB and SCLK	2			ns
$\mathrm{thIGH}^{\text {I }}$	Minimum period that SCLK must be in a logic high state	10			ns
tıow	Minimum period that SCLK must be in a logic low state	10			ns
ten_sdo	Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge (not shown in Figure 3)	10			ns
tils_sDo	Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge (not shown in Figure 3)	10			ns

Timing Diagrams

Figure 2. SYNC \pm Setup and Hold Timing

Figure 3. Serial Port Interface Timing Diagram

AD9684

Figure 5. Parallel Interleaved Mode—Two Converters, ≤ 14-Bit Data, Output Sample Rate <625 MSPS

Figure 6. Channel Multiplexed (Even/Odd) Mode—One Converter, $\leq 14-$ Bit Data

Figure 7. Channel Multiplexed (Even/Odd) Mode—Two Converters, $\leq 14-$ Bit Data, Output Sample Rate <625 MSPS

[^1]Figure 8. LVDS Byte Mode—Two Virtual Converters, One DDC, I/Q Data Decimate by 4

Figure 9. LVDS Byte Mode—Four Virtual Converters, Two DDCs, ≤ 16-Bit Data, I/Q Data Decimate by 8
Rev. $0 \mid$ Page 14 of 64

Figure 10. LVDS Byte Mode—Eight Virtual Converters, Four DDCs, $\leq 16-$ Bit Data, I/Q Data Decimate by 16

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Electrical	
AVDD1 to AGND	1.32 V
AVDD2 to AGND	2.75 V
AVDD3 to AGND	3.63 V
DVDD to DGND	1.32 V
DRVDD to DRGND	1.32 V
SPIVDD to AGND	3.63 V
AGND to DRGND	-0.3 V to +0.3 V
VIN $\pm x$ to AGND	3.2 V
SCLK, SDIO, CSB to AGND	-0.3 V to SPIVDD +0.3 V
VIN $\pm x$ Maximum Swing	4.3 V p-p
PDWN/STBY to AGND	-0.3 V to SPIVDD +0.3 V
Environmental	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(TcAsE)	$125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
(Ambient)	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

Typical $\theta_{\mathrm{JA}}, \theta_{\mathrm{J}}$, and θ_{JC} are specified vs. the number of printed circuit board (PCB) layers in different airflow velocities (in $\mathrm{m} / \mathrm{sec}$). Airflow increases heat dissipation effectively reducing θ_{JA} and θ_{JB}. The use of appropriate thermal management techniques is recommended to ensure that the maximum junction temperature does not exceed the limits shown in Table 7.

Table 7. Simulated Thermal Data

PCB Type	Airflow Velocity (m/sec)	$\theta_{\text {JA }}$	$\theta_{\text {נв }}$	$\theta_{\text {dc.top }}$	$\theta_{\text {лсввот }}$	Unit
JEDEC	0.0	$17.8^{1,2}$	$6.3^{1,3}$	4.71,5	$1.2^{1,5}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
2s2p	1.0	$15.6^{1,2}$	5.91,3	N/A ${ }^{4}$	$\mathrm{N} / \mathrm{A}^{4}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Board	2.5	15.0, ${ }^{1,2}$	5.71,3	N/A ${ }^{4}$	N/A ${ }^{4}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\begin{gathered} \text { 10-Layer } \\ \text { PCB } \end{gathered}$	0.0	13.8	4.6	4.7	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	1.0	12.7	4.6	N/A ${ }^{4}$	$\mathrm{N} / \mathrm{A}^{4}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	2.5	12.0	4.6	N/A ${ }^{4}$	N/A ${ }^{4}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.
${ }^{2}$ Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
${ }^{3}$ Per JEDEC JESD51-8 (still air).
${ }^{4}$ N/A means not applicable.
${ }^{5}$ Per MIL-STD 883, Method 1012.1.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 11. Pin Configuration (Top View)
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
Power Supplies A5, A10, B5, B10, C5, C10, D5, D7, D10, E5, E10 A4, A11, B4, B11, C4, C11, D4, D11, E4, E11, F4, F11, G11, J10 B1, B14, C1, C14 L1, L2, M3, M4 M5, M6, M7, N7, P7 J5, J11 K1, K2, L3, L4 M8 to M12, N8, P8 A1, A2, A3, A6, A9, A12, A13, A14, B2, B3, B6, B7, B8, B9, B12, B13, C2, C3, C6, C9, C12, C13, D1, D2, D3, D6, D8, D9, D12, D13, D14, E2, E3, E6 to E9, E12, E13, F2, F3, F5 to F10, F12, F13, G1 to G10, G12, G13, G14, H1, H2, H3, H5 to H9, H11 to H14, J2, J3, J6 to J9, J12, K3, K5 to K12, L5 to L12	AVDD1 AVDD2 AVDD3 DVDD DRVDD SPIVDD DGND DRGND AGND	$\begin{aligned} & \text { Supply } \\ & \text { Ground } \\ & \text { Ground } \\ & \text { Ground } \end{aligned}$	Analog Power Supply (1.25 V Nominal). Analog Power Supply (2.50 V Nominal). Analog Power Supply (3.3 V Nominal) Digital Power Supply (1.25 V Nominal). Digital Driver Power Supply (1.25 V Nominal). Digital Power Supply for SPI (1.8 V to 3.4 V). Ground Reference for DVDD. Ground Reference for DRVDD. Ground Reference for AVDD.
Analog $\begin{aligned} & \text { E14, F14 } \\ & \text { E1, F1 } \\ & \text { H10 } \end{aligned}$ A7, A8	$\begin{aligned} & \text { VIN-A, VIN+A } \\ & \text { VIN-B, VIN+B } \\ & \text { V_1P0 } \end{aligned}$ CLK+, CLK-	Input Input Input/DNC Input	ADC A Analog Input Complement/True. ADC B Analog Input Complement/True. 1.0 V Reference Voltage Input/Do Not Connect. This pin is configurable through the SPI as a no connect or as an input. Do not connect this pin if using the internal reference. This pin requires a 1.0 V reference voltage input if using an external voltage reference source. Clock Input True/Complement.

Pin No.	Mnemonic	Type	Description
CMOS Outputs J14, J1	FD_A, FD_B	Output	Fast Detect Outputs for Channel A and Channel B.
Digital Inputs C7, C8	SYNC+, SYNC-	Input	Active High LVDS SYNC Input-True/Complement.
Data Outputs N6, P6 M1, M2 N1, P1 N2, P2 N3, P3 N4, P4 N5, P5 N9, P9 N10, P10 N11, P11 N12, P12 N13, P13 N14, P14 M13, M14 L13, L14 K13, K14	$\begin{aligned} & \text { D0-, D0+ } \\ & \text { D1+, D1- } \\ & \text { D2-, D2+ } \\ & \text { D3-, D3+ } \\ & \text { D4-, D4+ } \\ & \text { D5-, D5+ } \\ & \text { D6-, D6+ } \\ & \text { D7-, D7+ } \\ & \text { D8-, D8+ } \\ & \text { D9-, D9+ } \\ & \text { D10-, D10+ } \\ & \text { D11-, D11+ } \\ & \text { D12-, D12+ } \\ & \text { D13-, D13+ } \\ & \text { STATUS-, STATUS+ } \\ & \text { DCO-, DCO+ } \\ & \hline \end{aligned}$	Output Output	LVDS Lane 0 Output Data-Complement/True. LVDS Lane 1 Output Data-True/Complement. LVDS Lane 2 Output Data-Complement/True. LVDS Lane 3 Output Data-Complement/True. LVDS Lane 4 Output Data-Complement/True. LVDS Lane 5 Output Data-Complement/True. LVDS Lane 6 Output Data-Complement/True. LVDS Lane 7 Output Data-Complement/True. LVDS Lane 8 Output Data-Complement/True. LVDS Lane 9 Output Data-Complement/True. LVDS Lane 10 Output Data-Complement/True. LVDS Lane 11 Output Data-Complement/True. LVDS Lane 12 Output Data-Complement/True. LVDS Lane 13 Output Data-Complement/True. LVDS Status Output Data-Complement/True. LVDS Digital Clock Output Data—Complement/True.
SPI Controls K4 J4 H4 J13	```SDIO SCLK CSB PDWN/STBY```	Input/output Input Input Input	SPI Serial Data Input/Output. SPI Serial Clock. SPI Chip Select (Active Low). Power-Down Input (Active High). The operation of this pin depends on the SPI mode and can be configured as powerdown or standby.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{AVDD} 1=1.2 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=1.2 \mathrm{~V}, \mathrm{DRVDD}=1.2 \mathrm{~V}, \mathrm{SPIVDD}=1.8 \mathrm{~V}$, sampling rate $=500 \mathrm{MHz}, 1.6 \mathrm{~V}$ p-p full-scale differential input, $\mathrm{A}_{\text {IN }}=-1.0 \mathrm{dBFS}$, default SPI settings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 256 \mathrm{kFFT}$ sample, unless otherwise noted.

Figure 12. Single Tone FFT with $f_{I N}=10.3 \mathrm{MHz}$

Figure 13. Single Tone FFT with $f_{I N}=170.3 \mathrm{MHz}$

Figure 14. Single Tone FFT with $f_{I N}=340.3 \mathrm{MHz}$

Figure 15. Single Tone FFT with $f_{I N}=450.3 \mathrm{MHz}$

Figure 16. Single Tone FFT with $f_{I N}=765.3 \mathrm{MHz}$

Figure 17. Single-Tone FFT with $f_{I N}=985.3 \mathrm{MHz}$

Figure 18. Single Tone FFT with $f_{I N}=1205.3 \mathrm{MHz}$

Figure 19. Single Tone FFT with $f_{I N}=1630.3 \mathrm{MHz}$

Figure 20. Single Tone FFT with $f_{I N}=985.3 \mathrm{MHz}$

Figure 21. SNR/SFDR vs. Analog Input Frequency $\left(f_{N N}\right)$; $f_{I N}<500 \mathrm{MHz}$; Buffer Control 1 Setting $=2.0 \times$, $3.0 \times$, and $4.0 \times$

Figure 22. Two-Tone FFT with $f_{\mathrm{IN}_{1}}=184 \mathrm{MHz}$ and $f_{\mathrm{IN}_{2}}=187 \mathrm{MHz}$

Figure 23. Two-Tone FFT; $f_{i N 1}=338 \mathrm{MHz}, f_{I N 2}=341 \mathrm{MHz}$

Figure 24. Two-Tone SFDR/IMD3 vs. Input Amplitude ($A_{I N}$) with $f_{\mathrm{IN} 1}=184 \mathrm{MHz}$ and $f_{\mathrm{IN2} 2}=187 \mathrm{MHz}$

Figure 25. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with $f_{\mathrm{IN}_{1}}=338 \mathrm{MHz}$ and $f_{\mathrm{IN}_{2}}=341 \mathrm{MHz}$

Figure 26. SNR/SFDR vs. Input Amplitude, $f_{I N}=170.3 \mathrm{MHz}$

Figure 27. SNR/SFDR vs. Temperature, $f_{I N}=170.3 \mathrm{MHz}$

Figure 28. Power Dissipation vs. Sample Rate (f_{s}) (Default SPI)

AD9684

EQUIVALENT CIRCUITS

Figure 31. SYNC \pm Inputs

Figure 32. LVDS Digital Outputs, STATUS $\pm, D C O \pm$

THEORY OF OPERATION

The AD9684 has two analog input channels and 14 LVDS output lane pairs. The ADC is designed to sample wide bandwidth analog signals of up to 2 GHz . The AD9684 is optimized for wide input bandwidth, a high sampling rate, excellent linearity, and low power in a small package.
The dual ADC cores feature a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth inputs that support a variety of user selectable input ranges. An integrated voltage reference eases design considerations.

The AD9684 has several functions that simplify the AGC function in a communications receiver. The programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the ADC. If the input signal level exceeds the programmable threshold, the fast detect indicator goes high. Because this threshold indicator has low latency, the user can quickly reduce the system gain to avoid an overrange condition at the ADC input.
The LVDS outputs can be configured depending on the decimation ratio. Multiple device synchronization is supported through the SYNC \pm input pins.

ADC ARCHITECTURE

The architecture of the AD9684 consists of an input buffered pipelined ADC. The input buffer provides a termination impedance to the analog input signal. This termination impedance can be changed using the SPI to meet the termination needs of the driver/ amplifier. The default termination value is set to 400Ω. The input buffer is optimized for high linearity, low noise, and low power.
The input buffer provides a linear high input impedance (for ease of drive) and reduces kickback from the ADC. The buffer is optimized for high linearity, low noise, and low power. The quantized outputs from each stage are combined into a final 14 -bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample, whereas the remaining stages operate with the preceding samples. Sampling occurs on the rising edge of the clock.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9684 is a differential buffer. The internal common-mode voltage of the buffer is 2.05 V . The clock signal alternately switches the input circuit between sample mode and hold mode. When the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. A small resistor, in series with each input, helps reduce the peak transient current injected from the output stage of the driving source. In addition, low Q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and, thus, achieve the maximum bandwidth of the ADC. Such use of low Q inductors or ferrite beads is required when driving the converter front end at high IF
frequencies. Place either a differential capacitor or two singleended capacitors on the inputs to provide a matching passive network. This ultimately creates a low-pass filter at the input, which limits unwanted broadband noise. For more information, see the AN-742 Application Note, the AN-827 Application Note, and the Analog Dialogue article "Transformer-Coupled Front-End for Wideband A/D Converters" (Volume 39, April 2005). In general, the precise values depend on the application.
For best dynamic performance, the source impedances driving VIN +x and VIN-x must be matched such that common-mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC. An internal reference buffer creates a differential reference that defines the span of the ADC core.
Maximum SNR performance is achieved by setting the ADC to the largest span in a differential configuration. In the case of the AD9684, the available span is 2.06 V p-p differential.

Differential Input Configurations

There are several ways to drive the AD9684, either actively or passively. However, optimum performance is achieved by driving the analog input differentially.
For applications in which SNR and SFDR are key parameters, differential transformer coupling is the recommended input configuration because the noise performance of most amplifiers is not adequate to achieve the true performance of the AD9684.
For low to midrange frequencies, a double balun or double transformer network is recommended for optimum performance of the AD9684 (see Figure 39). For higher frequencies in the second and third Nyquist zones, it is better to remove some of the front-end passive components to ensure wideband operation (see Figure 40).

Figure 39. Differential Transformer-Coupled Configuration for First and Second Nyquist Frequencies

Figure 40. Differential Transformer-Coupled Configuration for Second and Third Nyquist Frequencies

Input Common Mode

The analog inputs of the AD9684 are internally biased to the common mode as shown in Figure 41. The common-mode buffer has a limited range in that the performance suffers greatly if the common-mode voltage drops by more than 100 mV . Therefore, in dc-coupled applications, set the common-mode voltage to $2.05 \mathrm{~V} \pm 100 \mathrm{mV}$ to ensure proper ADC operation.

Analog Input Controls and SFDR Optimization

The AD9684 offers flexible controls for the analog inputs, such as input termination and buffer current. All of the available controls are shown in Figure 41.

Figure 41. Analog Input Controls (Should the AIN
Using Register 0x018, the buffer currents on each channel can be scaled to optimize the SFDR over various input frequencies and bandwidths of interest. As the input buffer currents are set, the amount of current required by the AVDD3 supply changes. For a complete list of buffer current settings, see Table 29.

Figure 42. AVDD3 Power (IAVDD3) vs. Buffer Current Control Setting in Register 0×018

Figure 43. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF), $10 \mathrm{MHz}<f_{\mathrm{IN}}<500 \mathrm{MHz}$

Figure 44. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF), $500 \mathrm{MHz}<\mathrm{f}_{\mathrm{IN}}<1000 \mathrm{MHz}$

Figure 45. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF), $1 \mathrm{GHz}<f_{I N}<2 \mathrm{GHz}$, Front-End Network Shown in Figure 40

Figure 43, Figure 44, and Figure 45 show how the SFDR can be optimized using the buffer current setting in Register 0x018 for different Nyquist zones. At frequencies greater than 1 GHz , it is better to run the ADC at input amplitudes less than -1 dBFS (-3 dBFS , for example). This greatly improves the linearity of the converted signal without sacrificing SNR performance.

Table 9 shows the recommended buffer current and full-scale voltage settings for the different analog input frequency ranges.

Absolute Maximum Input Swing

The absolute maximum input swing allowed at the inputs of the AD9684 is 4.3 V p-p differential. Signals operating near or at this level can cause permanent damage to the ADC.

VOLTAGE REFERENCE

A stable and accurate 1.0 V voltage reference is built into the AD9684. This internal 1.0 V reference sets the full-scale input range of the ADC. For more information on adjusting the input swing, see Table 29. Figure 46 shows the block diagram of the internal 1.0 V reference controls.

Figure 46. Internal Reference Configuration and Controls
Register 0x024 enables the user either to use this internal 1.0 V reference, or to provide an external 1.0 V reference. When using an external voltage reference, provide a 1.0 V reference. The full-scale adjustment is made using the SPI, irrespective of the reference voltage. For more information on adjusting the fullscale level of the AD9684, see the Memory Map Register Table section.

The use of an external reference may be necessary, in some applications, to enhance the gain accuracy of the ADC or improve thermal drift characteristics. Figure 47 shows the typical drift characteristics of the internal 1.0 V reference.

Figure 47. Typical V_1PO Drift
The external reference must be a stable 1.0 V reference. The ADR130 is a good option for providing the 1.0 V reference.
Figure 48 shows how the ADR130 can be used to provide the external 1.0 V reference to the AD9684. The grayed out areas show unused blocks within the AD9684 while using the ADR130 to provide the external reference.

Table 9. SFDR Optimization for Input Frequencies

Frequency	Buffer Control 1 (Register 0x018)	Input Full-Scale Range (Register 0x025)	Input Full-Scale Control (Register 0x030)	Input Termination $\left(\right.$ Register 0x016) ${ }^{1}$
DC to 250 MHz	0x20 (2.0×)	0x0C (2.06 V p-p)	0x04	0x0C/0x1C/0x6C
$\begin{aligned} & 250 \mathrm{MHz} \text { to } 500 \\ & \mathrm{MHz} \end{aligned}$	0x70 (4.5×)	0x0C (2.06 V p-p)	0x04	0x0C/0x1C/0x6C
$\begin{aligned} & 500 \mathrm{MHz} \text { to } \\ & 1 \mathrm{GHz} \end{aligned}$	0x80 (5.0×)	0×08 (1.46 V p-p)	0×18	0x0C/0x1C/0x6C
1 GHz to 2 GHz	0xF0 (8.5×)	0x08 (1.46 V p-p)	0×18	0x0C/0x1C/0x6C

${ }^{1}$ The input termination can be changed to accommodate the application with little or no impact to ac performance.

Figure 48. External Reference Using the ADR130

CLOCK INPUT CONSIDERATIONS

For optimum performance, drive the AD9684 sample clock inputs (CLK+ and CLK-) with a differential signal. This signal is typically ac-coupled to the CLK+ and CLK- pins via a transformer or clock drivers. These pins are biased internally and require no additional biasing.

Figure 49 shows a preferred method for clocking the AD9684. The low jitter clock source is converted from a single-ended signal to a differential signal using an RF transformer.

Figure 49. Transformer Coupled Differential Clock
Another option is to ac couple a differential CML or LVDS signal to the sample clock input pins, as shown in Figure 50 and Figure 51.

Figure 50. Differential CML Sample Clock

Figure 51. Differential LVDS Sample Clock

Clock Duty Cycle Considerations

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to the clock duty cycle. Commonly, a 5\% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. In applications where the clock duty cycle cannot be guaranteed to be 50%, a higher multiple frequency clock can be supplied to the device. The AD9684 can be clocked at 2 GHz with the internal clock divider set to 2 . The output of the divider offers a 50% duty cycle, high slew rate (fast edge) clock signal to the internal ADC. See the Memory Map section for more details on using this feature.

Input Clock Divider

The AD9684 contains an input clock divider with the ability to divide the Nyquist input clock by $1,2,4$, and 8 . The divider ratios can be selected using Register 0x10B. This is shown in Figure 52.
The maximum frequency at the CLK \pm inputs is 4 GHz . This is the limit of the divider. In applications where the clock input is a multiple of the sample clock, the appropriate divider ratio must be programmed into the clock divider before applying the clock signal. This ensures that the current transients during device startup are controlled.

Figure 52. Clock Divider Circuit
The AD9684 clock divider can be synchronized using the external SYNC \pm input. A valid SYNC \pm input causes the clock divider to reset to a programmable state. This feature is enabled by setting Bit 7 of Register 0x10D. This synchronization feature allows multiple devices to have their clock dividers aligned to guarantee simultaneous input sampling.

Input Clock Divider ½ Period Delay Adjustment

The input clock divider inside the AD9684 provides phase delay in increments of $1 / 2$ the input clock cycle. Program Register 0x10C to enable this delay independently for each channel.

Clock Fine Delay Adjustment

To adjust the AD9684 sampling edge instant, write to Register 0x117 and Register 0x118. Setting Bit 0 of Register 0x117 enables the fine delay feature, and Register 0x118, Bits[7:0] set the value of the delay. This value can be programmed individually for each channel. The clock delay can be adjusted from -151.7 ps to +150 ps in ~ 1.7 ps increments. The clock delay adjust takes effect immediately when it is enabled via SPI writes. Enabling the clock fine delay adjustment in Register 0x117 causes a datapath reset.

Clock Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency $\left(\mathrm{f}_{\mathrm{A}}\right)$ due only to aperture jitter $\left(\mathrm{t}_{\mathrm{J}}\right)$ can be calculated by

$$
S N R=20 \times \log 10\left(2 \times \pi \times f_{A} \times t_{J}\right)
$$

In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 53).

Figure 53. Ideal SNR vs. Analog Input Frequency and Jitter
Treat the clock input as an analog signal when aperture jitter may affect the dynamic range of the AD9684. Separate the power supplies for the clock drivers from the ADC output driver supplies to avoid modulating the clock signal with digital noise. If the clock is generated from another type of source (by gating, dividing, or other methods), retime the clock by the original clock at the last step. For more in-depth information about jitter performance as it relates to ADCs, see the AN-501 Application Note and the AN-756 Application Note.
Figure 54 shows the estimated SNR of the AD9684 across the input frequency for different clock induced jitter values. Estimate the SNR using the following equation:

$$
S N R(\mathrm{dBFS})=10 \log \left(10^{\left(\frac{-S N R_{A D C}}{10}\right)}+10^{\left(\frac{-S N R_{\text {ITTTER }}}{10}\right)}\right)
$$

Figure 54. Estimated SNR Degradation for the AD9684 vs. Input Frequency and Clock Jitter

POWER-DOWN/STANDBY MODE

The AD9684 has a PDWN/STBY pin that configures the device in power-down or standby mode. The default operation is the power-down function. The PDWN/STBY pin is a logic high pin. The power-down option can also be set via Register 0x03F and Register 0x040.

TEMPERATURE DIODE

The AD9684 contains a diode-based temperature sensor for measuring the temperature of the die. This diode can output a voltage and serve as a coarse temperature sensor to monitor the internal die temperature.

The temperature diode voltage can be output to the FD_A pin using the SPI. Use Register 0x028, Bit 0 to enable or disable the diode. Register 0x028 is a local register. Channel A must be selected in the device index register (Register 0x008) to enable the temperature diode readout. Configure the FD_A pin to output the diode voltage by programming Register 0x040, Bits[2:0]. See Table 29 for more information.
The voltage response of the temperature diode (with SPIVDD = 1.8 V) is shown in Figure 55.

Figure 55. Diode Voltage vs. Temperature

ADC OVERRANGE AND FAST DETECT

In receiver applications, it is desirable to have a mechanism to reliably determine when the converter is about to be clipped. The standard overrange pin outputs information on the state of the analog input. It is also helpful to have a programmable threshold below full scale that allows time to reduce the gain before the clip actually occurs. In addition, because input signals can have significant slew rates, the latency of this function is of major concern. Highly pipelined converters can have significant latency. The AD9684 contains fast detect circuitry for individual channels to monitor the threshold and assert the FD_A and FD_B pins.

ADC OVERRANGE

The ADC overrange indicator is asserted when an overrange is detected on the input of the ADC. The overrange indicator can be output on the STATUS \pm pins (when CSB >0). The latency of this overrange indicator matches the sample latency.
The AD9684 also records any overrange condition in any of the four virtual converters. The overrange status of each virtual converter is registered as a sticky bit in Register 0x563. The contents of Register 0x563 can be cleared using Register 0x562, by toggling the bits corresponding to the virtual converter to set and reset the position.

FAST THRESHOLD DETECTION (FD_A AND FD_B)

The fast detect (FD) bit (enabled via the control bits in Register 0x559) is immediately set whenever the absolute value of the input signal exceeds the programmable upper threshold level. The FD bit is cleared only when the absolute value of the input signal drops below the lower threshold level for greater than the programmable dwell time. This feature provides hysteresis and prevents the FD bit from excessively toggling.

The operation of the upper threshold and lower threshold registers, along with the dwell time registers, is shown in Figure 56.
The FD_x indicator is asserted if the input magnitude exceeds the value programmed in the fast detect upper threshold registers, in Register 0x247 and Register 0x248. The selected threshold register is compared with the signal magnitude at the output of the ADC. The fast upper threshold detection has a latency of 28 clock cycles (maximum). The approximate upper threshold magnitude is defined by

Upper Threshold Magnitude $(\mathrm{dBFS})=20 \log$ (Threshold Magnitude/ $2{ }^{13}$)

The FD indicators are not cleared until the signal drops below the lower threshold for the programmed dwell time. The lower threshold is programmed in the fast detect lower threshold registers, in Register 0x249 and Register 0x24A. The fast detect lower threshold register is a 13-bit register that is compared with the signal magnitude at the output of the ADC. This comparison is subject to the ADC pipeline latency, but is accurate in terms of converter resolution. The lower threshold magnitude is defined by

> Lower Threshold Magnitude $(\mathrm{dBFS})=20 \log ($ Threshold Magnitude $\left./ 2^{13}\right)$

For example, to set an upper threshold of -6 dBFS, write $0 x F F F$ to Register 0x247 and Register 0x248. To set a lower threshold of -10 dBFS , write $0 \mathrm{xA1D}$ to Register 0×249 and Register 0x24A.
The dwell time can be programmed from 1 to 65,535 sample clock cycles by placing the desired value in the fast detect dwell time registers, in Register 0x24B and Register 0x24C. See the Memory Map section (Register 0x040, and Register 0x245 to Register 0x24C in Table 29) for more details.

SIGNAL MONITOR

The signal monitor block provides additional information about the signal being digitized by the ADC. The signal monitor computes the peak magnitude of the digitized signal. This information can be used to drive an AGC loop to optimize the range of the ADC in the presence of real-world signals.
The results of the signal monitor block can be obtained by reading back the internal values from the SPI port. A global, 24-bit programmable period controls the duration of the measurement. Figure 57 shows the simplified block diagram of the signal monitor block.
The peak detector captures the largest signal within the observation period. The detector only observes the magnitude of the signal. The resolution of the peak detector is a 13-bit value and the observation period is 24 bits and represents converter output samples.

Derive the peak magnitude using the following equation:

$$
\text { Peak Magnitude }(\mathrm{dBFS})=20 \log \left(\text { Peak Detector Value } / 2^{13}\right)
$$

The magnitude of the input port signal is monitored over a programmable time period, which is determined by the signal
monitor period register (SMPR). To enable the peak detector function, set Bit 1 of Register 0x270 in the signal monitor control register. The 24 -bit SMPR must be programmed before activating this mode.
After enabling this mode, the value in the SMPR is loaded into a monitor period timer that decrements at the decimated clock rate. The magnitude of the input signal is compared with the value in the internal magnitude storage register (not accessible to the user), and the greater of the two is updated as the current peak level. The initial value of the magnitude storage register is set to the current ADC input signal magnitude. This comparison continues until the monitor period timer reaches a count of 1 .
When the monitor period timer reaches a count of 1 , the 13-bit peak level value is transferred to the signal monitor holding register, which can be read through the memory map. The monitor period timer is reloaded with the value in the SMPR, and the countdown is restarted. In addition, the magnitude of the first input sample is updated in the magnitude storage register.

Figure 57. Signal Monitor Block

DIGITAL DOWNCONVERTERS (DDCs)

The AD9684 includes four digital downconverters that provide filtering and reduce the output data rate. This digital processing section includes an NCO, a half-band decimating filter, a finite impulse response (FIR) filter, a gain stage, and a complex to real conversion stage. Each of these processing blocks has a control line that allows the block to be independently enabled and disabled to provide the desired processing function. The DDCs can be configured to output either real data or complex output data.

DDC I/Q INPUT SELECTION

The AD9684 has two ADC channels and four DDC channels. Each DDC channel has two input ports that can be paired to support both real and complex inputs through the I/Q crossbar mux. For real signals, both DDC input ports must select the same ADC channel (that is, DDC Input Port I = ADC Channel A and DDC Input Port $\mathrm{Q}=\mathrm{ADC}$ Channel A). For complex signals, each DDC input port must select different ADC channels (that is, DDC Input Port I = ADC Channel A and DDC Input Port $\mathrm{Q}=\mathrm{ADC}$ Channel B).

The inputs to each DDC are controlled by the DDC input selection registers (Register 0x311, Register 0x331, Register 0x351, and Register 0x371). See Table 29 for information on how to configure the DDCs.

DDC I/Q OUTPUT SELECTION

Each DDC channel has two output ports that can be paired to support both real or complex outputs. For real output signals, only the DDC Output Port I is used (the DDC Output Port Q is invalid). For complex I/Q output signals, both DDC Output Port I and DDC Output Port Q are used.
The I/Q outputs to each DDC channel are controlled by the DDC complex to real enable bit in the DDC control registers (Bit 3 in Register 0x310, Register 0x330, Register 0x350, and Register 0x370).

The Chip I only bit in the chip application mode register (Register 0x200, Bit 5) controls the chip output muxing of all the DDC channels. When all DDC channels use real outputs, set this bit high to ignore all DDC Q output ports. When any of the DDC channels are set to use complex I/Q outputs, the user must clear this bit to use both DDC Output Port I and DDC Output Port Q.

DDC GENERAL DESCRIPTION

The four DDC blocks extract a portion of the full digital spectrum captured by the ADCs. They are intended for IF sampling or oversampled baseband radios requiring wide bandwidth input signals.
Each DDC block contains the following signal processing stages:

- Frequency translation stage (optional)
- Filtering stage
- Gain stage (optional)
- Complex to real conversion stage (optional)

Frequency Translation Stage (Optional)

This stage consists of a 12-bit complex NCO and quadrature mixers that can be used for frequency translation of both real or complex input signals. This stage shifts a portion of the available digital spectrum down to baseband.

Filtering Stage

After shifting down to baseband, this stage decimates the frequency spectrum using a chain of up to four half-band, lowpass filters for rate conversion. The decimation process lowers the output data rate, which, in turn, reduces the output interface rate.

Gain Stage (Optional)

Due to losses associated with mixing a real input signal down to baseband, this stage compensates by adding an additional 0 dB or 6 dB of gain.

Complex to Real Conversion Stage (Optional)

When real outputs are necessary, this stage converts the complex outputs back to real outputs by performing an $\mathrm{f}_{\mathrm{s}} / 4$ mixing operation in addition to a filter to remove the complex component of the signal.
Figure 58 shows the detailed block diagram of the DDCs implemented in the AD9684.

Figure 58. DDC Detailed Block Diagram

Figure 59 shows an example usage of one of the four DDC blocks with a real input signal and four half-band filters (HB4 + HB3 + HB2 + HB1). It shows both complex (decimate by 16) and real (decimate by 8) output options.

When DDCs have different decimation ratios, the chip decimation ratio (Register 0x201) must be set to the lowest decimation ratio for all the DDC blocks. In this scenario, samples of higher decimation ratio DDCs are repeated to match the chip decimation ratio sample rate. Whenever the NCO frequency is set or changed, the DDC soft reset must be issued. If the DDC soft reset is not issued, the output may potentially show amplitude variations.

Table 10 through Table 15 show the DDC samples when the chip decimation ratio is set to $1,2,4,8$, or 16 , respectively. When DDCs have different decimation ratios, the chip decimation ratio must be set to the lowest decimation ratio of all the DDC channels. In this scenario, samples of higher decimation ratio DDCs are repeated to match the chip decimation ratio sample rate.

Figure 59. DDC Theory of Operation Example (Real Input, Decimate by 16)

AD9684

Table 10. DDC Samples When the Chip Decimation Ratio = 1

Real (I) Output (Complex to Real Enabled)				Complex (I/Q) Outputs (Complex to Real Disabled)			
HB1 FIR $\left(\mathrm{DCM}^{1}=1\right)$	HB2 FIR + HB1 FIR (DCM ${ }^{1}=2$)	$\begin{aligned} & \text { HB3 FIR + HB2 } \\ & \text { FIR + HB1 FIR } \\ & \left(\text { DCM }^{1}=4\right) \end{aligned}$	$\begin{aligned} & \text { HB4 FIR + HB3 FIR } \\ & \text { + HB2 FIR + HB1 } \\ & \text { FIR (DCM } \left.{ }^{1}=8\right) \end{aligned}$	HB1 FIR $\left(D_{C M}{ }^{1}=2\right)$	HB2 FIR + HB1 FIR (DCM ${ }^{1}=4$)	$\begin{aligned} & \text { HB3 FIR + HB2 } \\ & \text { FIR + HB1 FIR } \\ & \left(\text { DCM }^{1}=8\right) \\ & \hline \end{aligned}$	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR ($\mathrm{DCM}^{1}=16$)
N	N	N	N	N	N	N	N
$\mathrm{N}+1$	$\mathrm{N}+1$	$\mathrm{N}+1$	$\mathrm{N}+1$	$N+1$	$\mathrm{N}+1$	N+1	$N+1$
$\mathrm{N}+2$	N	N	N	N	N	N	N
$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+1$	N+1	$N+1$	$\mathrm{N}+1$	N+1	$N+1$
$\mathrm{N}+4$	$\mathrm{N}+2$	N	N	$\mathrm{N}+2$	N	N	N
$\mathrm{N}+5$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$	$N+1$
$\mathrm{N}+6$	$\mathrm{N}+2$	N	N	$\mathrm{N}+2$	N	N	N
$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$	$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+1$	$N+1$
$\mathrm{N}+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	N	$N+4$	$\mathrm{N}+2$	N	N
$\mathrm{N}+9$	$\mathrm{N}+5$	$\mathrm{N}+3$	N+1	$\mathrm{N}+5$	$\mathrm{N}+3$	N+1	$N+1$
$N+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	N	$N+4$	$\mathrm{N}+2$	N	N
$N+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	N+1	$\mathrm{N}+5$	$\mathrm{N}+3$	N+1	$N+1$
$N+12$	$\mathrm{N}+6$	$\mathrm{N}+2$	N	$N+6$	$\mathrm{N}+2$	N	N
$N+13$	$\mathrm{N}+7$	$\mathrm{N}+3$	N+1	$N+7$	$\mathrm{N}+3$	N+1	$N+1$
$N+14$	$\mathrm{N}+6$	$\mathrm{N}+2$	N	$N+6$	$\mathrm{N}+2$	N	N
$N+15$	$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$
$N+16$	$\mathrm{N}+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	$N+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	N
$N+17$	$\mathrm{N}+9$	$N+5$	$N+3$	$N+9$	$N+5$	$\mathrm{N}+3$	$N+1$
$N+18$	$\mathrm{N}+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	$N+8$	$N+4$	$\mathrm{N}+2$	N
$N+19$	$\mathrm{N}+9$	$\mathrm{N}+5$	$\mathrm{N}+3$	$\mathrm{N}+9$	$N+5$	$\mathrm{N}+3$	$N+1$
$N+20$	$\mathrm{N}+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	$N+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	N
$N+21$	$\mathrm{N}+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	$N+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	$N+1$
$N+22$	$\mathrm{N}+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	$N+10$	$N+4$	$\mathrm{N}+2$	N
$\mathrm{N}+23$	$\mathrm{N}+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	$N+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	$N+1$
$\mathrm{N}+24$	$\mathrm{N}+12$	$\mathrm{N}+6$	$\mathrm{N}+2$	$N+12$	$N+6$	$\mathrm{N}+2$	N
$\mathrm{N}+25$	$N+13$	$\mathrm{N}+7$	$\mathrm{N}+3$	$N+13$	N+7	$\mathrm{N}+3$	$N+1$
$N+26$	$\mathrm{N}+12$	$\mathrm{N}+6$	$N+2$	$N+12$	$\mathrm{N}+6$	$\mathrm{N}+2$	N
$N+27$	$\mathrm{N}+13$	$\mathrm{N}+7$	$\mathrm{N}+3$	$N+13$	$\mathrm{N}+7$	$\mathrm{N}+3$	$N+1$
$N+28$	$N+14$	$\mathrm{N}+6$	$N+2$	$N+14$	$N+6$	$N+2$	N
$N+29$	$\mathrm{N}+15$	$\mathrm{N}+7$	$\mathrm{N}+3$	$N+15$	$\mathrm{N}+7$	$\mathrm{N}+3$	$N+1$
$N+30$	$\mathrm{N}+14$	$\mathrm{N}+6$	$N+2$	$N+14$	$\mathrm{N}+6$	$\mathrm{N}+2$	N
$N+31$	$\mathrm{N}+15$	$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+15$	N+7	$\mathrm{N}+3$	N+1

${ }^{1}$ DCM means decimation.

Table 11. DDC Samples When the Chip Decimation Ratio = 2

Real (I) Output (Complex to Real Enabled)			Complex (I/Q) Outputs (Complex to Real Disabled)			
HB2 FIR + HB1 FIR (DCM ${ }^{1}=2$)	HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=4$)	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR $\left(D^{1} M^{1}=8\right)$	HB1 FIR (DCM ${ }^{1}=2$)	HB2 FIR + HB1 FIR (DCM ${ }^{1}=4$)	HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=8$)	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR $\left(D C M^{1}=16\right)$
N	N	N	N	N	N	N
$\mathrm{N}+1$	$N+1$	$\mathrm{N}+1$	$N+1$	$N+1$	$\mathrm{N}+1$	$\mathrm{N}+1$
$\mathrm{N}+2$	N	N	$\mathrm{N}+2$	N	N	N
$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$	$\mathrm{N}+1$
$\mathrm{N}+4$	$\mathrm{N}+2$	N	$\mathrm{N}+4$	$\mathrm{N}+2$	N	N
$N+5$	$N+3$	$N+1$	$N+5$	$N+3$	$N+1$	$N+1$
$N+6$	$\mathrm{N}+2$	N	$N+6$	$\mathrm{N}+2$	N	N
$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+7$	$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+1$
$\mathrm{N}+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	$N+8$	$\mathrm{N}+4$	$\mathrm{N}+2$	N
$\mathrm{N}+9$	N+5	N+3	$\mathrm{N}+9$	N+5	$\mathrm{N}+3$	$\mathrm{N}+1$

Real (I) Output (Complex to Real Enabled)			Complex (I/Q) Outputs (Complex to Real Disabled)			
HB2 FIR + HB1 FIR (DCM ${ }^{1}=2$)	HB3 FIR + HB2 FIR + HB1 FIR $\left(D C M^{1}=4\right)$	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=8$)	HB1 FIR $\left(D^{(1)}{ }^{1}=2\right)$	HB2 FIR + HB1 FIR (DCM ${ }^{1}=4$)	HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=8$)	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=16$)
$\mathrm{N}+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	$\mathrm{N}+10$	$\mathrm{N}+4$	$\mathrm{N}+2$	N
$\mathrm{N}+11$	$N+5$	$\mathrm{N}+3$	$\mathrm{N}+11$	$\mathrm{N}+5$	$\mathrm{N}+3$	$\mathrm{N}+1$
$\mathrm{N}+12$	$N+6$	$\mathrm{N}+2$	$\mathrm{N}+12$	$N+6$	$\mathrm{N}+2$	N
$N+13$	$N+7$	$N+3$	$N+13$	$N+7$	$N+3$	$N+1$
$\mathrm{N}+14$	$\mathrm{N}+6$	$\mathrm{N}+2$	$\mathrm{N}+14$	$\mathrm{N}+6$	$\mathrm{N}+2$	N
N+15	N+7	$\mathrm{N}+3$	$\mathrm{N}+15$	$\mathrm{N}+7$	N+3	$\mathrm{N}+1$

${ }^{1}$ DCM means decimation.

Table 12. DDC Samples When the Chip Decimation Ratio = 4

Real (I) Output (Complex to Real Enabled)		Complex (I/Q) Outputs (Complex to Real Disabled)		
$\begin{aligned} & \text { HB3 FIR + HB2 FIR + HB1 } \\ & \text { FIR (DCM } \left.{ }^{1}=4\right) \end{aligned}$	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR $\left(\right.$ DCM $\left.^{1}=8\right)$	HB2 FIR + HB1 FIR $\left(\mathrm{DCM}^{1}=4\right)$	$\begin{aligned} & \text { HB3 FIR + HB2 FIR + } \\ & \text { HB1 FIR (DCM }{ }^{1}=8 \text {) } \end{aligned}$	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{1}=16$)
N	N	N	N	N
$\mathrm{N}+1$	$N+1$	$N+1$	$\mathrm{N}+1$	$\mathrm{N}+1$
$\mathrm{N}+2$	N	$N+2$	N	N
$\mathrm{N}+3$	$\mathrm{N}+1$	$\mathrm{N}+3$	$\mathrm{N}+1$	$N+1$
$\mathrm{N}+4$	$\mathrm{N}+2$	$N+4$	$\mathrm{N}+2$	N
$\mathrm{N}+5$	$\mathrm{N}+3$	$\mathrm{N}+5$	$\mathrm{N}+3$	$N+1$
$\mathrm{N}+6$	$\mathrm{N}+2$	$N+6$	$\mathrm{N}+2$	N
N+7	$\mathrm{N}+3$	N+7	$\mathrm{N}+3$	N+1

${ }^{1}$ DCM means decimation.

Table 13. DDC Samples When the Chip Decimation Ratio $=8$

Real (I) Output (Complex to Real Enabled)	Complex (I/Q) Outputs (Complex to Real Disabled)	
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM $\left.{ }^{1}=8\right)$	HB3 FIR + HB2 FIR + HB1 FIR(DCM $\left.{ }^{1}=8\right)$	$\begin{aligned} & \text { HB4 FIR + HB3 FIR + HB2 FIR + HB1 } \\ & \text { FIR (DCM }{ }^{1}=16 \text {) } \end{aligned}$
N	N	N
$N+1$	$N+1$	$N+1$
$N+2$	$N+2$	N
$N+3$	$N+3$	$\mathrm{N}+1$
$N+4$	$N+4$	$\mathrm{N}+2$
$N+5$	$N+5$	$\mathrm{N}+3$
$N+6$	$N+6$	$N+2$
$N+7$	$N+7$	$\mathrm{N}+3$

${ }^{1}$ DCM means decimation.
Table 14. DDC Samples When the Chip Decimation Ratio = 16

Real (I) Output (Complex to Real Enabled)	Complex (I/Q) Outputs (Complex to Real Disabled)
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM ${ }^{\mathbf{1}}=\mathbf{1 6)}$	HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM $\left.{ }^{1}=\mathbf{1 6}\right)$
Not applicable	N
Not applicable	$\mathrm{N}+1$
Not applicable	$\mathrm{N}+2$
Not applicable	$\mathrm{N}+3$

${ }^{1}$ DCM means decimation.

For example, if the chip decimation ratio is set to decimate by 4 , DDC 0 is set to use HB2 + HB1 filters (complex outputs, decimate by 4) and DDC 1 is set to use HB4 + HB3 + HB2 +

HB1 filters (real outputs, decimate by 8). DDC 1 repeats its output data two times for every one DDC 0 output. The resulting output samples are shown in Table 15.

Table 15. Chip Decimation Ratio $=4$, DDC 0 Decimation $=4($ Complex), and DDC 1 Decimation $=8$ (Real)

DDC Input Samples	DDC 0		DDC 1	
	Output Port I	Output Port Q	Output Port I	Output Port Q
N	10 (N)	Q0 (N)	I1 (N)	Not applicable
$\mathrm{N}+1$				
$\mathrm{N}+2$				
$\mathrm{N}+3$				
$\mathrm{N}+4$	$10(\mathrm{~N}+1)$	Q0 ($\mathrm{N}+1$)	$11(\mathrm{~N}+1)$	Not applicable
$\mathrm{N}+5$				
$\mathrm{N}+6$				
$\mathrm{N}+7$				
$\mathrm{N}+8$	$10(\mathrm{~N}+2)$	Q0 ($\mathrm{N}+2$)	11 (N)	Not applicable
$\mathrm{N}+9$				
$\mathrm{N}+10$				
$N+11$				
$\mathrm{N}+12$	$10(N+3)$	Q0 ($\mathrm{N}+3$)	$11(\mathrm{~N}+1)$	Not applicable
$N+13$				
$N+14$				
$\mathrm{N}+15$				

FREQUENCY TRANSLATION
 GENERAL DESCRIPTION

Frequency translation is accomplished using a 12-bit complex NCO with a digital quadrature mixer. The frequency translation translates either a real or complex input signal from an IF to a baseband complex digital output (carrier frequency $=0 \mathrm{~Hz}$).
The frequency translation stage of each DDC can be controlled individually and supports four different IF modes using Bits[5:4] of the DDC control registers (Register 0x310, Register 0x330, Register 0x350, and Register 0x370). These IF modes are

- Variable IF mode
- 0 Hz IF, or zero IF (ZIF), mode
- $\mathrm{f}_{\mathrm{s}} / 4 \mathrm{~Hz}$ IF mode
- Test mode

Variable IF Mode

The NCO and the mixers are enabled. The NCO output frequency can be used to digitally tune the IF frequency.

0 Hz IF (ZIF) Mode

The mixers are bypassed and the NCO is disabled.

$f_{s} / \mathbf{4 ~ H z ~ I F ~ M o d e ~}$

The mixers and the NCO are enabled in a special downmixing by $\mathrm{f}_{\mathrm{s}} / 4$ mode to save power.

Test Mode

The input samples are forced to $0.999 \times$ full scale to positive full scale. The NCO is enabled. This test mode allows the NCOs to drive the decimation filters directly.
Figure 60 and Figure 61 show examples of the frequency translation stage for both real and complex inputs.

Figure 60. DDC NCO Frequency Tuning Word Selection—Real Inputs

AD9684

Figure 61. DDC NCO Frequency Tuning Word Selection—Complex Inputs

DDC NCO PLUS MIXER LOSS AND SFDR

When mixing a real input signal down to baseband, 6 dB of loss is introduced in the signal due to filtering of the negative image. The NCO introduces an additional 0.05 dB of loss. The total loss of a real input signal mixed down to baseband is 6.05 dB . For this reason, it is recommended to compensate for this loss by enabling the 6 dB of gain in the gain stage of the DDC to recenter the dynamic range of the signal within the full scale of the output bits.

When mixing a complex input signal down to baseband, the maximum value that each I/Q sample can reach is $1.414 \times$ full scale after it passes through the complex mixer. To avoid an overrange of the I/Q samples and to keep the data bit-widths aligned with real mixing, introduce 3.06 dB of loss ($0.707 \times$ fullscale) in the mixer for complex signals. The NCO introduces an additional 0.05 dB of loss. The total loss of a complex input signal mixed down to baseband is -3.11 dB .
The worst case spurious signal from the NCO is greater than 102 dBc SFDR for all output frequencies.

NUMERICALLY CONTROLLED OSCILLATOR

The AD9684 has a 12-bit NCO for each DDC that enables the frequency translation process. The NCO allows the input spectrum to be tuned to dc, where it can be effectively filtered by the subsequent filter blocks to prevent aliasing. The NCO can be set up by providing a frequency tuning word (FTW) and a phase offset word (POW).

Setting Up the NCO FTW and POW

The NCO frequency value is given by the 12-bit, twos complement number entered in the NCO FTW. Frequencies between $\pm \mathrm{f}_{\mathrm{s}} / 2\left(+\mathrm{f}_{\mathrm{s}} / 2\right.$ excluded $)$ are represented using the following frequency words:

- $0 x 800$ represents a frequency of $-\mathrm{f}_{\mathrm{s}} / 2$.
- $0 x 000$ represents dc (frequency is 0 Hz).
- $0 x 7 \mathrm{FF}$ represents a frequency of $+\mathrm{f}_{\mathrm{s}} / 2-\mathrm{f}_{\mathrm{s}} / 2^{12}$.

Calculate the NCO frequency tuning word using the following equation:

$$
N C O_{-} F T W=\text { round }\left(2^{12} \frac{\bmod \left(f_{C}, f_{S}\right)}{f_{S}}\right)
$$

where:
NCO_FTW is a 12-bit, twos complement number representing the NCO FTW.
f_{C} is the desired carrier frequency in Hz .
f_{s} is the AD9684 sampling frequency (clock rate) in Hz . $\bmod ()$ is a remainder function. For example, $\bmod (110,100)=$ 10 , and for negative numbers, $\bmod (-32,+10)=-2$.
round () is a rounding function. For example, round (3.6) $=4$, and for negative numbers, round $(-3.4)=-3$.

Note that this equation applies to the aliasing of signals in the digital domain (that is, aliasing introduced when digitizing analog signals).

For example, if the ADC sampling frequency (f_{s}) is 1250 MSPS and the carrier frequency (f_{C}) is 416.667 MHz ,
$N C O _F T W=\operatorname{round}\left(2^{12} \frac{\bmod (416.667,1250)}{1250}\right)=1365 \mathrm{MHz}$
This, in turn, converts to 0×555 in the 12-bit, twos complement representation for NCO_FTW. Calculate the actual carrier frequency based on the following equation:

$$
f_{C_{-} A C T U A L}=\frac{N C O_{-} F T W \times f_{S}}{2^{12}}=416.56 \mathrm{MHz}
$$

A 12-bit POW is available for each NCO to create a known phase relationship between multiple AD9684 chips or individual DDC channels inside one AD9684 chip.

The following procedure must be followed to update the FTW and/or POW registers to ensure proper operation of the NCO:

1. Write to the FTW registers for all the DDCs.
2. Write to the POW registers for all the DDCs.
3. Synchronize the NCOs either through the DDC soft reset bit, accessible through the SPI, or through the assertion of the SYNC \pm pins.

Note that the NCOs must be synchronized either through the SPI or through the SYNC \pm pins after all writes to the FTW or POW registers are complete. This synchronization is necessary to ensure the proper operation of the NCO.

NCO Synchronization

Each NCO contains a separate phase accumulator word (PAW) that determines the instantaneous phase of the NCO. The initial reset value of each PAW is determined by the POW, described in the Setting Up the NCO FTW and POW section. The phase increment value of each PAW is determined by the FTW.

Use the following two methods to synchronize multiple PAWs within the chip:

- Using the SPI. Use the DDC NCO soft reset bit in the DDC synchronization control register (Register 0x300, Bit 4) to reset all the PAWs in the chip. This is accomplished by toggling the DDC NCO soft reset bit. Note that this method synchronizes DDC channels within the same AD9684 chip only.
- Using the SYNC \pm pins. When the SYNC \pm pins are enabled in the SYNC \pm control registers (Register 0x120 and Register 0x121), and the DDC synchronization is enabled in Bits[1:0] in the DDC synchronization control register (Register 0x300), any subsequent SYNC \pm event resets all the PAWs in the chip. Note that this method synchronizes DDC channels within the same AD9684 chip or DDC channels within separate AD9684 chips.

Mixer

The NCO is accompanied by a mixer, which operates similarly to an analog quadrature mixer. It performs the downconversion of input signals (real or complex) by using the NCO frequency as a local oscillator. For real input signals, this mixer performs a real mixer operation with two multipliers. For complex input signals, the mixer performs a complex mixer operation with four multipliers and two adders. The mixer adjusts its operation based on the input signal (real or complex) provided to each individual channel. The selection of real or complex inputs can be controlled individually for each DDC block using Bit 7 of the DDC control registers (Register 0x310, Register 0x330, Register 0x350, and Register 0x370).

FIR FILTERS

GENERAL DESCRIPTION

There are four sets of decimate by 2 , low-pass, half-band, FIR filters (labeled HB1 FIR, HB2 FIR, HB3 FIR, and HB4 FIR in Figure 58) following the frequency translation stage. After the carrier of interest is tuned down to dc (carrier frequency $=$ 0 Hz), these filters efficiently lower the sample rate while providing sufficient alias rejection from unwanted adjacent carriers around the bandwidth of interest.

HB1 FIR is always enabled and cannot be bypassed. The HB2, HB3, and HB4 FIR filters are optional and can be bypassed for higher output sample rates.

Table 16 shows the different bandwidth options by including different half-band filters. In all cases, the DDC filtering stage of the AD9684 provides less than -0.001 dB of pass-band ripple and greater than 100 dB of stop band alias rejection.
Table 17 shows the amount of stop band alias rejection for multiple pass-band ripple/cutoff points. The decimation ratio of the filtering stage of each DDC can be controlled individually through Bits[1:0] of the DDC control registers (Register 0x310, Register 0x330, Register 0x350, and Register 0x370).

Table 16. DDC Filter Characteristics

ADC Sample Rate (MSPS)	DDC Decimation Ratio	Real Output Sample Rate (MSPS)	Complex (I/Q) Output Sample Rate (MSPS)	Alias Protected Bandwidth (MHz)	Ideal SNR Improvement ${ }^{1}$ (dB)	Pass-Band Ripple (dB)	Alias Rejection (dB)
1000	2 (HB1)	1000	500 (I) + 500 (Q)	385.0	1	<-0.001	>100
	$4(\mathrm{HB} 1+\mathrm{HB} 2)$	500	$250(\mathrm{l})+250$ (Q)	192.5	4		
	$8(\mathrm{HB} 1+\mathrm{HB} 2+\mathrm{HB} 3)$	250	$125(\mathrm{I})+125$ (Q)	96.3	7		
	$\begin{aligned} & 16 \text { (HB1 + HB2 + } \\ & \text { HB3 + HB4) } \end{aligned}$	125	$62.5(\mathrm{I})+62.5(\mathrm{Q})$	48.1	10		

${ }^{1}$ The ideal SNR improvement due to oversampling and filtering $=10 \log \left(\right.$ bandwidth $/\left(\mathrm{f}_{5} / 2\right)$).
Table 17. DDC Filter Alias Rejection

Alias Rejection (dB)	Pass-Band Ripple/Cutoff Point (dB)	Alias Protected Bandwidth for Real (I) Outputs ${ }^{1}$	Alias Protected Bandwidth for Complex (I/Q) Outputs ${ }^{1}$
>100	<-0.001	< $38.5 \% \times$ fout	$<77 \% \times$ fout
90	<-0.001	<38.7\% \times fout	$<77.4 \% \times$ fout
85	<-0.001	$<38.9 \% \times$ fout	$<77.8 \% \times$ fout
63.3	<-0.006	<40\% \times fout	$<80 \% \times$ fout
25	-0.5	$44.4 \% \times$ fout	$88.8 \% \times$ fout
19.3	-1.0	$45.6 \% \times$ fout $^{\text {f }}$	$91.2 \% \times$ fout
10.7	-3.0	$48 \% \times$ fout	$96 \% \times$ fout

[^2]
HALF-BAND FILTERS

The AD9684 offers four half-band filters to enable digital signal processing of the ADC converted data. These half-band filters are bypassable and can be individually selected.

HB4 Filter

The first decimate by 2 , half-band, low-pass FIR filter (HB4) uses an 15-bit, symmetrical, fixed coefficient filter implementation that is optimized for low power consumption. The HB4 filter is used only when complex outputs (decimate by 16) or real outputs (decimate by 8) are enabled; otherwise, the filter is bypassed. Table 18 and Figure 62 show the coefficients and response of the HB4 filter.

Table 18. HB4 Filter Coefficients

HB4 Coefficient Number	Decimal Coefficient (15-Bit)
C1, C11	99
C2, C10	0
C3, C9	-808
C4, C8	0
C5, C7	4805
C6	8192

Figure 62. HB4 Filter Response

HB3 Filter

The second decimate by 2, half-band, low-pass, FIR filter (HB3) uses an 18-bit, symmetrical, fixed coefficient filter implementation that is optimized for low power consumption. The HB3 filter is only used when complex outputs (decimate by 8 or 16) or real outputs (decimate by 4 or 8) are enabled; otherwise, the filter is bypassed. Table 19 and Figure 63 show the coefficients and response of the HB3 filter.

Table 19. HB3 Filter Coefficients

HB3 Coefficient Number	Decimal Coefficient (18-Bit)
C1, C11	859
C2, C10	0
C3, C9	-6661
C4, C8	0
C5, C7	38570
C6	65536

HB1 Filter

The fourth and final decimate by 2 , half-band, low-pass FIR filter (HB1) uses a 21-bit, symmetrical, fixed coefficient filter implementation that is optimized for low power consumption. The HB1 filter is always enabled and cannot be bypassed. Table 21 and Figure 65 show the coefficients and response of the HB1 filter.

Table 21. HB1 Filter Coefficients

HB1 Coefficient Number	Decimal Coefficient (21-Bit)
C1, C55	-24
C2, C54	0
C3, C53	102
C4, C52	0
C5, C51	-302
C6, C50	0
C7, C49	730
C8, C48	0
C9, C47	-1544
C10, C46	0
C11, C45	2964
C12, C44	0
C13, C43	-5284
C14, C42	0
C15, C41	8903
C16, C40	0
C17, C39	$-14,383$
C18, C38	0
C19, C37	22,640
C20, C36	0
C21, C35	$-35,476$
C22, C34	0
C23, C33	57,468
C24, C32	0
C25, C31	$-105,442$
C26, C30	0
C27, C29	331,792
C28	524,288

Figure 65. HB1 Filter Response

DDC GAIN STAGE

Each DDC contains an independently controlled gain stage. The gain is selectable as either 0 dB or 6 dB . When mixing a real input signal down to baseband, it is recommended to enable the 6 dB gain to recenter the dynamic range of the signal within the full scale of the output bits.
When mixing a complex input signal down to baseband, the mixer has already recentered the dynamic range of the signal within the full scale of the output bits and no additional gain is necessary. However, the optional 6 dB gain compensates for low signal strengths. The downsample by 2 portion of the HB1 FIR filter is bypassed when using the complex to real conversion stage (see Figure 66).

DDC COMPLEX TO REAL CONVERSION BLOCK

Each DDC contains an independently controlled complex to real conversion block. The complex to real conversion block reuses the last filter (HB1 FIR) in the filtering stage, along with an $\mathrm{f}_{\mathrm{s}} / 4$ complex mixer to upconvert the signal.

After upconverting the signal, the Q portion of the complex mixer is no longer needed and is dropped.

Figure 66 shows a simplified block diagram of the complex to real conversion.

Figure 66. Complex to Real Conversion Block

DDC EXAMPLE CONFIGURATIONS

Table 22 describes the register settings for multiple DDC example configurations.
Table 22. DDC Example Configurations

Chip Application Layer	Chip Decimation Ratio	DDC Input Type	DDC Output Type	Bandwidth Per DDC ${ }^{1}$	Number of Virtual Converters Required (M)	Register Settings ${ }^{2}$
One DDC	2	Complex	Complex	$77 \% \times \mathrm{f}_{\mathrm{s}}$	2	Register $0 \times 200=0 \times 01$ (one DDC, I/Q selected) Register $0 \times 201=0 \times 01$ (chip decimate by 2) Register $0 \times 310=0 \times 83$ (complex mixer, 0 dB gain, variable IF, complex outputs, HB1 filter) Register 0×311 = 0×04 (DDC I input $=$ ADC Channel A, DDC Q input = ADC Channel B) Register 0x314, Register 0x315, Register 0x320, Register 0x321 = FTW and POW set as required by application for DDC 0
Two DDCs	4	Complex	Complex	$38.5 \% \times \mathrm{f}_{\mathrm{s}}$	4	Register $0 \times 200=0 \times 02$ (two DDCs, I/Q selected) Register 0x201 = 0x02 (chip decimate by 4) Register 0x310, Register 0x330 = 0x80 (complex mixer, 0 dB gain, variable IF, complex outputs, HB2 + HB1 filters) Register 0x311, Register 0x331 = 0x04 (DDC I input = ADC Channel A, DDC Q input = ADC Channel B)

Chip Application Layer	Chip Decimation Ratio	DDC Input Type	DDC Output Type	Bandwidth Per DDC ${ }^{1}$	Number of Virtual Converters Required (M)	Register Settings ${ }^{2}$
						Register 0x314, Register 0x315, Register 0x320, Register 0x321 = FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0x340, Register 0×341 = FTW and POW set as required by application for DDC 1
Two DDCs	4	Complex	Real	$19.25 \% \times f_{s}$	2	Register $0 \times 200=0 \times 22$ (two DDCs, Q ignore selected) Register 0x201 = 0x02 (chip decimate by 4) Register 0x310, Register 0x330=0×89 (complex mixer, 0 dB gain, variable IF, real output, $\mathrm{HB} 3+\mathrm{HB} 2+\mathrm{HB} 1$ filters) Register 0x311, Register 0×331 = 0×04 (DDC I input = ADC Channel A, DDC Q input = ADC Channel B) Register 0×314, Register 0×315, Register 0x320, Register 0x321 = FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0x340, Register 0×341 = FTW and POW set as required by application for DDC 1
Two DDCs	4	Real	Real	$19.25 \% \times \mathrm{f}_{\mathrm{s}}$	2	```Register 0x200 = 0x22 (two DDCs, Q ignore selected) Register 0x201 = 0x02 (chip decimate by 4) Register 0x310, Register 0x330 = 0x49 (real mixer, 6 dB gain, variable IF, real output, HB3 + HB2 + HB1 filters) Register \(0 \times 311=0 \times 00\) (DDC 01 input \(=\) ADC Channel A, DDC 0 Q input = ADC Channel A) Register \(0 \times 331=0 \times 05\) (DDC 11 input \(=\) ADC Channel B, DDC 1 Q input = ADC Channel B) Register 0x314, Register 0x315, Register 0x320, Register 0x321 = FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0x340, Register 0×341 = FTW and POW set as required by application for DDC 1```
Two DDCs	4	Real	Complex	38.5\% $\times \mathrm{f}_{\mathrm{s}}$	4	Register 0x200 = 0x02 (two DDCs, I/Q selected) Register 0x201 = 0x02 (chip decimate by 4) Register 0x310, Register 0x330 = 0x40 (real mixer, 6 dB gain, variable IF, complex output, HB2 + HB1 filters) Register $0 \times 311=0 \times 00$ (DDC 01 input $=$ ADC Channel A, DDC 0 Q input = ADC Channel A) Register 0x331 = 0x05 (DDC 1 I input = ADC Channel B, DDC 1 Q input = ADC Channel B)

AD9684

Chip Application Layer	Chip Decimation Ratio	DDC Input Type	DDC Output Type	Bandwidth Per DDC ${ }^{1}$	Number of Virtual Converters Required (M)	Register Settings ${ }^{2}$
						Register 0×314, Register 0×315, Register 0×320, Register 0×321 = FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0×340, Register 0×341 = FTW and POW set as required by application for DDC 1
Four DDCs	8	Real	Complex	$19.25 \% \times \mathrm{f}_{\text {s }}$	8	Register $0 \times 200=0 \times 03$ (four DDCs, I/Q selected) Register $0 \times 201=0 \times 03$ (chip decimate by 8) Register 0x310, Register 0x330, Register 0×350, Register $0 \times 370=0 \times 41$ (real mixer, 6 dB gain, variable IF, complex output, HB3 + HB2 + HB1 filters) Register 0x311 = 0x00 (DDC 0 l input = ADC Channel A, DDC 0 Q input = ADC Channel A) Register 0×331 = 0×00 (DDC 1 linput $=$ ADC Channel A, DDC 1 Q input = ADC Channel A) Register 0×351 = 0×05 (DDC 21 input = ADC Channel B, DDC 2 Q input = ADC Channel B) Register 0×371 $=0 \times 05$ (DDC 3 linput $=$ ADC Channel B, DDC 3 Q input = ADC Channel B) Register 0x314, Register 0x315, Register 0×320, Register 0×321 = FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0x340, Register 0x341 = FTW and POW set as required by application for DDC 1 Register 0x354, Register 0x355, Register 0×360, Register 0×361 = FTW and POW set as required by application for DDC 2 Register 0x374, Register 0x375, Register 0×380, Register 0×381 = FTW and POW set as required by application for DDC 3
Four DDCs	16	Real	Complex	$9.625 \% \times \mathrm{f}_{5}$	8	Register $0 \times 200=0 \times 03$ (four DDCs, I/Q selected) Register $0 \times 201=0 \times 04$ (chip decimate by 16) Register 0x310, Register 0x330, Register 0×350, Register 0×370 $=0 \times 42$ (real mixer, 6 dB gain, variable IF, complex output, HB4 + HB3 + HB2 + HB1 filters) Register $0 \times 311=0 \times 00$ (DDC 0 linput $=$ ADC Channel A, DDC 0 Q input = ADC Channel A) Register $0 \times 331=0 \times 00$ (DDC 1 linput $=$ ADC Channel A, DDC 1 Q input = ADC Channel A)

Chip Application Layer	Chip Decimation Ratio	DDC Input Type	DDC Output Type	Bandwidth Per DDC ${ }^{1}$	Number of Virtual Converters Required (M)	Register Settings ${ }^{2}$
						Register 0×351 $=0 \times 05$ (DDC 2 \| input $=$ ADC Channel B, DDC 2 Q input = ADC Channel B) Register $0 \times 371=0 \times 05$ (DDC 3 I input $=$ ADC Channel B, DDC 3 Q input = ADC Channel B) Register $0 \times 314,0 \times 315,0 \times 320,0 \times 321=$ FTW and POW set as required by application for DDC 0 Register 0x334, Register 0x335, Register 0x340, Register 0x341 = FTW and POW set as required by application for DDC 1 Register 0x354, Register 0x355, Register 0×360, Register 0×361 = FTW and POW set as required by application for DDC 2 Register 0x374, Register 0x375, Register 0x380, Register 0x381 = FTW and POW set as required by application for DDC 3

[^3]
DIGITAL OUTPUTS

DIGITAL OUTPUTS

The AD9684 output drivers are for standard ANSI LVDS, but optionally the drive current can be reduced using Register 0x56A. The reduced drive current for the LVDS outputs potentially reduces the digitally induced noise.

As detailed in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI, the data format can be selected for offset binary, twos complement, or gray code when using the SPI control.
The AD9684 has a flexible three-state ability for the digital output pins. The three-state mode is enabled when the device is set for power-down mode.

As shown in Table 24, the function of the output pins changes based upon the selection of either parallel or byte output mode in Register 0x568.

Timing

The AD9684 provides latched data with a pipeline delay of 33 input sample clock cycles. Data outputs are available one propagation delay ($\mathrm{tpD}_{\mathrm{p}}$) after the rising edge of the clock signal.

Minimize the length of the output data lines and the corresponding loads to reduce transients within the AD9684. These transients can degrade converter dynamic performance.
The lowest typical conversion rate of the AD9684 is 250 MSPS. At clock rates below 250 MSPS, dynamic performance may degrade.

Data Clock Output

The AD9684 also provides a data clock output (DCO) intended for capturing the data in an external register. The DCO relative to the data output can be adjusted using Register 0x569.

ADC OVERRANGE

The ADC overrange (OR) indicator is asserted when an overrange is detected on the input of the ADC. The overrange condition is determined at the output of the ADC pipeline and, therefore, is subject to a latency of 28 ADC clocks. An overrange at the input is indicated by the OR bit 28 clock cycles after it occurs.

Table 23. LVDS Output Configurations

Parallel Output Mode	Number of Virtual Converters Supported	Virtual Converter Resolution (Max)	LVDS Byte Mode Outputs Required
Parallel Interleaved, Two	2	14 -bit	DCO + STATUS + D[13:0]
Converters (0x1)	14 -bit	DCO + STATUS + D[13:7] =	
Parallel Channel Multiplexed, Two Converters (0x3) 2	16 -bit	Channel AD[6:0] = Channel B	
Byte Mode, Two Converters (0x5)	2	16 -bit	1 DCO + 1 STATUS + 8 DATA[7:0]
Byte Mode, Four Converters (0x6)	4	16 -bit	1 DCO + 1 STATUS + 8 DATA[7:0]
Byte Mode, Eight Converters (0x7)	8	1 DCO + 1 STATUS + 8 DATA[7:0]	

Table 24. Pin Mapping Between LVDS Parallel/Byte Modes

Pin Name	LVDS Parallel Mode Output	LVDS Byte Mode Output
DCO-, DCO+	DCO-, DCO+	DCO-, DCO+
STATUS-, STATUS+	OVR-, OVR+	FCO-, FCO+
D13-, D13+	D13-, D13+	STATUS-, STATUS+
D12-, D12+	D12-, D12+	DATA7-, DATA7+
D11-, D11+	D11-, D11+	DATA6-, DATA6+
D10-, D10+	D10-, D10+	DATA5-, DATA5+
D9-, D9+	D9-, D9+	DATA4-, DATA4+
D8-, D8+	D8-, D8+	DATA3-, DATA3+
D7-, D7+	D7-, D7+	DATA2-, DATA2+
D6-, D6+	D6-, D6+	DATA1-, DATA1+
D5-, D5+	D5-, D5+	DATA0-, DATA0+
D4-, D4+	D4-, D4+	Not applicable
D3-, D3+	D3-, D3+	Not applicable
D2-, D2+	D2-, D2+	Not applicable
D1-, D1+	D1-, D1+	Not applicable
D0-, D0+	D0-, D0+	Not applicable

MULTICHIP SYNCHRONIZATION

The AD9684 has a SYNC \pm input that allows the user flexible options for synchronizing the internal blocks. The SYNC \pm input is a source synchronous system reference signal that enables multichip synchronization. The input clock divider, DDCs, and signal monitor block LVDS output link can be synchronized using the SYNC \pm input. For the highest level of timing accuracy, $\mathrm{SYNC} \pm$ must meet the setup and hold requirements relative to the $C L K \pm$ input.
The flowchart in Figure 67 shows the internal mechanism by which multichip synchronization can be achieved in the AD9684.

The AD9684 supports several features that aid users in meeting the requirements for capturing SYNC \pm signals. The SYNC \pm sample event can be defined as either a synchronous low to high transition or a synchronous high to low transition. Additionally, the AD9684 allows the SYNC \pm signal to be sampled using either the rising edge or the falling edge of the CLK \pm input. The AD9684 can also to ignore a programmable number (up to 16) of SYNC \pm events. The SYNC \pm control options can be selected using Register 0x120 and Register 0x121.

Figure 67. Multichip Synchronization

Data Sheet

SYNC \pm SETUP AND HOLD WINDOW MONITOR

To assist in ensuring a valid SYNC \pm capture, the AD9684 has a SYNC \pm setup and hold window monitor. This feature allows the system designer to determine the location of the SYNC \pm signals relative to the $\mathrm{CLK} \pm$ signals by reading back the amount of setup and hold margin on the interface through the memory map.

Figure 68 and Figure 69 show the setup and hold status values for different phases of SYNC \pm.
The setup detector returns the status of the SYNC \pm signal before the CLK \pm edge and the hold detector returns the status of the SYNC \pm signal after the CLK \pm edge. Register 0x128 stores the status of SYNC \pm and alerts the user if the SYNC \pm signal is captured by the ADC.

Figure 68. SYNC Setup Detector

Figure 69. SYNC \pm Hold Detector
Rev. 0| Page 49 of 64

AD9684

Table 25 describes the contents of Register 0x128 and how to interpret those contents.
Table 25. SYNC \pm Setup and Hold Monitor Register 0x128

Register 0x128, Bits[7:4], Hold Status	Register 0x128, Bits[3:0], Setup Status	Description
0×0	0×0 to 0×7	Possible setup error; the smaller this number, the smaller the setup margin
0×0 to 0×8	0×8	No setup or hold error (best hold margin)
0×8	0×9 to $0 \times F$	No setup or hold error (best setup and hold margin)
0×8	0×0	No setup or hold error (best setup margin)
0×9 to $0 \times F$	0×0	Possible hold error; the larger this number, the smaller the hold margin
0×0	0×0	Possible setup or hold error

AD9684

TEST MODES

ADC TEST MODES

The AD9684 has various test options that aid in the system level implementation. The AD9684 has ADC test modes that are available in Register 0x550. These test modes are described in Table 26. When an output test mode is enabled, the analog section of the ADC is disconnected from the digital back-end blocks and the test pattern is run through the output formatting block. Some of the test patterns are subject to output formatting,
and some are not. The pseudorandom number (PN) generators from the PN sequence tests can be reset by setting Bit 4 or Bit 5 of Register 0x550. These tests can be performed with or without an analog signal (if present, the analog signal is ignored); however, they do require an encode clock. For more information, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

Table 26. ADC Test Modes

Output Test Mode Bit Sequence	Pattern Name	Expression	Default/Seed Value	Sample ($\mathbf{N}, \mathbf{N + 1 , N + 2 , \ldots)}$
0000	Off (default)	Not applicable	Not applicable	Not applicable
0001	Midscale short	00000000000000	Not applicable	Not applicable
0010	+Full-scale short	01111111111111	Not applicable	Not applicable
0011	-Full-scale short	10000000000000	Not applicable	Not applicable
0100	Checkerboard	10101010101010	Not applicable	0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555
0101	PN sequence long	$x^{23}+x^{18}+1$	0x3AFF	0x3FD7, $0 \times 0002,0 \times 26 E 0,0 \times 0 A 3 D, 0 \times 1 C A 6$
0110	PN sequence short	$x^{9}+x^{5}+1$	0x0092	0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697
0111	One-/zero-word toggle	11111111111111	Not applicable	0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000
1000	User input	Register 0x551 to Register 0x558	Not applicable	For repeat mode: User Pattern 1[15:2], User Pattern 2[15:2], User Pattern 3[15:2], User Pattern 4[15:2], User Pattern 1[15:2]... For single mode: User Pattern 1[15:2], User Pattern 2[15:2], User Pattern 3[15:2], User Pattern 4[15:2], 0x0000...
1111	Ramp output	(x) \% 2^{14}	Not applicable	(x) \% $2^{14},(x+1) \% 2^{14},(x+2) \% 2^{14},(x+3) \% 2^{14}$

SERIAL PORT INTERFACE (SPI)

The AD9684 SPI allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. The SPI gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from via the serial port. Memory is organized into bytes that can be further divided into fields. These fields are documented in the Memory Map section. For detailed operational information, see the Serial Control Interface Standard (Rev. 0).

CONFIGURATION USING THE SPI

Three pins define the SPI of this ADC: the SCLK pin, the SDIO pin, and the CSB pin (see Table 27). The SCLK (serial clock) pin synchronizes the read and write data presented from/to the ADC. The SDIO (serial data input/output) pin is a dual-purpose pin that allows data to be sent to and read from the internal ADC memory map registers. The CSB (chip select bar) pin is an active low control that enables or disables the read and write cycles.

Table 27. Serial Port Interface Pins

Pin	Function
SCLK	Serial clock. The serial shift clock input, which synchronizes the serial interface reads and writes.
SDIO	Serial data input/output. A dual-purpose pin that typically serves as an input or an output, depending on the instruction being sent and the relative position in the timing frame. Chip select bar. An active low control that gates the read and write cycles.

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of the framing. See Figure 3 and Table 5 for an example of the serial timing and its definitions.

Other modes involving the CSB pin are available. The CSB pin can be held low indefinitely, which permanently enables the device; this is called streaming. The CSB pin can stall high between bytes to allow additional external timing. When CSB is tied high, SPI functions are placed in a high impedance mode. This mode turns on any secondary functions of the SPI pins.
All data is composed of 8 -bit words. The first bit of each individual byte of serial data indicates whether a read or write command is issued. This bit allows the SDIO pin to change direction from an input to an output.

In addition to word length, the instruction phase determines whether the serial frame is a read or write operation, allowing the serial port to program the chip and to read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the SDIO pin to change direction from an input to an output at the appropriate point in the serial frame.

Data can be sent in MSB first mode or in LSB first mode. MSB first is the default configuration on power-up and can be changed via the SPI port configuration register. For more information about this and other features, see the Serial Control Interface Standard (Rev. 0).

HARDWARE INTERFACE

The pins described in Table 27 compose the physical interface between the user programming device and the serial port of the AD9684. The SCLK pin and the CSB pin function as inputs when using the SPI. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.
The SPI is flexible enough to be controlled by either field programmable gate arrays (FPGAs) or microcontrollers. One method for SPI configuration is described in detail in the AN812 Application Note, Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.
Do not activate the SPI port during periods when the full dynamic performance of the converter is required. Because the SCLK signal, the CSB signal, and the SDIO signal are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD9684 to prevent these signals from transitioning at the converter inputs during critical sampling periods.

SPI ACCESSIBLE FEATURES

Table 28 provides a brief description of the general features that are accessible via the SPI. These features are described in detail in the Serial Control Interface Standard (Rev. 0). The AD9684 device specific features are described in the Memory Map section.

Table 28. Features Accessible Using the SPI

Feature Name	Description
Mode	Allows the user to set either power-down mode or standby mode
Clock	Allows the user to access the clock divider via the SPI
DDC	Allows the user to set up the decimation filters for different applications
Test Input/Output	Allows the user to set the test modes to have known data on the output bits
Output Mode	Allows the user to set up outputs

MEMORY MAP

READING THE MEMORY MAP REGISTER TABLE

Each row in the memory map register table has eight bit locations. The memory map is divided into four sections: the Analog Devices, Inc., SPI registers (Register 0x000 to Register 0x00D), the ADC function registers (Register 0x015 to Register 0x278), The DDC function registers (Register 0x300 to Register 0x387), and the digital outputs and test modes registers (Register 0x550 to Register 0x05B).
Table 29 documents the default hexadecimal value for each hexadecimal address shown. The column with the heading Bit 7 (MSB) is the start of the default hexadecimal value given. For example, Address 0×561, the output mode register, has a hexadecimal default value of 0×01. This means that $\operatorname{Bit} 0=1$, and the remaining bits are 0 s. This setting is the default output format value, which is twos complement. For more information on this function and others, see the Table 29.

Unassigned and Reserved Locations

All address and bit locations that are not included in Table 29 are not currently supported for this device. Write unused bits of a valid address location with 0 s unless the default value is set otherwise. Writing to these locations is required only when part of an address location is unassigned (for example, Address 0x561). If the entire address location is open (for example, Address 0x013), do not write to this address location.

Default Values

After the AD9684 is reset, critical registers are loaded with default values. The default values for the registers are given in Table 29.

Logic Levels

An explanation of logic level terminology follows:

- "Bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit."
- "Clear a bit" is synonymous with "bit is set to Logic 0 " or "writing Logic 0 for the bit."
- "X" denotes a "don't care" bit.

Channel-Specific Registers

Some channel setup functions, such as the input termination (Register 0x016), can be programmed to a different value for each channel. In these cases, channel address locations are internally duplicated for each channel. These registers and bits are designated in Table 29 as local. These local registers and bits can be accessed by setting the appropriate Channel A or Channel B bits in Register 0x008. If both bits are set, the subsequent write affects the registers of both channels. In a read cycle, set only Channel A or Channel B to read one of the two registers. If both bits are set during an SPI read cycle, the device returns the value for Channel A. Registers and bits designated as global in Table 29 affect the entire device and the channel features for which independent settings are not allowed between channels. The settings in Register 0x005 do not affect the global registers and bits.

SPI Soft Reset

After issuing a soft reset by programming 0×81 to Register 0×000, the AD9684 requires 5 ms to recover. Therefore, when programming the AD9684 for application setup, ensure that an adequate delay is programmed into the firmware after asserting the soft reset and before starting the device setup.

AD9684

MEMORY MAP REGISTER TABLE

All address locations that are not included in Table 29 are not currently supported for this device and must not be written.
Table 29. Memory Map Registers

Reg. Addr. (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
Analog Devices SPI Registers											
0x000	INTERFACE_ CONFIG_A	Soft reset (self clearing)	$\begin{array}{\|l\|} \hline L S B \text { first } \\ 0=M S B \\ 1=\text { LSB } \\ \hline \end{array}$	Address ascension	0	0	Address ascension	$\begin{array}{\|l\|} \hline L S B \text { first } \\ 0=M S B \\ 1=\text { LSB } \\ \hline \end{array}$	Soft reset (self clearing)	0x00	
0x001	$\begin{aligned} & \hline \text { INTERFACE_ } \\ & \text { CONFIG_B } \end{aligned}$	Single instruction	0	0	0	0	0	Datapath soft reset (self clearing)	0	0x00	
0x002	$\begin{aligned} & \hline \text { DEVICE_ }_{\text {CONFIG }} \\ & \text { (local) } \end{aligned}$	0	0	0	0	0	0	$\begin{array}{r} \hline 00=\text { norm } \\ 10= \\ 11=\text { po } \end{array}$	al operation standby wer-down	0x00	
0x003	CHIP_TYPE					011 = high speed ADC				0x03	Read only
0x004	$\begin{array}{\|l} \hline \text { CHIP_ID } \\ \text { (low byte) } \end{array}$	1	1	0	1	0	0	1	1	0xD3	Read only
0x005	$\begin{aligned} & \hline \text { CHIP_ID } \\ & \text { (high byte) } \end{aligned}$	0								0x00	Read only
0x006	CHIP GRADE	Chip speed grade $0101=500$ MSPS				0	1	0	X	0x5X	Read only
0x008	Device index	0	0	0	0	0	0	Channel B	Channel A	0x03	
0x00A	Scratch pad	0	0	0	0	0	0	0	0	0x00	
0x00B	SPI revision	0	0	0	0	0	0	0	1	0x01	
0x00C	Vendor ID (low byte)	0	1	0	1	0	1	1	0	0x56	Read only
0x00D	Vendor ID (high byte)	0	0	0	0	0	1	0	0	0x04	Read only
ADC Function Registers											
0×015	Analog input (local)	0	0	0	0	0	0	0	Input disable $0=$ normal operation 1 = input disabled	0x00	
0x016	Input termination (local)	Analog input differential termination$\begin{gathered} 0000=400 \Omega \text { (default) } \\ 0001=200 \Omega \\ 0010=100 \Omega \\ 0110=50 \Omega \end{gathered}$				1	1	0	0	0x0C	
0x018	Input buffer current control (local)		$\begin{gathered} \hline 0000=1.0 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ \\ 1111 \end{gathered}$	uffer curren $5 \times$ buffer cu . \times buffer cu $5 \times$ buffer cu $.0 \times$ buffer cu $5 \times$ buffer cu ... $5 \times$ buffer cu	default) ent ent ent ent ent ent	0	0	0	0	0x20	
0x024	$\begin{aligned} & \text { V_1P0 } \\ & \text { control } \end{aligned}$	0	0	0	0	0	0	0	1.0 V reference select $0=$ internal $1=$ external	0x00	
0x025	Input fullscale range (local)	0	0	0	0		Full-sc 0000 1000 1001 1010 1011 $1100=2.0$	$\begin{aligned} & \hline \text { adjust } \\ & .94 \mathrm{~V} \\ & .46 \mathrm{~V} \\ & .58 \mathrm{~V} \\ & .70 \mathrm{~V} \\ & .82 \mathrm{~V} \\ & \hline \text { (default) } \\ & \hline \end{aligned}$		0x0C	V p-p differential; use in conjunction with Reg. 0x030

Reg. Addr. (Hex)	Register Name	$\begin{array}{\|l} \text { Bit } 7 \\ \text { (MSB) } \end{array}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x028	Temperature diode (local)	0	0	0	0	0	0	0	Diode selection $0=$ no diode selected $1=$ temperature diode selected	0x00	Used in conjunction with Reg. 0x040
0x030	Input fullscale control (local)	0	0	0	reco diffe Full Full	control le 9 for d settings for uency bands values: $\begin{aligned} & \text { lge } \geq 1.82 \mathrm{~V}= \\ & 01 \\ & \text { ge }<1.82 \mathrm{~V}= \\ & 10 \end{aligned}$	0	0	0	0x04	Input fullscale control (local)
0x03F	PDWN/ STBY pin control (local)	$0=$ PDWN/ STBY enabled 1 = disabled	0	0	0	0	0	0	0	0x00	Used in conjunction with Reg. 0x040
0x040	Chip pin control	$\begin{array}{r} \hline \text { PDWN/ST } \\ 00=\text { po } \\ 01= \\ 10= \end{array}$	BY function wer down standby disabled		ast Det = Fast $001=$ $010=$ $111=$	_B) output d d d	$\begin{array}{r} F \\ 000= \\ 011 \end{array}$	$\begin{aligned} & \text { Detect } \\ & \text { ast Det } \\ & 01=\text { res } \\ & 10=\text { res } \\ & \text { temper } \\ & 11=\text { dis } \end{aligned}$	_A) output d diode d	0x3F	
0x10B	Clock divider	0	0	0	0	0		$\begin{aligned} & 0=d i \\ & 1=d i \\ & 1=d i \\ & 1=d i \end{aligned}$		0x00	
0x10C	Clock divider phase (local)	0	0	0	0	Independ	ntly control clock divid $=0$ input $=1 / 2$ input = 1 input $=1 \frac{1}{2}$ input $=2$ input $=2 \frac{1}{2}$ input $=71 / 2$ input	hannel hase of k cycle k cycle k cycle ck cycl k cycle ck cycl ck cycl	Channel B yed ayed yed ayed ayed ayed	0x00	
0x10D	Clock divider and SYNC \pm control	Clock divider automatic phase adjustment $0=$ disabled 1 = enabled	0	0	0	Clock divid skew $00=$ no n $01=1$ de negat $10=2$ devi negat $11=3$ devi negat	er negative window gative skew ice clock of ve skew ce clocks of ve skew ce clocks of e skew	$\begin{gathered} \text { Cloc } \\ \text { s } \\ 00= \\ 01= \\ 10= \\ 11= \end{gathered}$	der positive window ositive skew vice clock of ve skew ice clocks of ve skew ice clocks of ve skew	0x00	Clock divider must be >1
0x117	Clock delay control	0	0	0	0	0	0	0	Clock fine delay adjust enable $0=$ disabled 1 = enabled	0x00	Enabling the clock fine delay adjustment causes a datapath soft reset

AD9684

Reg. Addr. (Hex)	Register Name	$\begin{aligned} & \text { Bit } 7 \\ & \text { (MSB) } \end{aligned}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x118	Clock fine delay (local)	Clock fine delay adjust, Bits[7:0] Twos complement coded control to adjust the fine sample clock skew in $\sim 1.7 \mathrm{ps}$ steps $\begin{aligned} & \leq-88=-151.7 \text { ps skew } \\ &-87=-150 \text { ps skew } \\ & \ldots \\ & 0=0 \text { ps skew } \\ & \ldots \\ & \geq+87=+150 \text { ps skew } \end{aligned}$								0x00	Used in conjunction with Reg. 0×0117
0x11C	Clock status	0	0	0	0	0	0	0	$\begin{array}{\|l\|} \hline 0=\text { no } \\ \text { input clock } \\ \text { detected } \\ 1=\text { input } \\ \text { clock det- } \\ \text { ected } \\ \hline \end{array}$	0x00	Read only
0x120	SYNC \pm Control 1	0	$\begin{aligned} & \hline \text { SYNC } \pm \text { flag } \\ & \text { reset } \\ & 0=\text { normal } \\ & \text { operation } \\ & 1=\text { flags } \\ & \text { held in reset } \end{aligned}$	0	SYNC \pm transition select $0=$ low to high 1 = high to low	$\begin{aligned} & \hline \text { CLK } \pm \text { edge } \\ & \text { select } \\ & 0=\text { rising } \\ & 1=\text { falling } \end{aligned}$		de select abled inuous shot	0	0x00	
0x121	SYNC \pm Control 2	0	0	0	0	$\begin{array}{r} \text { SYI } \\ 0001 \\ 0010= \\ 1111= \end{array}$	$\pm \mathrm{N}$ sh 0000 ignore nore th gnore t	e count YNC \pm on SYNC \pm o SYNC 6 SYNC	elect sitions ansitions nsitions	0x00	Mode select (Reg. 0x120, Bits[2:1]) must be N shot
0x123	SYNC \pm timestamp delay control		$\begin{gathered} \text { SYNC } \pm \text { timestamp delay, Bits[6:0] } \\ 0 \times 00=\text { no delay } \\ 0 \times 01=1 \text { clock delay } \\ \ldots \\ 0 \times 7 \mathrm{~F}=127 \text { clocks delay } \end{gathered}$							0x00	Ignored when Reg. $0 \times 01 \mathrm{FF}=$ 0×00
0x128	SYNC \pm Status 1	SYNC \pm hold status, Register 0x128, Bits [7:4]				SYNC \pm setup status, Register 0x128, Bits [3:0]				Read only	
0x129	SYNC \pm and clock divider status	0	0	0	0	Clock divider phase when SYNC \pm was captured $0000=$ in-phase $0001=$ SYNC \pm is $1 / 2$ cycle delayed from clock $0010=$ SYNC \pm is 1 cycle delayed from clock $0011=1 \frac{1}{2}$ input clock cycles delayed $0100=2$ input clock cycles delayed $0101=2 ½$ input clock cycles delayed $1111=71 / 2$ input clock cycles delayed				Read only	
0x12A	SYNC \pm counter	SYNC \pm counter, Bits[7:0] increments when a SYNC \pm signal is captured								Read only	
0x1FF	Chip sync mode							$\begin{array}{r} \text { Synchro } \\ 00 \\ 01= \end{array}$	zation mode normal mestamp	0x00	
0x200	$\begin{aligned} & \text { Chip } \\ & \text { application } \\ & \text { mode } \end{aligned}$	0	0	Chip Q ignore $0=$ normal (I/Q) 1 = ignore (I only)	0	0	0	$\begin{aligned} & \text { Chip of } \\ & 00=\mathrm{f} \\ & 01= \\ & 10=\mathrm{D} \end{aligned}$	rating mode bandwidth mode DDC 0 on 0 and DDC 1	0x00	
0x201	Chip decimation ratio	0	0	0	0	0		imation r = decima = decima = decima = decima decimat	io select by 1 by 2 by 4 by 8 by 16	0x00	
0x228	Customer offset	Offset adjust in LSBs from +127 to -128 (twos complement format)								0x00	

Reg. Addr. (Hex)	Register Name	$\begin{array}{\|l\|l\|} \hline \text { Bit } 7 \\ \text { (MSB) } \\ \hline \end{array}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x245	Fast detect (FD) control (local)	0	0	0	0	Force FD_A/ FD_B pins $0=$ normal function 1 = force to value	Force value of FD_A/ FD_B pins if force pins is true, this value is output on FD_x pins	0	Enable fast detect output	0x00	
0x247	FD upper threshold LSB (local)	Fast detect upper threshold, Bits[7:0]								0x00	
0x248	FD upper threshold MSB (local)	0	0	0	Fast detect upper threshold, Bits[12:8]					0x00	
0x249	FD lower threshold LSB (local)	Fast detect lower threshold, Bits[7:0]								0x00	
0x24A	FD lower threshold MSB (local)	0	0	0	Fast detect lower threshold, Bits[12:8]					0x00	
0x24B	FD dwell time LSB (local)	Fast detect dwell time, Bits[7:0]								0x00	
0x24C	FD dwell time MSB (local)	Fast detect dwell time, Bits[15:8]								0x00	
0x26F	Signal monitor synchronization control	0	0	0	0	0	0	Synchronization mode $00=$ disabled 01 = continuous 11 = one-shot		0x00	
0x270	Signal monitor control (local)	0	0	0	0	0	0	Peak detector $0=$ disabled $1=$ enabled	0	0x00	
0x271	Signal Monitor Period Register 0 (local)	Signal monitor period, Bits[7:0]								0x80	In decimated output clock cycles
0x272	Signal Monitor Period Register 1 (local)	Signal monitor period, Bits[15:8]								0x00	In decimated output clock cycles
0x273	Signal Monitor Period Register 2 (local)	Signal monitor period, Bits[23:16]								0x00	In decimated output clock cycles
0x274	Signal monitor result control (local)	0	0	0	Result update 1 = update results (self clear)	0	0	0	Result selection $0=$ reserved 1 = peak detector	0x01	

AD9684

Reg. Addr. (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x275	Signal Monitor Result Register 0 (local)	Signal monitor result, Bits[7:0] When Register 0x0274, Bit $0=1$, result Bits[19:7] = peak detector absolute value, Bits [12:0]; result Bits[6:0] $=0$								Read only	Updated based on Reg. 0x274, Bit 4
0x276	Signal Monitor Result Register 1 (local)	Signal monitor result, Bits[15:8]								Read only	Updated based on Reg. 0x274, Bit 4
0x277	Signal Monitor Result Register 1 (local)	0	0	0	0	Signal monitor result, Bits[19:16]				Read only	Updated based on Reg. 0×274, Bit 4
0x278	Signal monitor period counter result (local)	Period count result, Bits[7:0]								Read only	Updated based on Reg. 0×274, Bit 4
Digital Downconverter (DDC) Function Registers-See the Digital Downconverters (DDCs) Section											
0x300	DDC synchronization control	0	0	0	DDC NCO soft reset $0=$ normal operation 1 = reset	0	0	Synchronization mode (triggered by SYNC \pm) $00=$ disabled 01 = continuous 11 = one-shot			
0x310	$\text { DDC } 0$ control	Mixer select 0 = real mixer $1=$ complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	IF mode $00=$ variable IF mode (mixers and NCO enabled) $01=0 \mathrm{~Hz}$ IF mode (mixer bypassed, NCO disabled) $10=\mathrm{f}_{\mathrm{s}} / 4 \mathrm{~Hz}$ IF mode ($\mathrm{f}_{\mathrm{s}} / 4$ downmixing mode) 11 = test mode (mixer inputs forced to +FS, NCO enabled)		Complex to real enable $0=$ disabled 1 = enabled	0	Decimation rate select (complex to real disabled) 11 = decimate by 2 $00=$ decimate by 4 01 = decimate by 8 10 = decimate by 16 (complex to real enabled) 11 = decimate by 1 $00=$ decimate by 2 01 = decimate by 4 10 = decimate by 8		0x00	
0x311	DDC 0 input selection	0	0	0	0	0	Q input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0	I input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0x00	
0x314	$\begin{aligned} & \text { DDC } 0 \\ & \text { frequency } \\ & \text { LSB } \end{aligned}$	DDC 0 NCO FTW, Bits[7:0], twos complement								0x00	
0x315	DDC 0 frequency MSB	X	X	X	X	DDC 0 NCO FTW, Bits[11:8], twos complement				0x00	
0x320	$\begin{aligned} & \text { DDC } 0 \\ & \text { phase LSB } \end{aligned}$	DDC 0 NCO POW, Bits[7:0], twos complement								0x00	
0x321	$\begin{aligned} & \text { DDC } 0 \\ & \text { phase MSB } \end{aligned}$	X	X	X	X	DDC 0 NCO POW, Bits[11:8], twos complement				0x00	
0x327	DDC 0 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch. B	0	I output test mode enable $0=$ disabled $1=$ enabled from Ch. A	0x00	

Reg. Addr. (Hex)	Register Name	$\begin{array}{\|l} \text { Bit } 7 \\ \text { (MSB) } \end{array}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x330	$\begin{array}{\|l\|} \hline \text { DDC } 1 \\ \text { control } \end{array}$	Mixer select 0 = real mixer $1=$ complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	00 $01=$ byp $10=$ d 11 in	mode ble IF mode and NCO bled) mode (mixer NCO disabled) IF mode ($\mathrm{f}_{\mathrm{s}} / 4$ ing mode) mode (mixer ced to $+F S$, nabled)	Complex to real enable $0=$ disabled 1 = enabled	0	Deci (c 11 (c 11	n rate select ex to real abled) imate by 2 ex to real bled) imate by 1	0x00	
0×331	DDC 1 input selection	0	0	0	0	0	Q input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0	I input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0x00	
0x334	$\begin{array}{\|l\|} \hline \text { DDC } 1 \\ \text { frequency } \\ \text { LSB } \\ \hline \end{array}$	DDC 1 NCO FTW, Bits[7:0], twos complement								0x00	
0x335	DDC 1 frequency MSB	X	X	X	X	DDC 1 NCO FTW, Bits[11:8], twos complement				0x00	
0x340	DDC 1 phase LSB	DDC 1 NCO POW, Bits[7:0], twos complement								0x00	
0×341	DDC 1 phase MSB	X	X	X	X	DDC 1 NCO POW, Bits[11:8], twos complement				0x00	
0x347	DDC 1 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch. B	0	I output test mode enable $0 \text { = }$ disabled $1 \text { = }$ enabled from Ch. A	0x00	
0x350	DDC 2 control	Mixer select 0 = real mixer 1 = complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	$00=$	mode le IF mode and NCO bled) mode (mixer CO disabled) IF mode ($\mathrm{f}_{\mathrm{s}} / 4$ ing mode) ode (mixer d to + FS, NCO bled)	Complexto real enable $0=$ disabled 1 = enabled	0	$\begin{array}{r} \text { Decin } \\ \text { (co } \\ 11= \\ 00= \\ 01= \\ 10= \\ (c c \\ 11= \\ 00= \\ 01= \\ 10= \end{array}$	n rate select ex to real bled) mate by 2 mate by 4 mate by 8 mate by 16 ex to real bled) mate by 1 mate by 2 mate by 4 mate by 8	0x00	
0x351	DDC 2 input selection	0	0	0		0	Q input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0	I input select $\begin{aligned} & 0=\text { Ch. A } \\ & 1=\text { Ch. } B \end{aligned}$	0x00	
0x354	DDC 2 frequency LSB	DDC 2 NCO FTW, Bits[7:0], twos complement								0x00	
0x355	DDC 2 frequency MSB	X	X	X	X	DDC 2 NCO FTW, Bits[11:8], twos complement				0x00	
0x360	DDC 2 phase LSB	DDC 2 NCOPOW, Bits[7:0], twos complement								0x00	
0×361	DDC 2 phase MSB	X	X	X	X	DDC 2 NCO POW, Bits[11:8], twos complement				0x00	

AD9684

Reg. Addr. (Hex)	Register Name	$\begin{aligned} & \text { Bit } 7 \\ & \text { (MSB) } \end{aligned}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default	Notes
0x367	DDC 2 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch. B	0	I output test mode enable $0=$ disabled $1=$ enabled from Ch. A	0x00	
0x370	$\text { DDC } 3$ control	Mixer select 0 = real mixer 1 = complex mixer	Gain select $0=0 \mathrm{~dB}$ gain $1=6 \mathrm{~dB}$ gain	$\begin{array}{r} \text { IF n } \\ 00=\text { varial } \\ \text { (mixers } \\ \text { ena } \\ 01=0 \mathrm{~Hz} \mathrm{IF} \\ \text { bypassed, } \\ 10=\mathrm{f}_{\mathrm{s}} / 4 \mathrm{~Hz} \\ \text { downix } \\ 11=\text { test } \mathrm{n} \\ \text { inputs force } \\ \text { ena } \end{array}$	mode ble IF mode and NCO bled) mode (mixer CO disabled) IF mode ($\mathrm{f}_{\mathrm{s}} / 4$ ing mode) ode (mixer d to +FS, NCO bled)	Complex to real enable $0=$ disabled 1 = enabled	0	Decim (c 11 00 01 $10=$ (c 11 00 01 10	n rate select ex to real bled) imate by 2 imate by 4 imate by 8 mate by 16 ex to real bled) mate by 1 imate by 2 imate by 4 imate by 8	0x00	
0x371	$\begin{aligned} & \hline \text { DDC } 3 \\ & \text { input } \\ & \text { selection } \end{aligned}$	0	0	0	0	0	Q input select $\begin{aligned} & 0=\text { Ch. } A \\ & 1=\text { Ch. } B \end{aligned}$	0	I input select $\begin{aligned} & 0=\mathrm{Ch} . \mathrm{A} \\ & 1=\mathrm{Ch} . \mathrm{B} \end{aligned}$	0x05	
0×374	$\begin{array}{\|l\|} \hline \text { DDC } 3 \\ \text { frequency } \\ \text { LSB } \\ \hline \end{array}$	DDC 3 NCO FTW, Bits[7:0] twos complement								0x00	
0x375	$\begin{aligned} & \hline \text { DDC } 3 \\ & \text { frequency } \\ & \text { MSB } \end{aligned}$	X	X	X	X	DDC 3 NCO FTW, Bits[11:8] twos complement				0x00	
0x380	$\begin{aligned} & \hline \text { DDC } 3 \\ & \text { phase LSB } \end{aligned}$	DDC 3 NCO POW, Bits[7:0] twos complement								0x00	
0x381	$\begin{aligned} & \text { DDC } 3 \\ & \text { phase MSB } \end{aligned}$	X	X	X	X	DDC 3 NCO POW, Bits[11:8] twos complement				0x00	
0x387	DDC 3 output test mode selection	0	0	0	0	0	Q output test mode enable $0=$ disabled 1 = enabled from Ch. B	0	I output test mode enable $0=$ disabled 1 = enabled from Ch. A	0x00	
Digital Outputs and Test Modes											
0x550	ADC test modes (local)	User pattern selection $0=$ continuous repeat 1 = single pattern	0	Reset PN long gen $0=$ long PN enable 1 = long PN reset	Reset PN short gen 0 = short PN enable 1 = short PN reset	Test mode selection $0000=$ off (normal operation) 0001 = midscale short $0010=$ positive full scale 0011 = negative full scale 0100 = alternating checker board 0101 = PN sequence, long $0110=$ PN sequence, short 0111 = one/zero word toggle $1000=$ the user pattern test mode (used with Register 0x550, Bit 7 and User Pattern 1 to User Pattern 4 registers) 1111 = ramp output				0x00	
0x551	User Pattern 1 LSB	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0x573
0x552	User Pattern 1 MSB	0	0	0	0	0	0	0	0	0x00	Used with Reg. 0x550 and Reg. 0x573

| Reg.
 Addr.
 (Hex) | Register
 Name | Bit 7
 (MSB) | Bit 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AD9684

APPLICATIONS INFORMATION

POWER SUPPLY RECOMMENDATIONS

The AD9684 must be powered by the following six supplies: $\mathrm{AVDD} 1=1.25 \mathrm{~V}, \mathrm{AVDD} 2=2.5 \mathrm{~V}, \mathrm{AVDD} 3=3.3 \mathrm{~V}, \mathrm{DVDD}=$ $1.25 \mathrm{~V}, \mathrm{DRVDD}=1.25 \mathrm{~V}$, and SPIVDD $=1.8 \mathrm{~V}$. For applications requiring an optimal high power efficiency and low noise performance, it is recommended that the ADP2164 and ADP2370 switching regulators be used to convert the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, or 12 V input rails to an intermediate rail (1.8 V and 3.8 V). These intermediate rails are then postregulated by very low noise, low dropout (LDO) regulators (ADP1741, ADP1740, and ADP125). Figure 70 shows the recommended power supply scheme for the AD9684.

Figure 70. High Efficiency, Low Noise Power Solution for the AD9684

It is not necessary to split all of these power domains in all cases. The recommended solution shown in Figure 70 provides the lowest noise, highest efficiency power delivery system for the AD9684. If only one 1.25 V supply is available, route to AVDD1 first and then tap it off and isolate it with a ferrite bead or a filter choke, preceded by decoupling capacitors for SPIVDD, DVDD, and DRVDD, in that order. The user can employ several different decoupling capacitors to cover both high and low frequencies. These capacitors must be located close to the point of entry at the PCB level and close to the devices, with minimal trace lengths.

OUTLINE DIMENSIONS

Figure 71. 196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED] (BP-196-3)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9684BBPZ-500 $_{\text {AD9684BBPZRL7-500 }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$196-$-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]	$\mathrm{BP}-196-3$
AD9684-500EBZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]	BP-196-3

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

[^0]: ${ }^{1}$ Differential capacitance is measured between the VIN $+x$ and $\mathrm{VIN}-\mathrm{x}$ pins ($\mathrm{x}=\mathrm{A}$ or B).
 ${ }^{2}$ Parallel interleaved LVDS mode. The power dissipation on DRVDD changes with the output data mode used.

[^1]: 190° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK \pm.
 $\mathbf{2}^{270} 0^{\circ}$ PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK \pm.
 ${ }^{3}$ RRAME CLOCK OUTPUT SUPPORTS 3 MODES OF OPERATION:

 1) ENABLED (ALWAYS ON).
 2) DISABLED (ALWAYS OFF).
 3) GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDO-RANDOM BIT).
 ${ }^{4}$ STATUS BIT SELECTED BY REGISTER 0x559, BITS[2:0] IN THE REGISTER MAP.
[^2]: ${ }^{1} \mathrm{f}_{\text {out }}=$ ADC input sample rate/DDC decimation ratio.

[^3]: ${ }^{1} \mathrm{f}_{\mathrm{s}}$ is the ADC sample rate. Bandwidths listed are $<-0.001 \mathrm{~dB}$ of pass-band ripple and $>100 \mathrm{~dB}$ of stop band alias rejection.
 ${ }^{2}$ The NCOs must be synchronized either through the SPI or through the SYNC \pm pins after all writes to the FTW or POW registers are complete. This ensures the proper operation of the NCO. See the NCO Synchronization section for more information.

