FEATURES

Integrated 15-channel V-driver
12-bit, 36 MHz analog-to-digital converter (ADC)
Similar register map to the AD9923
5-field, 10-phase vertical clock support
Complete on-chip timing generator
Precision Timing core with <600 ps resolution
Correlated double sampler (CDS)
$\mathbf{6 ~ d B}$ to $\mathbf{4 2 ~ d B ~ 1 0 - b i t ~ v a r i a b l e ~ g a i n ~ a m p l i f i e r ~ (V G A) ~}$
Black level clamp with variable level control
On-chip 3 V horizontal and RG drivers
2-phase and 4-phase H-clock modes
Electronic and mechanical shutter support
On-chip driver for external crystal
On-chip sync generator with external sync input $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ CSP_BGA package with 0.65 mm pitch

APPLICATIONS

Digital still cameras

GENERAL DESCRIPTION

The AD9923A is a complete 36 MHz front-end solution for digital still cameras and other CCD imaging applications. Similar to the AD9923 product, the AD9923A includes the analog front end (AFE), a fully programmable timing generator (TG), and a 15-channel vertical driver (V-driver). A Precision Timing ${ }^{\text {ma }}$ core allows adjustment of high speed clocks with approximately 600 ps resolution at 36 MHz operation.

The on-chip V-driver supports up to 15 channels for use with 5-field, 10-phase CCDs.

The analog front end includes black level clamping, CDS, VGA, and a 12 -bit ADC. The timing generator and V -driver provide all the necessary CCD clocks: RG, H-clocks, vertical clocks, sensor gate pulses, substrate clock, and substrate bias control. The internal registers are programmed using a 3-wire serial interface.

Packaged in an $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ CSP_BGA, the AD9923A is specified over an operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. A

AD9923A

TABLE OF CONTENTS

Features1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications3
Digital Specifications 4
H-Driver Specifications 4
Vertical Driver Specifications 4
Analog Specifications 5
Timing Specifications 6
Absolute Maximum Ratings 8
Thermal Resistance 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 11
Equivalent Circuits 12
Terminology 13
REVISION HISTORY
1/10—Rev. 0 to Rev. A
Changes to Table 6 6
Added Table 8; Renumbered Sequentially 8
Changes to Individual HBLK Patterns Section 20
Changes to Table 13 20
Change to SUBCK: High Precision Operation Section 45
Changes to Manual Control Section 49
Theory of Operation 14
Precision Timing High Speed Timing Generation 15
Horizontal Clamping and Blanking 18
Vertical Timing Generation 24
Vertical Timing Example 38
Vertical Driver Signal Configuration. 40
Shutter Timing Control 44
Example of Exposure and Readout of Interlaced Frame 53
FG_TRIG Operation 54
Analog Front End Description/Operation 55
Standby Mode Operation 60
Circuit Layout Information. 62
Serial Interface Timing 65
Layout of Internal Registers 66
Updating New Register Values 67
Complete Register Listing 68
Outline Dimensions 84
Ordering Guide 84

SPECIFICATIONS

Table 1.

Parameter	Conditions/Comments	Min	Typ	Max	Unit
TEMPERATURE RANGE Operating Storage		$\begin{aligned} & -25 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
AFETG POWER SUPPLY VOLTAGES AVDD TCVDD RGVDD HVDD DRVDD DVDD	AFE analog supply Timing Core Analog Supply RG Driver HL, H1 to H4 Drivers Data Output Drivers Digital	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 2.7 \\ & 2.7 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \\ & 3.6 \\ & 3.6 \\ & 3.6 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
```V-DRIVER POWER SUPPLY VOLTAGES VDD1,VDD2 VH1,VH2 VL1,VL2 VM1,VM2 VLL VMM```	V-Driver Logic   V-Driver High Supply   V-Driver Low Supply   V-Driver Mid Supply   SUBCK Low Supply   SUBCK Mid Supply	$\begin{aligned} & +2.7 \\ & +11.5 \\ & -8.5 \\ & -1.5 \\ & -8.5 \\ & -4.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +15.0 \\ & -7.5 \\ & 0.0 \\ & -7.5 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.6 \\ & +16.5 \\ & -5.5 \\ & +1.5 \\ & -5.5 \\ & +1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
AFETG POWER DISSIPATION   Total   Standby 1 Mode   Standby 2 Mode   Standby 3 Mode   Power from HVDD Only ${ }^{1}$   Power from RGVDD Only   Power from AVDD Only   Power from TCVDD Only   Power from DVDD Only   Power from DRVDD Only	36 MHz , 3.0 V supply, 400 pF total H-load, 20 pF RG load		$\begin{aligned} & 335 \\ & 105 \\ & 1 \\ & 1 \\ & 130 \\ & 10 \\ & 75 \\ & 40 \\ & 75 \\ & 5 \end{aligned}$		mW   mW
V-DRIVER POWER DISSIPATION ${ }^{2}$   VH1, VH2   VL1, VL2   VM1, VM2   VDD1, VDD2	$\mathrm{VH} 1, \mathrm{VH} 2=+15 \mathrm{~V} ; \mathrm{VL} 1, \mathrm{VL} 2=-7.5 \mathrm{~V} ; \mathrm{VM} 1, \mathrm{VM} 2=0 \mathrm{~V}$; VDD1, VDD2 $=$ 3.3 V ; all V-driver inputs tied low		$\begin{aligned} & 5 \\ & 2.5 \\ & 0 \\ & 0.5 \end{aligned}$		$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$
MAXIMUM CLOCK RATE (CLI)		36			MHz

${ }^{1}$ The total power dissipated by the HVDD supply can be approximated using the equation
Total HVDD Power $=\left[C_{\text {LOAD }} \times\right.$ HVDD $\times$ Pixel Frequency $] \times$ HVDD
Reducing the H-load and/or using a lower HVDD supply reduces the power dissipation. CLOAD is the total capacitance seen by all H-outputs.
${ }^{2}$ V-driver power dissipation depends on the frequency of operation and the load they are driving. All inputs to the V-driver were tied low for the measurements in Table 1.

## AD9923A

## DIGITAL SPECIFICATIONS

DRVDD $=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{max}}$, unless otherwise noted.
Table 2.

Parameter	Conditions/Comments	Symbol	Min	Typ	Max	Unit
LOGIC INPUTS						
High Level Input Voltage		$\mathrm{V}_{\mathrm{H}}$	2.1			V
Low Level Input Voltage		VIL			0.6	V
High Level Input Current		$\mathrm{I}_{\mathrm{H}}$		10		$\mu \mathrm{A}$
Low Level Input Current		$1 / 2$		10		$\mu \mathrm{A}$
Input Capacitance		$\mathrm{Cl}_{\text {IN }}$		10		pF
LOGIC OUTPUTS	Powered by DVDD, DRVDD					
High Level Output Voltage	At $\mathrm{l}_{\text {OH }}=2 \mathrm{~mA}$	$\mathrm{V}_{\text {OH }}$	DVDD - 0.5, DRVDD - 0.5			V
Low Level Output Voltage	At lol $=2 \mathrm{~mA}$	Vol			0.5	V

## H-DRIVER SPECIFICATIONS

HVDD $=$ RGVDD $=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3.

| Parameter | Conditions/Comments | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | Unit

## VERTICAL DRIVER SPECIFICATIONS

$\mathrm{VDD} 1=\mathrm{VDD} 2=3.3 \mathrm{~V}, \mathrm{VH} 1=\mathrm{VH} 2=15 \mathrm{~V}, \mathrm{VM} 1=\mathrm{VM} 2=\mathrm{VMM}=0 \mathrm{~V}, \mathrm{VL} 1=\mathrm{VL} 2=\mathrm{VLL}=-7.5 \mathrm{~V}, 25^{\circ} \mathrm{C}$.
Table 4.


Parameter	Conditions/Comments	Symbol	Min	Typ	Max	Unit
VMM to VH		tРмн		25		ns
VH to VMM		$\mathrm{t}_{\text {PHM }}$		30		ns
VMM to VLL		$\mathrm{t}_{\mathrm{PML}}$		25		ns
Rise Time						
VLL to VH		trLh		40		ns
VLL to VMM		$\mathrm{t}_{\text {RLM }}$		45		ns
VMM to VH		$\mathrm{t}_{\text {RMH }}$		30		ns
Fall Time						
VH to VLL		$\mathrm{t}_{\text {FHL }}$		40		ns
VH to VMM		$\mathrm{t}_{\text {FHM }}$		90		ns
VMM to VLL		$\mathrm{t}_{\text {fmL }}$		25		ns
Output Currents						
$\text { at }-7.25 \mathrm{~V}$				20		mA
at -0.25 V				12		mA
at +0.25 V				12		mA
at +14.75 V				20		mA
Ron					35	$\Omega$



Figure 2. Definition of $V$-Driver Timing Specifications

## ANALOG SPECIFICATIONS

AVDD $=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLI}}=36 \mathrm{MHz}$, typical timing specifications, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 5.

Parameter	Conditions/Comments	Min	Typ	Max	Unit
CDS	Input characteristics definition ${ }^{1}$				
Allowable CCD Reset Transient			0.5	1.2	V
CDS Gain Accuracy	VGA gain $=6 \mathrm{~dB}$ (Code 15, default value)				
-3 dB CDS Gain		-3	-2.5	-2	dB
0 dB CDS Gain	Default	0	+0.5	+1	dB
+3 dB CDS Gain		+3	+3.5	+4	dB
+6 dB CDS Gain		+5.5	+6	+6.5	dB
Maximum Input Range Before Saturation					
0 dB CDS Gain	Default setting		1.0		$V \mathrm{p}-\mathrm{p}$
-3 dB CDS Gain			1.4		$V \mathrm{p}-\mathrm{p}$
+6 dB CDS Gain			0.5		$V \mathrm{p}$-p
Maximum CCD Black Pixel Amplitude	Positive offset definition ${ }^{1}$				
$0 \mathrm{~dB} \mathrm{CDS} \mathrm{Gain} \mathrm{(Default)}$		-100		+200	mV
+6 dB CDS Gain		-50		+100	mV
VARIABLE GAIN AMPLIFIER (VGA)					
Gain Control Resolution			1024		Steps
Gain Monotonicity			Guaranteed		
Gain Range					
Minimum Gain (VGA Code 15)			6		dB
Maximum Gain (VGA Code 1023)			42		dB

## AD9923A

Parameter	Conditions/Comments	Min	Typ	Max	Unit
BLACK LEVEL CLAMP   Clamp Level Resolution Minimum Clamp Level (Code 0) Maximum Clamp Level (Code 1023)	Measured at ADC output		$\begin{aligned} & 1024 \\ & 0 \\ & 255 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Steps } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ANALOG-TO-DIGITAL CONVERTER (ADC)   Resolution   Differential Nonlinearity (DNL)   No Missing Codes   Full-Scale Input Voltage		$\begin{aligned} & 12 \\ & -1.0 \end{aligned}$	$\pm 0.5$   Guaranteed $2.0$	+1.0	$\begin{aligned} & \text { Bits } \\ & \text { LSB } \\ & \mathrm{V} \\ & \hline \end{aligned}$
VOLTAGE REFERENCE   Reference Top Voltage (REFT)   Reference Bottom Voltage (REFB)			$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
SYSTEM PERFORMANCE   Gain Accuracy   Low Gain (VGA Code 15)   Maximum Gain (VGA Code 1023)   Peak Nonlinearity, 500 mV Input Signal   Total Output Noise   Power Supply Rejection (PSR)	Includes entire signal chain   Default CDS gain (0 dB)   12 dB gain applied   AC-grounded input, 6 dB gain applied   Measured with step change on supply	$\begin{aligned} & 6.0 \\ & 42.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 42.5 \\ & 0.1 \\ & 1.0 \\ & 50 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 43.0 \end{aligned}$	dB   dB   \%   LSB rms   dB

${ }^{1}$ Input signal characteristics are defined as shown in Figure 3.


## TIMING SPECIFICATIONS

$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{AVDD}=\mathrm{DVDD}=\mathrm{DRVDD}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLI}}=36 \mathrm{MHz}$, unless otherwise noted.
Table 6.

Parameter	Conditions/Comments	Symbol	Min	Typ	Max	Unit
MASTER CLOCK, CLI						
CLI Clock Period		tconv	27.8			ns
CLI High/Low Pulse Width			11.2	13.9	16.6	ns
Delay from CLI Rising Edge to Internal Pixel Position 0		tclidiy		6		ns
AFE CLPOB Pulse Width ${ }^{1,2}$			2	20		Pixels
Allowable Region for HD Falling Edge to CLI Rising Edge		thdilı			tconv - 2	
SHP Inhibit Region	Only valid in slave mode	tshpinh	30		39	Edge location
AFE SAMPLE LOCATION ${ }^{1}$   SHP Sample Edge to SHD Sample Edge		ts 1	11.6	13.9		ns
DATA OUTPUTS Output Delay from DCLK Rising Edge ${ }^{1}$ Inhibited Area for DOUTPHASE Edge Location Pipeline Delay from SHP/SHD Sampling to Data Output		tod	$\begin{aligned} & \text { SHD } \\ & 16 \end{aligned}$		SHD + 11	ns   Edge location Cycles
SERIAL INTERFACE   Maximum SCK Frequency   SL to SCK Setup Time   SCK to SL Hold Time   SDATA Valid to SCK Rising Edge Setup		fsclk   tıs   t나   tbs	$\begin{aligned} & 36 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$			MHz   ns   ns   ns


Parameter	Conditions/Comments	Symbol	Min	Typ	Max	Unit
SCK Falling Edge to SDATA Valid Hold		toh	10			ns
SCK Falling Edge to SDATA Valid Read		tov	10			ns
INHIBIT REGION FOR SHP AND SHD WITH RESPECT TO H-CLOCK EDGE LOCATION						
HxMASK $=0, \mathrm{HxRETIME}=0, \mathrm{HxPOLARITY}=0$		$\mathrm{t}_{\text {SHIINH }}$	HxPOS - 9		HxPOS - 18	Edge location
HxMASK $=0, \mathrm{HxRETIME}=0, \mathrm{HxPOLARITY}=1$		$\mathrm{t}_{\text {SHIIN }}$	HxNEG - 9		HxNEG - 18	Edge location
HxMASK $=0, \mathrm{HxRETIME}=1, \mathrm{HxPOLARITY}=0$		tshipin	HxPOS - 7		HxPOS - 16	Edge location
HxMASK $=0, \mathrm{HxRETIME}=1, \mathrm{HxPOLARITY}=1$		$\mathrm{t}_{\text {SHPINH }}$	HxNEG-7		HxNEG - 16	Edge location
HxMASK $=1, \mathrm{HxRETIME}=0, \mathrm{HxPOLARITY}=0$		$\mathrm{t}_{\text {SHIIN }}$	HxNEG - 9		HxNEG - 18	Edge location
HxMASK $=1, \mathrm{HxRETIME}=0, \mathrm{HxPOLARITY}=1$		tshinh	HxPOS - 9		HxPOS - 18	Edge location
HxMASK $=1, \mathrm{HxRETIME}=1, \mathrm{HxPOLARITY}=0$		$\mathrm{t}_{\text {SHPINH }}$	HxNEG - 7		HxNEG - 16	Edge   location
HxMASK $=1, \mathrm{HxRETIME}=1, \mathrm{HxPOLARITY}=1$		tshpinh	HxPOS - 7		HxPOS - 16	Edge location

${ }^{1}$ Parameter is programmable.
${ }^{2}$ Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve good clamp performance.

## AD9923A

## ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	To	Rating
AVDD	AVSS	-0.3 V to +3.9 V
TCVDD	TCVSS	-0.3 V to +3.9 V
HVDD	HVSS	-0.3 V to +3.9 V
RGVDD	RGVSS	-0.3 V to +3.9 V
DVDD	DVSS	-0.3 V to +3.9 V
DRVDD	DRVSS	-0.3 V to +3.9 V
VDD1,VDD2	VSS1,VSS2	-0.3 V to +6 V
VH1,VH2	VL1,VL2	-0.3 V to +25 V
VH1,VH2	VSS1,VSS2	-0.3 V to +17 V
VL1,VL2	VSS1,VSS2	-17 V to +0.3 V
VM1,VM2	VSS1,VSS2	-6 V to +6 V
VLL	VSS1,VSS2	-17 V to +0.3 V
VMM	VSS1,VSS2	-6 V to +VH
VDR_EN	VSS1,VSS2	-0.3 V to +6 V
V1 to V15	VSS1,VSS2	$\mathrm{VL}-0.3 \mathrm{~V}$ to VH +0.3 V
RG Output	RGVSS	-0.3 V to RGVDD +0.3 V
H1 to H4 Output	HVSS	-0.3 V to HVDD +0.3 V
Digital Outputs	DVSS	-0.3 V to DVDD +0.3 V
Digital Inputs	DVSS	-0.3 V to DVDD +0.3 V
SCK, SL, SDATA	DVSS	-0.3 V to DVDD +0.3 V
REFT/REFB, CCDIN	AVSS	-0.3 V to AVDD + 0.3 V
Junction Temperature		$150^{\circ} \mathrm{C}$
Lead Temperature, 10 sec		$350^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE
Table 8. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
CSP_BGA	40.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 4. 105-Lead CSPBGA Package Pin Configuration

Table 9. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
A7	AVDD	P	Analog Supply for AFE.
A1, A4, B2, B3, B4, B5, B6, B7	AVSS	P	Analog Ground for AFE.
B8	TCVDD	P	Analog Supply for Timing Core.
B9	TCVSS	P	Analog Ground for Timing Core.
E1	DVDD1	P	Digital Logic Power Supply 1.
F2	DVSS1	P	Digital Logic Ground 1.
K8, L7, L8	DVDD2	P	Digital Logic Power Supply 2.
K9	DVSS2	P	Digital Logic Ground 2.
D9	HVDD	P	H1 to H4, HL Driver Supply.
D10	HVSS	P	H1 to H4, HL Driver Ground.
B10	RGVDD	P	RG Driver Supply.
A10	RGVSS	P	RG Driver Ground.
L4	DRVDD	P	Data Output Driver Supply.
L5	DRVSS	P	Data Output Driver Ground.
J4	VDD1	P	V-Driver Logic Supply 1.
K5	VSS1	P	V-Driver Logic Ground 1.
L10	VDD2	P	V-Driver Logic Supply 2.
K10	VSS2	P	V-Driver Logic Ground 2.
F9	VH1	P	V-Driver High Supply 1.
D1	VH2	P	V-Driver High Supply 2.
E9	VL1	P	V-Driver Low Supply 1.
C1	VL2	P	V-Driver Low Supply 2.
C9	VM1	P	V-Driver Mid Supply 1.
D3	VM2	P	V-Driver Mid Supply 2.
F3	VLL	P	SUBCK Driver Low Supply.
E3	VMM	P	SUBCK Driver Mid Supply.
A6	CCDIN	AI	CCD Signal Input.
A5	CCDGND	AI	CCD Signal Ground.
A3	REFT	AO	Voltage Reference Top Bypass.
A2	REFB	AO	Voltage Reference Bottom Bypass.
C3	SL	DI	3-Wire Serial Load Pulse.
C2	SCK	DI	3-Wire Serial Clock.
B1	SDI	DI	3-Wire Serial Data Input.
G7	SYNC	DI	External System Synchronization Input.
E5	RSTB	DI	Reset Bar, Active Low Pulse.


Pin No.	Mnemonic	Type ${ }^{1}$	Description
A8	CLI	DI	Reference Clock Input (Master Clock).
A9	CLO	DO	Clock Output for Crystal.
F11	H1	DO	CCD Horizontal Clock 1.
E11	H2	DO	CCD Horizontal Clock 2.
D11	H3	DO	CCD Horizontal Clock 3.
C11	H4	DO	CCD Horizontal Clock 4.
B11	HL	DO	CCD Last Horizontal Clock.
C10	RG	DO	CCD Reset Gate Clock.
K6	VSUB	DO	CCD Substrate Bias.
F5	MSHUT	DO	Mechanical Shutter Pulse.
G5	STROBE	DO	Strobe Pulse.
G6	SUBCK	DO	CCD Substrate Clock (E Shutter).
F1	DCLK	DO	Data Clock Output.
G1	D0	DO	Data Output (LSB).
H3	D1	DO	Data Output.
H2	D2	DO	Data Output.
H1	D3	DO	Data Output.
J3	D4	DO	Data Output.
J2	D5	DO	Data Output.
J1	D6	DO	Data Output.
K3	D7	DO	Data Output.
K2	D8	DO	Data Output.
K1	D9	DO	Data Output.
L3	D10	DO	Data Output.
L2	D11	DO	Data Output (MSB).
D2	VD	DIO	Vertical Sync Pulse. Input in slave mode, output in master mode.
E2	HD	DIO	Horizontal Sync Pulse. Input in slave mode, output in master mode.
C8	V1	VO3	CCD Vertical Transfer Clock.
G10	V2	VO2	CCD Vertical Transfer Clock.
E7	V3	VO3	CCD Vertical Transfer Clock.
G9	V4	VO2	CCD Vertical Transfer Clock.
C4	V5A	VO3	CCD Vertical Transfer Clock.
C5	V5B	VO3	CCD Vertical Transfer Clock.
F10	V6	VO2	CCD Vertical Transfer Clock.
C6	V7A	VO3	CCD Vertical Transfer Clock.
C7	V7B	VO3	CCD Vertical Transfer Clock.
G11	V8	VO2	CCD Vertical Transfer Clock.
H11	V9	VO2	CCD Vertical Transfer Clock.
H10	V10	VO2	CCD Vertical Transfer Clock.
F6	V11	VO3	CCD Vertical Transfer Clock.
F7	V12	VO3	CCD Vertical Transfer Clock.
E10	V13	VO2	CCD Vertical Transfer Clock.
K11	VDR_EN	DI	V-Driver Output Enable pin.
J5	TESTO	DI	Test Input. Must be tied to VSS1 or VSS2.
J7	TEST1	DI	Test Input. Must be tied to VSS1 or VSS2.
J8	TEST3	DI	Test Input. Must be tied to VDD1 or VDD2.
A11, E6, H9, J6, J9, J10, J11, K4, K7, L1, L6, L9, L11, G2, G3	NC		No Connect.

[^0]
## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 5. Power vs. Sample Rate


Figure 6. Typical DNL Performance


Figure 7. Typical INL Performance


Figure 8. Output Noise vs. VGA Gain

## AD9923A

## EQUIVALENT CIRCUITS



Figure 9. CCDIN, CCDGND


Figure 10. Digital Data Outputs

Figure 11. Digital Inputs



Figure 12. HL, H1 to H4, and RG Drivers


Figure 13. VDR_EN Input

## TERMINOLOGY

## Differential Nonlinearity (DNL)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Therefore, every code must have a finite width. No missing codes guaranteed to 12-bit resolution indicates that all 4096 codes, respectively, must be present over all operating conditions.

## Integral Nonlinearity (INL)

The deviation of each code measured from a true straight line between the zero and full-scale values. The point used as zero scale occurs 0.5 LSB before the first code transition. Positive full scale is defined as a level 1.5 LSB beyond the last code transition. The deviation is measured from the middle of each output code to the true straight line.

## Peak Nonlinearity

Peak nonlinearity, a full signal chain specification, refers to the peak deviation of the AD9923A output from a true straight line. The point used as zero scale occurs 0.5 LSB before the first code transition. Positive full scale is defined as a level 1.5 LSB beyond the last code transition. The deviation is measured from the middle of each output code to the true straight line. The error is expressed as a percentage of the 2 V ADC full-scale signal. The input signal is always appropriately gained up to fill the full-scale range of the ADC .

## Total Output Noise

The rms output noise is measured using histogram techniques. The standard deviation of the ADC output codes is calculated in LSB, and represents the rms noise level of the total signal chain at the specified gain setting. The output noise can be converted to an equivalent voltage, using the relationship

$$
1 L S B=\left(\text { ADC full scale } / 2^{\mathrm{n}} \text { codes }\right)
$$

where $n$ is the bit resolution of the ADC and $1 L S B$ is 0.488 mV .

## Power Supply Rejection (PSR)

The PSR is measured with a step change applied to the supply pins. The PSR specification is calculated from the change in the data outputs for a given step change in the supply voltage.

## AD9923A

## THEORY OF OPERATION

Figure 14 shows the typical system block diagram for the AD9923A in master mode. The CCD output is processed by the AD9923A AFE circuitry, which consists of a CDS, VGA, black level clamp, and ADC. The digitized pixel information is sent to the digital image processor chip that performs the postprocessing and compression. To operate the CCD, CCD timing parameters are programmed into the AD9923A from the system microprocessor through the 3-wire serial interface. The AD9923A generates the CCD horizontal, vertical, and the internal AFE clocks from the system master clock CLI. The CLI is provided by the image processor or external crystal. External synchronization is provided by a sync pulse from the microprocessor, which resets internal counters and resyncs the VD and HD outputs.

Alternatively, the AD9923A can be operated in slave mode, in which the VD and HD are provided externally from the image processor. In this mode, the AD9923A timing is synchronized with VD and HD.

The H-drivers for HL, H1 to H4, and RG are included in the AD9923A, allowing these clocks to be directly connected to the CCD. An H-driver voltage, HVDD, of up to 3.3 V is supported. An external V-driver is required for the vertical transfer clocks, the sensor gate pulses, and the substrate clock.

The AD9923A also includes programmable MSHUT and STROBE outputs that can be used to trigger mechanical shutter and strobe (flash) circuitry.

Figure 15 and Figure 16 show the maximum horizontal and vertical counter dimensions for the AD9923A. Internal horizontal and vertical clocking is controlled by these counters to specify line and pixel locations. The maximum HD length is 8192 pixels per line, and the maximum VD length is 4096 lines per field.


Figure 14. Typical System Block Diagram, Master Mode


Figure 15. Vertical and Horizontal Counters


Figure 16. Maximum VD/HD Dimensions

## PRECISION TIMING <br> HIGH SPEED TIMING GENERATION

The AD9923A generates high speed timing signals using the flexible Precision Timing core. This core is the foundation for generating the timing used for both the CCD and the AFE. It consists of the reset gate (RG), horizontal drivers (H1 to H4 and HL ), and sample clocks (SHP and SHD). A unique architecture makes it routine for the system designer to optimize image quality by providing precise control over the horizontal CCD readout and the AFE-correlated double sampling.

The high speed timing of the AD9923A operates the same in master and slave modes. For more information on synchronization and pipeline delays, see the Power-Up and Synchronization in Slave Mode section.

## Timing Resolution

The Precision Timing core uses a $1 \times$ master clock input (CLI) as a reference. The frequency of this clock should match the CCD pixel clock frequency. Figure 17 illustrates how the internal timing core divides the master clock period into 48 steps, or edge positions. Using a 36 MHz CLI frequency, the edge resolution of the Precision Timing core is approximately 0.6 ns. If a $1 \times$ system clock is not available, a $2 \times$ reference clock can be used by programming the CLIDIVIDE register (Address 0x30). The AD9923A then internally divides the CLI frequency by 2.

The AD9923A includes a master clock output (CLO) which is the inverse of CLI. This output is intended to be used as a crystal driver. A crystal can be placed between the CLI and CLO pins to generate the master clock for the AD9923A. For more information on using a crystal, see Figure 80.

## High Speed Clock Programmability

Figure 18 shows how the RG, HL, H1 to H4, SHP, and SHD high speed clocks are generated. The RG pulse has programmable rising and falling edges and can be inverted using the polarity control. The HL, H1, and H3 horizontal clocks have programmable rising and falling edges and polarity control. The H2 and H 4 clocks are inverses of the H 1 and H 3 clocks, respectively. Table 10 summarizes the high speed timing registers and their parameters. Figure 19 shows the typical 2-phase, H-clock operation, in which H3 and H4 are programmed for the same edge location as H 1 and H 2 .

The edge location registers are six bits wide, but there are only 48 valid edge locations available. Therefore, the register values are mapped into four quadrants, each of which contains 12 edge locations. Table 11 shows the correct register values for the corresponding edge locations. Figure 20 shows the default timing locations for high speed clock signals.

## H-Driver and RG Outputs

In addition to the programmable timing positions, the AD9923A features on-chip output drivers for the RG and H 1 to H 4 outputs. These drivers are powerful enough to directly drive the CCD inputs. The H-driver and RG current can be adjusted for optimum rise/fall times in a particular load by using the H 1 to H4, HL, and RGDRV registers (Address 0x36). The 3-bit drive setting for each output can be adjusted in 4.1 mA increments, with the minimum setting of 0 equal to 0 mA or three-state, and the maximum setting of 7 equal to 30.1 mA .

As shown in Figure 18, Figure 19, and Figure 20, the H2 and H4 outputs are inverses of H 1 and H 3 outputs, respectively. The $\mathrm{H} 1 / \mathrm{H} 2$ crossover voltage is approximately $50 \%$ of the output swing. The crossover voltage is not programmable.

## Digital Data Outputs

The AD9923A data output and DCLK phase are programmable using the DOUTPHASE register (Address 0x38, Bits[5:0]). Any edge from 0 to 47 can be programmed, as shown in Figure 21. Normally, the DOUT and DCLK signals track in phase, based on the DOUTPHASE register contents. The DCLK output phase can also be held fixed with respect to the data outputs by setting the DCLKMODE register to high (Address 0x38, Bit[8]). In this mode, the DCLK output remains at a fixed phase equal to a delayed version of CLI, and the data output phase remains programmable. For more detail, see the Analog Front End Description/Operation section.

There is a fixed output delay from the DCLK rising edge to the DOUT transition, called tod. This delay can be programmed to four values between 0 ns and 12 ns , using the DOUTDELAY register (Address 0x38, Bits[10:9]). The default value is 8 ns .

The pipeline delay through the AD9923A is shown in Figure 22. After the CCD input is sampled by SHD, there is a 16 -cycle delay before the data is available.

Table 10. Timing Core Register Parameters for HL, H1 to H4, RG, SHP/SHD

Parameter	Length   (Bits)	Range	Description
Polarity	1	High/low	Polarity control for $\mathrm{HL}, \mathrm{H} 1, \mathrm{H} 3$, and $\mathrm{RG}(0=$ no inversion, $1=$ inversion $)$
Positive Edge	6	0 to 47 edge location	Positive edge location for $\mathrm{HL}, \mathrm{H} 1, \mathrm{H} 3$, and $\mathrm{RG}(\mathrm{H} 2 / \mathrm{H} 4$ are inverses of $\mathrm{H} 1 / \mathrm{H} 3$, respectively $)$
Negative Edge	6	0 to 47 edge location	Negative edge location for $\mathrm{HL}, \mathrm{H} 1, \mathrm{H} 3$, and $\mathrm{RG}(\mathrm{H} 2 / \mathrm{H} 4$ are inverses of $\mathrm{H} 1 / \mathrm{H} 3$, respectively $)$   Sampling
Sampling location for internal SHP and SHD signals			
Location   Drive Strength	3	0 to 47 edge location	Samp

## AD9923A

Table 11. Precision Timing Edge Locations

Quadrant	Edge Location (Decimal)	Register Value (Decimal)	Register Value (Binary)
I	0 to 11	0 to 11	000000 to 001011
II	12 to 23	16 to 27	010000 to 011011
III	24 to 35	32 to 43	100000 to 101011
IV	36 to 47	48 to 59	110000 to 111011



1. THE PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCK.
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITION ( $\mathrm{t}_{\mathrm{CLLI}}$ LIY $=6 \mathrm{~ns}$ TYP).

Figure 17. High Speed Clock Resolution from CLI Master Clock Input


H1


H2


H3


PROGRAMMABLE CLOCK POSITIONS:
1RG RISING EDGE.
2RG FALLING EDGE.
3'SHP SAMPLE LOCATION
4SHD SAMPLE LOCATION.
${ }^{5} \mathrm{HL}$ RISING EDGE POSITION.
${ }^{6} \mathrm{HL}$ FALLING EDGE POSITION.
7H1 RISING EDGE POSITION.
8H1 FALLING EDGE POSITION (H2 IS INVERSE OF H1)
${ }^{9}$ H3 RISING EDGE POSITION.
${ }^{10} \mathrm{H} 3$ FALLING EDGE POSITION (H4 IS INVERSE OF H3).


NOTES

1. USING THE SAME TOGGLE POSITIONS FOR H1 AND H3 GENERATES STANDARD 2-PHASE H-CLOCKING.

Figure 19. 2-Phase H-Clock Operation


NOTES

1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD. 2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.

Figure 20. High Speed Timing Default Locations


NOTES

1. DATA OUTPUT (DOUT) AND DCLK PHASE ARE ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.
2. WITHIN 1 CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO 48 DIFFERENT LOCATIONS.
3. OUTPUT DELAY ( $t_{0 D}$ ) FROM DCLK RISING EDGE TO DOUT RISING EDGE IS PROGRAMMABLE.

Figure 21. Digital Output Phase Adjustment

## AD9923A



NOTES

1. TIMING VALUES SHOWN ARE SHDLOC $=0$, WITH DCLKMODE $=0$.
2. HIGHER VALUES OF SHD AND/OR DOUTPHASE SHIFT DOUT TRANSITION TO THE RIGHT WITH RESPECT TO CLI LOCATION.
3. INHIBIT TIME FOR DOUT PHASE IS DEFINED BY $\mathrm{t}_{\text {DOUTINH, }}$, WHICH IS EQUAL TO SHDLOC PLUS 11 EDGES. IT IS RECOMMENDED THAT THE 12 EDGE LOCATIONS FOLLOWING SHDLOC NOT BE USED FOR THE DOUTPHASE LOCATION.
4. RECOMMENDED VALUE FOR DOUT PHASE IS TO USE THE SHPLOC EDGE OR THE 11 EDGES FOLLOWING SHPLOC.
5. RECOMMENDED VALUE FOR $t_{0 D}$ (DOUT DLY) IS 4 ns
6. THE DOUT LATCH CAN BE BYPASSED USING REGISTER $0 \times 01$, BIT [ 1 ] $=1$ SO THAT THE ADC DATA OUTPUTS APPEAR DIRECTLY AT

THE DATA OUTPUT PINS. THIS CONFIGURATION IS RECOMMENDED IF THE ADJUSTABLE DOUT PHASE IS NOT REQUIRED.
Figure 22. Digital Data Output Pipeline Delay

## HORIZONTAL CLAMPING AND BLANKING

The AD9923A horizontal clamping and blanking pulses are fully programmable to suit a variety of applications. Individual controls are provided for CLPOB, PBLK, and HBLK during different regions of each field. This allows dark pixel clamping and blanking patterns to be changed at each stage of the readout to accommodate different image transfer timing and high speed line shifts.

## Individual CLPOB and PBLK Patterns

The AFE horizontal timing consists of CLPOB and PBLK, as shown in Figure 23. These two signals are independently programmed using the registers in Table 12. SPOL is the start polarity for the signal, and TOG1 and TOG2 are the first and second toggle positions of the pulse. Both signals are active low and should be programmed accordingly.

A separate pattern for CLPOB and PBLK can be programmed for each V-sequence. As described in the Vertical Timing Generation section, several V-sequences can be created, each containing a unique pulse pattern for CLPOB and PBLK.

Figure 46 shows how the sequence change positions divide the readout field into regions. A different $V$-sequence can be assigned to each region, allowing the CLPOB and PBLK signals to change with each change in the vertical timing. Unused CLPOB and PBLK toggle positions should be set to 8191.

## CLPOB and PBLK Masking Area

The AD9923A allows the CLPOB and/or PBLK signals to be disabled during certain lines in the field without changing the existing CLPOB and/or PBLK pattern settings.

To use CLPOB masking, the CLPMASKSTART and CLPMASKEND registers are programmed to specify the starting and ending lines in the field where the CLPOB patterns are ignored. There are three sets of CLPMASKSTART and CLPMASKEND registers, allowing up to three CLPOB masking areas to be created.

CLPOB masking registers are not specific to a given V-sequence; they are active for any existing field of timing. To disable the CLPOB masking feature, set these registers to the maximum value, 0 xFFF (default value).

To use PBLK masking, the PBLKMASKSTART and PBLKMASKEND registers are programmed to specify the starting and ending lines in the field where the PBLK patterns are ignored. There are three sets of PBLKMASKSTART and PBLKMASKEND registers, allowing the creation of up to three PBLK masking areas.

PBLK masking registers are not specific to a given V-sequence; they are active for any existing field of timing. To disable the PBLK masking feature, set these registers to the maximum value, 0 xFFF (default value).

Table 12. CLPOB and PBLK Pattern Registers

Register	Length (Bits)	Range	Description
CLPOBPOL	1	High/low	Starting polarity of CLPOB for each V-sequence
PBLKPOL	1	High/low	Starting polarity of PBLK for each V-sequence
CLPOBTOG1	13	0 to 8191 pixel location	First CLPOB toggle position within the line for each V-sequence
CLPOBTOG2	13	0 to 8191 pixel location	Second CLPOB toggle position within the line for each V-sequence
PBLKTOG1	13	0 to 8191 pixel location	First PBLK toggle position within the line for each V-sequence
PBLKBTOG2	13	0 to 8191 pixel location	Second PBLK toggle position within the line for each V-sequence
CLPMASKSTART	12	0 to 4095 line location	CLPOB masking area-starting line within the field (maximum of three areas)
CLPMASKEND	12	0 to 4095 line location	CLPOB masking area-ending line within the field (maximum of three areas)
PBLKMASKSTART	12	0 to 4095 line location	PBLK masking area-starting line within the field (maximum of three areas)
PBLKMASKEND	12	0 to 4095 line location	PBLK masking area-ending line within the field (maximum of three areas)

HD


PROGRAMMABLE SETTINGS:
${ }^{1}$ TSTART POLARITY (CLAMP AND BLANK REGIONS ARE ACTIVE LOW).
${ }^{2}$ FIRST TOGGLE POSITION.
${ }^{3}$ SECOND TOGGLE POSITION.
Figure 23. Clamp and Preblank Pulse Placement


Figure 24. CLPOB Masking Example


Figure 25. PBLK Masking Example

## AD9923A

## Individual HBLK Patterns

The HBLK programmable timing shown in Figure 26 is similar to CLPOB and PBLK; however, there is no start polarity control. Only the toggle positions are used to designate the start and end positions of the blanking period. Additionally, there is a polarity control register, HBLKMASK, that designates the polarity of the horizontal clock signals during the blanking period. Setting HBLKMASK high sets $\mathrm{H} 1=\mathrm{H} 3=$ high and $\mathrm{H} 2=\mathrm{H} 4=$ low during blanking, as shown in Figure 27. As with CLPOB and PBLK registers, HBLK registers are available in each V-sequence, allowing different blanking signals to be used with different vertical timing sequences.

Note that 8189 is the recommended setting for any unused HBLK toggle locations on the AD9923A, regardless of the
setting for HBLKALT. 8190 and 8191 are not valid settings for HBLK toggle positions that are unused and causes undesired HBLK toggle activity.

## Generating Special HBLK Patterns

There are six toggle positions available for HBLK. Normally, only two of the toggle positions are used to generate the standard HBLK interval. However, additional toggle positions can be used to generate special HBLK patterns, as shown in Figure 28. The pattern in this example uses all six toggle positions to generate two extra groups of pulses during the HBLK interval. By changing the toggle positions, different patterns can be created.

Table 13. HBLK Pattern Registers

Register	Length   (Bits)	Range	Description
HBLKMASK	1	High/low   HBLKALT	3



Figure 26. Typical Horizontal Blanking (HBLK) Pulse Placement


Figure 28. Using Multiple Toggle Positions for HBLK (HBLKALT = 0)

## Generating HBLK Line Alternation

The AD9923A can alternate different HBLK toggle positions on odd and even lines. This feature can be used in conjunction with V-pattern odd/even alternation, or on its own. When 1 is written to the HBLKALT register, HBLKTOGE1 and HBLKTOGE2 are used on odd lines, and HBLKTOGE3 to HBLKTOGE6 are used on even lines. Writing 2 to the HBLKALT register gives the opposite result: HBLKTOGE1 and HBLKTOGE2 are used on even lines, and HBLKTOGE3 to HBLKTOGE6 are used on odd lines. When 3 is written to the HBLKALT register, all six even toggle positions, HBLKTOGE1 to HBLKTOGE6, are used on even
lines. There are also six additional toggle positions, HBLKTOGO1 to HBLKTOGE6, for odd lines. These registers are normally used for VPAT Group A, VPAT Group B, and freeze/resume functions, but when HBLKALT $=3$, these registers become the odd line toggle positions for HBLK.

Another HBLK feature is enabled by writing 4, 5, 6 , or 7 to HBLKALT. In these modes, the HBLK pattern is generated using a different set of registers-HBLKSTART, HBLKEND, HBLKLEN, and HBLKREP—along with four toggle positions. This allows for multiple repeats of the HBLK signal, as shown in Figure 32.

## AD9923A



ALTERNATING H-BLANK PATTERN USING HBLKALT $=\mathbf{1}$ MODE.
Figure 29. HBLK Odd/Even Alternation Using HBLKALT = 1


Figure 30. HBLK Odd/Even Alternation Using HBLKALT = 2

Figure 31. HBLK Odd/Even Alternation Using HBLKALT $=3$

HBLK

HL/H1/H3

H2/H4


## Increasing H-Clock Width During HBLK

The AD9923A allows the H 1 to H 4 pulse width to be increased during the HBLK interval. The H-clock pulse width can increase by reducing the H-clock frequency (see Table 14).

The HBLKWIDTH register (Register 0x35, Bits[6:4]) is a 3-bit register that allows the H -clock frequency to be reduced by $1 / 2$, $1 / 4,1 / 6,1 / 8,1 / 10,1 / 12$, or $1 / 14$. The reduced frequency only occurs for H 1 to H 4 pulses that are located within the HBLK area.

## Horizontal Timing Sequence Example

Figure 33 shows an example of a CCD layout. The horizontal register contains 28 dummy pixels that occur on each line clocked from the CCD. In the vertical direction, there are 10 optical black ( OB ) lines at the front of the readout and two at the back of the readout. The horizontal direction has four OB pixels in the front and 48 OB pixels in the back.

Figure 34 shows the basic sequence layout to use during the effective pixel readout. The 48 OB pixels at the end of each line are used for CLPOB signals. PBLK is optional and it is often used to blank the digital outputs during the noneffective CCD pixels. HBLK is used during the vertical shift interval.

The HBLK, CLPOB, and PBLK parameters are programmed in the V-sequence registers. More elaborate clamping schemes can
be used, such as adding a separate sequence to clamp during the entire line of OB pixels. This requires configuring a separate V -sequence for reading the OB lines.

The CLPMASKSTART and CLPMASKEND registers can be used to disable the CLPOB on a few lines without affecting the setup of the clamp sequences.


Figure 33. CCD Configuration Example

Table 14. HBLK Width Register

Register	Length (Bits)	Range	Description
HBLKWIDTH	3	$1 \times$ to $1 / 14 \times$ pixel rate	Controls H 1 to H 4 width during HBLK as a fraction of pixel rate 0 : same frequency as the pixel rate   1: $1 / 2$ pixel frequency, that is, doubles the H 1 to H 4 pulse width   : 1/4 pixel frequency   : 1/6 pixel frequency   : 1/8 pixel frequency   5: 1/10 pixel frequency   6: 1/12 pixel frequency   7: 1/14 pixel frequency



Figure 34. Horizontal Sequence Example

## VERTICAL TIMING GENERATION

The AD9923A provides a very flexible solution for generating vertical CCD timing; it can support multiple CCDs and different system architectures. The 13-phase vertical transfer clocks, XV1 to XV13, are used to shift lines of pixels into the horizontal output register of the CCD. The AD9923A allows these outputs to be individually programmed into various readout configurations, using a four-step process as shown in Figure 35.

1. Use the vertical pattern group registers to create the individual pulse patterns for XV1 to XV13.
2. Use the V-pattern groups to build the sequences and add more information.


Figure 35. Summary of Vertical Timing Generation

## Vertical Pattern (VPAT) Groups

A vertical pattern (VPAT) group defines the individual pulse pattern for each XV1 to XV13 output signal. Table 15 summarizes the registers that are available for generating each VPAT group. The first, second, third, fourth, fifth, and sixth toggle positions (XVTOG1, XVTOG2, XVTOG3, XVTOG4, XVTOG5,
XVTOG6) are the pixel locations where the pulse transitions. All toggle positions are 13-bit values that can be placed anywhere in the horizontal line.

More registers are included in the vertical sequence registers to specify the output pulses: XV1POL to XV13POL specifies the
start polarity for each signal, VSTART specifies the start position of the VPAT group, and VLEN designates the total length of the VPAT group, which determines the number of pixels between each pattern repetition, if repetitions are used.

To achieve the best possible noise performance, ensure that VSTART + VLEN < the end of the H-blank region.

Toggle positions programmed to either Pixel 0 or Pixel 8191 are ignored. The toggle positions of unused XV-channels must be programmed to either Pixel 0 or Pixel 8191. This prevents unpredictable behavior because the default values of the V-pattern group registers are unknown.

Table 15. Vertical Pattern Group Registers

Register	Length (Bits)	Range	Description
XVTOG1	13	0 to 8191 pixel location	First toggle position within line for each XV1 to XV12 output
XVTOG2	13	0 to 8191 pixel location	Second toggle position
XVTOG3	13	0 to 8191 pixel location	Third toggle position
XVTOG4	13	0 to 8191 pixel location	Fourth toggle position
XVTOG5	13	0 to 8191 pixel location	Fifth toggle position
XVTOG6	13	0 to 8191 pixel location	Sixth toggle position



PROGRAMMABLE SETTINGS
${ }^{1}$ START POLARITY (LOCATED IN V-SEQUENCE REGISTERS).
${ }^{2}$ FIRST TOGGLE POSITION.
${ }^{3}$ SECOND TOGGLE POSITION (A TOTAL OF SIX TOGGLE POSITIONS ALSO AVAILABLE FOR MORE COMPLEX PATTERNS).
${ }^{4}$ TOTAL PATTERN LENGTH FOR ALL VERTICAL OUTPUTS (LOCATED IN VERTICAL SEQUENCE REGISTERS).

## AD9923A

## Vertical Sequences (VSEQ)

A vertical sequence (VSEQ) is created by selecting one of the V-pattern groups and adding repeats, a start position, and horizontal clamping and blanking information. Each VSEQ is programmed using the registers shown in Table 16. Figure 37 shows how each register is used to generate a V-sequence.

The VPATSELA and VPATSELB registers select the V-pattern group that is used in a given V-sequence. Having two groups available allows each vertical output to be mapped to a different V-pattern group. The selected V-pattern group can have repetitions added for high speed line shifts or line binning by using the VREP registers for odd and even lines. Generally, the same number of repetitions is programmed into both registers. If a different number of repetitions is required on odd and even lines, separate values can be used for each register (see the

Generating Line Alternation for V-Sequences and HBLK section). The VSTARTA and VSTARTB registers specify the pixel location where the V-pattern group starts. The VMASK register is used in conjunction with the FREEZE/RESUME registers to enable optional masking of the XV outputs. Either or both of the FREEZE1/RESUME1 and FREEZE2/RESUME2 registers can be enabled.

The line length (in pixels) is programmable using the HDLEN registers. Each V-sequence can have a different line length to accommodate various image readout techniques. The maximum number of pixels per line is 8192 . Note that the last line of the field can be programmed separately using the HDLAST register, located in the field register (see Table 17).


Table 16. V-Sequence Registers ${ }^{1}$

Register	Length (Bits)	Range	Description
HOLD	1	On/off	Use in conjunction with VMASK. 1 = hold instead of FREEZE/RESUME.
VMASK	2	0 to 3 mask mode	Enables the masking of XV1 to XV13 outputs at the locations specified by the FREEZE/RESUME registers.   0 = no mask.   1 = enable FREEZE1/RESUME1.   2 = enable FREEZE2/RESUME2.   3 = enable both FREEZE1/RESUME1 and FREEZE2/RESUME2.
HDLEN	13	0 to 8191 pixels	HD line length in each V-sequence.
XV1POL to   XV13POL	1	High/low	Start polarity for each XV1 to XV13 output.
GROUPSEL	12	1b for each XV output	Assigns each XV1 to XV13 output to either V-Pattern Group A or V-Pattern Group B.   $0=$ assigns to VPATSELA.   1 = assigns to VPATSELB.
TWO_GROUP	1	High/low	When high, all XV outputs combine Group A and Group B.
VPATSELA	5	0 to 31 V-pattern number	Selected V-pattern for Group A.
VPATSELB	5	0 to 31 V-pattern number	Selected V-pattern for Group B. If SPVTP_ENABLE $=1$, VPATSELB is used for second VTP inserted in SPVTP_ACTLINE.
VPATA_MODE	2	0 to 3 repetition mode	Selects alternation repetition mode for Group A only.   $0=$ disable alternation, use VREPA_1 for all lines.   $1=2$-line. Alternate VREPA_1 and VREPA_2 (same as odd/even).   $2=3$-line. Alternate VREPA_1, VREPA_2, and VREPA_3.   3 = 4-line. Alternate VREPA_1, VREPA_2, VREPA_3, and VREPA_4.
VSTARTA	13	0 to 8191 pixel location	Start position for the selected V-Pattern Group A.
VSTARTB	13	0 to 8191 pixel location	Start position for the selected V-Pattern Group B. If SPVTP_ENABLE $=1$, VSTARTB is used for start position of VPATSELB in SPVTP_ACTLINE.
VLENA	13	0 to 8191 pixels	Length of selected V-Pattern Group A.
VLENB	13	0 to 8191 pixels	Length of selected V-Pattern Group B.
VREPB_ODD	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group B for odd lines. If no alternation is required for Group $B$, set VREPB_ODD equal to VREPB_EVEN.
VREPB_EVEN	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group B for even lines. If no alternation is required for Group $B$, set VREPB_EVEN equal to VREPB_ODD.
VREPA_1	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group A for first lines (odd).
VREPA_2	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group A for second lines (even).
VREPA_3	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group A for third lines.
VREPA_4	12	0 to 4095 repeats	Number of repetitions for the V-Pattern Group A for fourth lines.
FREEZE1	13	0 to 8191 pixel location	Pixel location where the XV outputs freeze or hold (see VMASK).
RESUME1	13	0 to 8191 pixel location	Pixel location where the XV outputs resume operation (see VMASK).
FREEZE2	13	0 to 8191 pixel location	Pixel location where the XV outputs freeze or hold (see VMASK).
RESUME2	13	0 to 8191 pixel location	Pixel location where the XV outputs resume operation (see VMASK).
SPVTP_ACTLINE	12	0 to 4095 line location	Active line for second VTP insertion.
SPVTP_ENABLE	1	High/low	When high, second VTP is inserted into SPVTP_ACTLINE.

[^1]
## AD9923A

## Group A/Group B Selection

The AD9923A has the flexibility to use two V-pattern groups in a vertical sequence. In general, all vertical outputs use the same V-pattern group during a sequence, but some outputs can be assigned to a different V-pattern group. This is useful during certain CCD readout modes.

The GROUPSEL register is used to select Group A or Group B for each XV output (the LSB is XV1, the MSB is XV13). Setting each bit to 0 selects Group A; setting each bit to 1 selects Group B. If only a single $V$-pattern group is needed for the vertical outputs, Group A is used by default (GROUPSEL $=0$ ), and the outputs use the V-pattern group specified by the VPATSELA register.

If Group B flexibility is needed, the outputs set to 1 in the GROUPSEL register use the V-pattern group selected by the VPATSELB register. For example, Figure 38 shows outputs XV12 and XV13 using a separate V-Pattern Group B to perform special CCD timing.
Another application of the Group A and Group B registers is to combine two VPAT groups for more complex patterns. This is achieved by setting the TWO_GROUP register to 1 . Figure 39 shows an example of this timing. When TWO_GROUP $=1$, the Group A and Group B toggle positions are both used. In addition, length, starting polarity, and number of repetitions are all determined by the appropriate registers for Group A when TWO_GROUP $=1$. Figure 40 shows the more complex operation of combining Group A and Group B with repetition.


Figure 38. Using Separate Group A and Group B Patterns


Figure 40. Combining Group A and Group B Patterns, with Repetition

## Generating Line Alternation for V-Sequences and HBLK

During low resolution readout, some CCDs require a different number of vertical clocks on alternate lines. The AD9923A can support such CCDs by using different VREP registers. This allows a different number of VPAT repetitions to be programmed on odd and even lines.

Note that only the number of repeats is different in odd and even lines, but the VPAT group remains the same. There are separate controls for the assigned Group A and Group B patterns. Both Group A and Group B can support odd and even line alternation. Group A uses the VREPA_1 and VREPA_2 registers; Group B uses the VREPB_ODD and VREPB_EVEN
registers. Group A can also support three-line and four-line alternation by using the VREPA_3 and VREPA_4 registers.

Additionally, the HBLK signal can be alternated for odd and even lines. When the HBLKALT $=1$, the HBLKTOGE1 and HBLKTOGE2 positions are used on odd lines, and the HBLKTOGE3 to HBLKTOGE6 positions are used on even lines. This allows the HBLK interval to be adjusted on odd and even lines if needed.

Figure 41 shows an example of simultaneous VPAT repetition alternation and HBLK alternation. Both types of alternation can be used separately.


Figure 41. Odd/Even Line Alternation of VPAT Repetitions and HBLK Toggle Positions

## AD9923A

## Masking Using Freeze/Resume Registers

As shown in Figure 42 and Figure 43, the FREEZE/RESUME registers are used to temporarily mask the XV outputs. The pixel locations to start (FREEZE) and end (RESUME) the masking create an area in which the vertical toggle positions are ignored. At the pixel location specified in the FREEZE register, the XV outputs are held static at their current dc state, high or low. The XV outputs are held until the internal pixel counter reaches the pixel location specified by the RESUME register, at
which point the signals continue with any remaining toggle positions.
Two sets of FREEZE/RESUME registers are provided, allowing the vertical outputs to be interrupted twice in the same line. The FREEZE and RESUME positions are enabled using the VMASK register.

It is not recommended to use FREEZE/RESUME at the same time as the SWEEP function.


1. ALL TOGGLE POSITIONS WITHIN THE FREEZE-RESUME MASKING AREA ARE IGNORED. H-COUNTER CONTINUES TO COUNT DURING MASKING. 2. TWO SEPARATE MASKING AREAS ARE AVAILABLE FOR EACH GROUP A, USING FREEZE1/RESUME1 AND FREEZE2/RESUME2 REGISTERS.

Figure 43. Using FREEZE/RESUME

## Hold Area Using FREEZE/RESUME Registers

The FREEZE/RESUME registers can also be used to create a hold area, in which the XV outputs are temporarily held and then later resume at the point where they were held. As shown in Figure 44, this is different than using the VMASK register,
because the XV outputs continue from where they stopped (as opposed to having the pixel counter run continuously), with any toggle positions that fall between the FREEZE and RESUME locations being ignored. Signals assigned to Group B are not affected by the hold area.


NOTES

1. WHEN HOLD = 1 FOR ANY V-SEQUENCE, THE FREEZE AND RESUME REGISTERS ARE USED TO SPECIFY THE HOLD AREA FOR GROUP A. 2. ABOVE EXAMPLE: ALL XV-OUTPUTS ARE ASSIGNED TO GROUP A.
2. H-COUNTER FOR GROUP A (XV1 TO XV13) STOPS DURING HOLD AREA.

Figure 44. Hold Area for Group A


## AD9923A

## Complete Field: Combining V-Sequences

After the V-sequences are created, they are combined to create different readout fields. A field consists of up to nine regions. Within each region, a different V-sequence can be selected. Figure 46 shows how the sequence change position (SCP) registers designate the line boundary for each region and how the VSEQSEL registers select the V-sequence for each region. Registers to control the VSG outputs are also included in the field registers. Table 17 summarizes the registers used to create the different fields.

The VSEQSEL registers, one for each region, select which V-sequences are active during each region. The SWEEP registers can enable the sweep mode during any region.

The MULTI registers are used to enable the multiplier mode during any region. The SCP registers create the line boundaries for each region. The VDLEN register specifies the total number of lines in the field. The total number of pixels per line (HDLEN) is specified in the V-sequence registers, and the HDLAST
register specifies the number of pixels in the last line of the field. HDLEN, VDLEN, HDLAST registers are ignored when the part is in slave mode. The VPATSECOND register is used to add a second V-pattern group to the XV1 to X12 outputs during the sensor gate (VSG) line.

The SGMASK register is used to enable or disable each VSG output. There are two bits for each VSG output to enable separate masking during SGACTLINE1 and SGACTLINE2.

Setting a masking bit high disables, or masks, the output; setting it low enables the output. The SGPATSEL register assigns one of the eight SG patterns to each VSG output. Each SG pattern is created separately using the SG pattern registers. The SGACTLINE1 register specifies which line in the field contains the VSG outputs. The optional SGACTLINE2 register allows the same VSG pulses to repeat on a different line, although separate masking is available for SGACTLINE1 and SGACTLINE2.

Table 17. Field Registers

Register	Length (Bits)	Range	Description
VSEQSEL	5	0 to 31 V-sequence number	Selected V-sequence for each region in the field.
SWEEP	1	High/low	Enables sweep mode for each region when set high.
MULTI	1	High/low	Enables multiplier mode for each region when set high.
SCP	12	0 to 4095 line number	Sequence change position (SCP) for each region.
VDLEN	12	0 to 4095 lines	Total number of lines in each field.
HDLAST	13	0 to 8191 pixels	Length in pixels of the last HD line in each field.
VSTARTSECOND	13	0 to 8191 pixels	Start position of the second V-pattern group applied during VSG line.
VPATSECOND	5	0 to 31 V-pattern group number	Selected V-pattern group for the second pattern applied during VSG line.
SGMASK	16	High/low, each VSG	Set high to mask each VSG output. Two bits for each VSG output: one for SGLINE1, and one for SGLINE2.   [0] Masking for VSG1 on SGLINE1.   [1] Masking for VSG1 on SGLINE2.   [2] Masking for VSG2 on SGLINE1.   [3] Masking for VSG2 on SGLINE2.   [15] Masking for VSG8 on SGLINE1.   [16] Masking for VSG8 on SGLINE2.
SGPATSEL	24	0 to 7 pattern number, each VSG	Selects the VSG pattern number for each VSG output. VSG1[2:0], VSG2[5:3], VSG3[8:6], VSG4[11:9], VSG5[14:12], VSG6[17:15], VSG7[20:18], VSG8[23:21].
SGACTLINE1	12	0 to 4095 line number	Selects the line in the field where the VSG is active.
SGACTLINE2	12	0 to 4095 line number	Selects a second line in the field to repeat the VSG signals.



FIELD SETTINGS:

1. SEQUENCE CHANGE POSITIONS (SCP1 TO SCP8) DEFINE EACH OF THE NINE AVAILABLE REGIONS IN THE FIELD.
2. VSEQSEL0 TO VSEQSEL8 SELECTS THE DESIRED V-SEQUENCE FOR EACH REGION.
3. SGLINE1 REGISTER SELECTS WHICH HD LINE IN THE FIELD CONTAINS THE SENSOR-GATE PULSE(S).

Figure 46. Complete Field Is Divided into Regions

## Second V-Pattern Group During VSG Active Line and Special V-Pattern Insertion

Most CCDs require additional vertical timing during the sensor gate line. The AD9923A can output a second V-pattern group for XV1 to XV13 during the line when the VSG1 to VSG8 sensor gates are active. Figure 47 shows a typical VSG line, which includes two sets of V-pattern groups for XV1 to XV13. At the start of the VSG line, the V-pattern group is selected using the appropriate VSEQSEL register. The second V-pattern group, unique to the VSG line, is selected using the VPATSECOND register, located in the field registers. The start position of the second VPAT group uses the VSTARTSECOND register. For more information, see Table 17.

In addition to inserting a second V-pattern into the VSG line, the AD9923A can insert a second V-pattern into any other single line in each sequence. To enable this function in a particular sequence, set the SPXV_EN register in the appropriate set of sequence registers to 1 . The SPXV_ACT register determines the active line for the special second V-pattern. The VPATSELB and VSTARTB registers control both the V-pattern used and the starting pixel location of the special second V-pattern. For more information, see Table 18.

To avoid undesired behavior, do not use the special second V-pattern in the VSG line; use the existing VPATSECOND and VSTARTSECOND registers to insert a second V-pattern into the VSG line. It is recommended that VPATSECOND and VSTARTSECOND registers are used to create complex timing in the sensor gate line and not the GROUPB registers. Additionally, given that the special second V-pattern insertion uses some of the Group B registers, the user cannot use the special second V-pattern insertion function and Group B in the same sequence.

Table 18. Special Second V-Pattern Insertion

Register	Length   (Bits)	Range	Description
SPXV_EN	1	0 or 1	0 = off, $1=$ enable special   second V-pattern insertion.   SPXV_ACT
VPATSELB	5	Line 0 to   Line 4095   0 to 31   V-pattern   number   second V-pattern insertion.	Selected V-pattern for   special second V-pattern   insertion if SPXV_EN = 1.   Start position for selected
VSTARTB	13	to 8191   pixel   location	V-pattern for special   second V-pattern   insertion if SPXV_EN = 1.

## Sweep Mode Operation

The AD9923A contains an additional mode of vertical timing operation called sweep mode. This mode is used to generate a large number of repetitive pulses that span across multiple HD lines. Normally, the vertical timing of the AD9923A must be contained within one HD line length, but when sweep mode is enabled, the HD boundaries are ignored until the region is finished. This is useful, for example, in CCD readout operations. Depending on the vertical resolution of the CCD, up to 3000 clock cycles, spanning across several HD line lengths, can be required to shift charge out of the vertical interline CCD registers. These registers must be free of all charge at the end of the image exposure before the image is transferred. This can be accomplished in sweep mode by quickly shifting out any charge using a long series of pulses from the XV1 to XV13 outputs. To enable sweep mode in any region, program the appropriate SWEEP register to high.

## AD9923A



Figure 47. Example of Second VPAT Group During Sensor Gate Line


Figure 48 shows an example of sweep mode operation. The number of required vertical pulses depends on the vertical resolution of the CCD. The XV1 to XV13 output signals are generated using the V-pattern registers (shown in Table 15). A single pulse is created using the polarity and toggle position registers. The number of repetitions is then programmed to match the number of vertical shifts required by the CCD. Repetitions are programmed in the V-sequence registers using the VREP registers. This produces a pulse train of the appropriate length. Normally, the pulse train is truncated at the end of the HD line length, but with sweep mode enabled, the HD boundaries are ignored. In Figure 48, the sweep region occupies 23 HD lines. After the sweep mode region is complete, normal sequence operation resumes in the next region. When using sweep mode, set the region boundaries, using the sequence change position registers, to the appropriate lines to prevent the sweep operation from overlapping with the next V-sequence.

## Multiplier Mode

To generate very wide vertical timing pulses, a vertical region can be configured into a multiplier region. This mode uses the V-pattern registers in a slightly different manner. Multiplier mode can be used to support unusual CCD timing requirements, such as vertical pulses that are wider than the 13-bit V-pattern toggle position counter.

The start polarity and toggle positions are used in the same manner as the standard VPAT group programming, but the VLEN register is used differently. Instead of using the pixel
counter (HD counter) to specify the toggle position locations (XVTOG1, XVTOG2, XVTOG3, XVTOG4, XVTOG5, and XVTOG6) of the VPAT group, the VLEN value is multiplied by the XVTOG value to allow very long pulses to be generated. To calculate the exact toggle position, counted in pixels after the start position, use the following equation:

## Multiplier Mode Toggle Position $=X V T O G \times$ VLEN

Because the XVTOG value is multiplied by the VLEN value, the resolution of the toggle position placement is reduced.

If VLEN $=4$, the toggle position accuracy is reduced to four pixel steps, instead of single pixel steps. Table 19 summarizes how the VPAT group registers are used in multiplier mode operation. In multiplier mode, the VREP registers should be programmed to the value of the highest toggle position.

The example shown in Figure 49 illustrates this operation. The first toggle position is 2 , and the second toggle position is 9 . In nonmultiplier mode, this causes the V -sequence to toggle at Pixel 2 and Pixel 9 within a single HD line. However, in multiplier mode the toggle positions are multiplied by VLEN $=4$; therefore, the first toggle occurs at pixel count $=8$, and the second toggle occurs at pixel count $=36$. Sweep mode is also enabled to allow the toggle positions to cross the HD line boundaries.

The MULTI function only applies to signals assigned to Group A. It cannot be used at the same time as the TWOGROUP function or if any signals are assigned to Group B.

Table 19. Multiplier Mode Register Parameters

Register	Length   (Bits)	Range	Description
MULTI	1	High/low	High enables multiplier mode
XVPOL	1	High/low	Starting polarity of XV1 to XV13 signals in each VPAT group
XVTOG	13	0 to 8191 pixel location	Toggle positions for XV1 to XV13 signals in each VPAT group
VLEN	13	0 to 8191 pixels	Used as multiplier factor for toggle position counter
VREP	12	0 to 4095	VREPE/VREPO should be set to the value of the highest XVTOG value



Figure 49. Example of Multiplier Region for Wide Vertical Pulse Timing

## AD9923A

## Vertical Sensor Gate (Shift Gate) Patterns

In an interline CCD, the vertical sensor gates (VSG) are used to transfer the pixel charges from the light sensitive image area into the light shielded vertical registers. From the light shielded vertical registers, the image is then read line by line using the XV1 to XV13 vertical transfer pulses in conjunction with the high speed horizontal clocks.

Table 20 summarizes the VSG pattern registers. The AD9923A has eight VSG outputs, VSG1 to VSG8. Each output can be assigned to one of eight programmed patterns by using the SGPATSEL register. Each pattern is generated in a similar manner as the V-pattern groups, with a programmable start polarity (SGPOL), first toggle position (SGTOG1), and second toggle position (SGTOG2). The active line where the VSG1 to VSG8 pulses occur is programmable using the SGACTLINE1
and SGACTLINE2 registers. Additionally, any of the VSG1 to VSG8 pulses can be individually disabled using the SGMASK register. The individual masking allows all SG patterns to be preprogrammed, and the appropriate pulses for each field can be separately enabled. For maximum flexibility, the SGPATSEL, SGMASK, and SGACTLINE registers are separately programmable for each field. More detail is given in the Complete Field: Combining V-Sequences section.

Additionally, there is the SGMASK_BYP register (Address 0x59) that overrides SG masking in the field registers. The SGMASK_BYP register allows sensor gate masking to be changed without modifying the field register values. The SGMASK_BYP register is SCK updated; therefore, the new SG-masking values update immediately.

Table 20. VSG Pattern Registers ${ }^{1}$

Register	Length   (Bits)	Range	Description
SGPOL	1	High/low   0 to 8191 pixel   location   SGTOG1	Sensor gate starting polarity for SG patterns 0 to 7.   First toggle position for SG patterns 0 to 7.   SGTOG2 8191 pixel
SGMASK_BYP	8	Second toggle position for SG patterns 0 to 7.   location   High/low for   each VSG	SGMASK Bypass. This register overrides the SGMASK values in each field register. One   bit for each output, where Bit[0] is for VSG1 output and Bit 7 is for VSG8 output.   $0=$ active.   $1=$ mask output.
SGMASK_BYP_EN	1	0 or 1	1: enables SGMASK bypass.

[^2]

PROGRAMMABLE SETTINGS FOR EACH PATTERN:
1START POLARITY OF PULSE.
${ }^{2}$ FIRST TOGGLE POSITION.
${ }^{3}$ SECOND TOGGLE POSITION.
${ }^{4}$ ACTIVE LINE FOR VSG PULSES WITHIN THE FIELD (PROGRAMMABLE IN THE FIELD REGISTER, NOT FOR EACH PATTERN).
Figure 50. Vertical Sensor Gate Pulse Placement

## MODE Register

The MODE register is a single register that selects the field timing of the AD9923A. Typically, all field, V-sequence, and V-pattern group information is programmed into the AD9923A at startup. During operation, the MODE register allows the user to select any combination of field timing to meet the current requirements of the system. Using the MODE register in conjunction with preprogrammed timing greatly reduces the system programming requirements during camera operation. Only a few register writes are required when the camera operating mode is changed rather than having to rewrite the vertical timing information with each camera mode change.

A basic still camera application can require five fields of vertical timing-one for draft mode operation, one for autofocusing, and three for still image readout. The register timing information for the five fields is loaded at startup. Depending on how the camera is being used, the MODE register selects which field timing is active during camera operation.

Table 21 shows how the MODE register bits are used. Unlike other registers, the MODE register uses 10 address bits as data bits to increase the total register size to 38 bits. The address MSBs, A11 and A10, are 1 and 0, respectively, and are used to specify the MODE register write. The three MSBs, D37, D36, and D35 are used to specify the number of fields used. A value from 1 to 7 can be selected using these three bits. The remaining register bits are divided into five-bit sections to select which programmed fields are used and in which order. Up to seven fields can be used in a single MODE write. The AD9923A starts with the field timing specified by the first field bit, and switches to the timing specified by the second field bit on the next VD, and so on.

After completing the number of fields specified in Bit D37 to Bit D35, the timing generator of the AD9923A repeats itself by starting at the first field. This continues until a new write to the MODE register occurs. Figure 51 shows MODE register settings for various field configurations.

Table 21. Mode Register Contents-VD Updated

Address (Binary)	Data Bits	Default Value	Description
12b10_xx_xxxx_xxxx	$[37: 0]$	0	A11, A10 must be set to 0x10; remaining A9:A0 bits used for D37:D28
	$[37: 35]$		Number of fields (maximum of seven)
	$[34: 30]$		Selected field for Field 7
	$[29: 25]$		Selected field for Field 5
	$[24: 20]$		Selected field for Field 6
	$[19: 15]$		Selected field for Field 4
	$[14: 10]$		Selected field for Field 3
	$[9: 5]$		Selected field for Field 2
	$[4: 0]$		Selected field for Field 1



Figure 51. Using the Mode Register to Select Field Timing

## VERTICAL TIMING EXAMPLE

To better understand how the AD9923A vertical timing generation is used, consider the example CCD timing chart in Figure 52. It illustrates a CCD using a general three-field readout technique. As described in the Complete Field: Combining V-Sequences section, each readout field should be divided into separate regions to perform each step of the readout. The sequence change position (SCP) registers determine the line boundaries for each region. Then, the VSEQSEL registers assign a V-sequence to each region. Each V-sequence contains specific timing information required for each region: XV1 to XV6 pulses (using VPAT groups), HBLK/CLPOB timing, and VSG patterns for the SG active lines.

The example shown in Figure 52 requires four regions, labeled Region 0, Region 1, Region 2, and Region 3, for each of the three fields. Because the AD9923A allows many individual fields to be programmed, Field 0, Field 1, and Field 2 can be created to meet the requirements of this timing example. In this example, the four regions for each field are very similar, but the individual registers for each field allow flexibility to accommodate more complex timing requirements.

## Region 0

Region 0 is a high speed vertical shift region. Sweep mode can be used to generate this timing operation, with the desired number of high speed vertical pulses needed to clear any charge from the vertical registers of the CCD.

## Region 1

Region 1 consists of two lines and uses standard, single line, vertical shift timing. The timing of this region is the same as the timing of Region 3.

## Region 2

Region 2 is the sensor gate line, where the VSG pulses transfer the image into the vertical CCD registers. This region might require use of the second V-pattern group for the SG active line.

## Region 3

Region 3 also uses the standard, single line, vertical shift timing, the same timing used in Region 1. In summary, four regions are required in each of the three fields.

The timing for Region 1 and Region 3 is essentially the same, reducing the complexity of the register programming. Other registers, such as the MODE register, shutter control registers (that is, TRIGGER, and the registers to control the SUBCK, VSUB, MSHUT, and STROBE outputs), and the AFE gain registers, VGAGAIN and CDSGAIN, must be used during the readout operation. These registers are explained in the MODE Register and Variable Gain Amplifier sections.


## VERTICAL DRIVER SIGNAL CONFIGURATION

As shown in Figure 53, XV1 to XV13, VSG1 to VSG8, and XSUBCK are outputs from the internal AD9923A timing generator, and V1 to V13 and SUBCK are the resulting outputs from the AD9923A vertical driver. When VDR_EN = high, the vertical driver mixes the XV and VSG pulses and amplifies them to the high voltages required for driving the CCD. Table 22 through Table 37 describe the output polarities for these signals vs. their input levels. Refer to these tables when determining the register settings for the desired output levels. Note that when

VDR_EN = low, V1 to V13 are forced to VM and SUBCK is forced to VLL. The VDR_EN pin takes priority over the XV and VSG signals coming from the timing generator.

The VDR_EN pin can be driven either with an external 3 V logic signal or by one of the AD9923A shutter outputs (MSHUT, VSUB, STROBE). To make the AD9923A compatible with existing AD9923 designs, drive the VDR_EN pin with a diode to either an external 3 V logic signal or to one of the shutter outputs.


Table 22. V1 Output Polarity

Vertical Driver Input		
XV1	VSG1	V1 Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 23. V3 Output Polarity

Vertical Driver Input		V3 Output
XV3	VSG3	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 24. V5A Output Polarity

Vertical Driver Input		
XV5	VSG5	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 25. V5B Output Polarity

Vertical Driver Input		V5 Output
XV5	VSG6	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 26. V7A Output Polarity

Vertical Driver Input		
XV7	VSG7	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 27. V7B Output Polarity

Vertical Driver Input		
XV7	VSG8	V7B Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 28. V11 Output Polarity

Vertical Driver Input		
XV11	VSG2	V11 Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 29. V12 Output Polarity

Vertical Driver Input		
XV12	VSG4	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 30. V2 Output Polarity

Vertical Driver Input XV2	V2 Output
L	VM
H	VL

Table 31. V4 Output Polarity

Vertical Driver Input XV4	V4 Output
L	VM
H	VL

Table 32. V6 Output Polarity

Vertical Driver Input XV6	V6 Output
L	VM
H	VL

Table 33. V8 Output Polarity

Vertical Driver Input XV8	V8 Output
L	VM
H	VL

Table 34. V9 Output Polarity

Vertical Driver Input XV9	V9 Output
L	VM
H	VL

## AD9923A

Table 35. V10 Output Polarity

Vertical Driver Input XV10	V10 Output
L	VM
H	VL

Table 36. V13 Output Polarity

Vertical Driver Input XV13	V13 Output
L	VM
H	VL

Table 37. SUBCK Output Polarity

Vertical Driver Input		
XSUBCK	XSUBCNT	SUBCK Output
L	L	VH
L	H	VH
H	L	VMM
H	H	VLL



Figure 54. XV1, VSG1, and V1 Output Polarities


Figure 55. XV11, VSG2, and V11 Output Polarities


Figure 56. XV3, VSG3, and V3 Output Polarities


## AD9923A



Figure 62. XV2, XV4, XV6, XV8, XV9, XV10, XV13 and V2, V4, V6, V8, V9, V10, V13 Output Polarities


## SHUTTER TIMING CONTROL

The CCD image exposure time is controlled by the substrate clock signal (SUBCK) that pulses the CCD substrate to clear out accumulated charge. The AD9923A supports three types of electronic shuttering: normal, high precision, and low speed. Together with the SUBCK pulse placement, the AD9923A can accommodate different readout configurations to further suppress the SUBCK pulses during multiple field readouts. The AD9923A also provides programmable outputs to control an external mechanical shutter (MSHUT), strobe/flash (STROBE), and CCD bias select signal (VSUB). Up to four general shutter pulses (SHUT0 to SHUT3) and two VSUB pulses (VSUB0 and VSUB1) can be programmed and assigned to any of the three shutter output pins. The user can also combine the following
shutter and VSUB pulses with a logic XOR operation (symbolized by $\wedge$ ) to generate more complex timing (up to four toggle positions per line) for MSHUT, STROBE and VSUB: SHUT0 ^ VSUB0, SHUT0 ^ VSUB1, SHUT0 ^ SHUT1, and SHUT0 ^ SHUT2.

## SUBCK: Three-Level Output

The AD9923A supports a three-level output from the SUBCK buffer: VH, VMM, and VLL. The VH power supply is shared with the V-driver outputs, but VMM and VLL are dedicated mid and low supplies for the SUBCK buffer. There are two inputs to the SUBCK buffer, XSUBCK and XSUBCNT. XSUBCNT is created by an internal multiplexer that selects from XV1 to XV13, VSG1 to VSG8, MSHUT, STROBE, VSUB, SHUT0 to SHUT3, FG_TRIG, high and low.

Table 38. XSUBCNT Multiplexer


## SUBCK: Normal Operation

By default, the AD9923A operates in a normal SUBCK configuration with the SUBCK signal pulsing in every VD field (see Figure 64). The SUBCK pulse occurs once per line, and the total number of repetitions within the field determines the exposure time. The SUBCK pulse polarity and toggle positions within a line are programmable, using the SUBCKPOL and SUBCK1TOG registers (see Table 39). The number of SUBCK pulses per field is programmed in the SUBCKNUM register (Address 0x64).

As shown in Figure 64, the SUBCK pulses always begin in the line following the SG active line (specified in the SGACTLINE registers for each field). The SUBCKPOL, SUBCK1TOG, SUBCK2TOG, SUBCKNUM, and SUBCKSUPPRESS registers are updated at the start of the line after the sensor gate line, as described in the Updating New Register Values section.

## SUBCK: High Precision Operation

High precision shuttering is used in the same manner as normal shuttering, but an additional register is used to control the last SUBCK pulse. In this mode, the SUBCK pulses once per line, but the last SUBCK in the field has an additional SUBCK pulse, whose location is determined by the SUBCK2TOGx registers, as shown in Figure 65. Finer resolution of the exposure time is possible using this mode. Leaving the SUBCK2TOGx registers set to their maximum value ( $0 x$ xFFFFF) disables the last SUBCK pulse (default setting).

## SUBCK: Low Speed Operation

Normal and high precision shutter operations are used when the exposure time is less than one field long. For exposure times longer than one field interval, low speed shutter operation is used. The AD9923A uses a separate exposure counter to achieve long exposure times. The number of fields for the low speed shutter operation is specified in the EXPOSURENUM register (Address 0x63). As shown in Figure 66, this shutter mode suppresses the SUBCK and VSG outputs from 0 fields up to 4095 fields (VD periods). The VD and HD outputs can be suppressed during the exposure period by programming the VDHDOFF register to 1 .

To generate a low speed shutter operation, trigger a long exposure by writing to the TRIGGER register, Bit D3. When this bit is set high, the AD9923A begins an exposure operation at the next VD edge. If a value greater than 0 is specified in the EXPOSURENUM register, the AD9923A suppresses the SUBCK output on subsequent fields.

If the exposure is generated using the TRIGGER register and the EXPOSURENUM register is set to 0 , the behavior of the SUBCK is the same as during normal shutter or high precision shutter operations, in which the TRIGGER register is not used.

## AD9923A



SUBCK PROGRAMMABLE SETTINGS:

1. PULSE POLARITY USING THE SUBCKPOL REGISTER.
2. NUMBER OF PULSES WITHIN THE FIELD USING THE SUBCKNUM REGISTER (SUBNUM $=3$ IN THE ABOVE EXAMPLE).
3. PIXEL LOCATION OF PULSE WITHIN THE LINE AND PULSE WIDTH PROGRAMMED USING THE SUBCK1TOG REGISTER.

Figure 64. Normal Shutter Mode


Figure 65. High Precision Shutter Mode


NOTES

1. SUBCK CAN BE SUPPRESSED FOR MULTIPLE FIELDS BY PROGRAMMING THE EXPOSURE REGISTER TO BE GREATER THAN 0.
2. ABOVE EXAMPLE USES EXPOSURE $=1$.
3. TRIGGER REGISTER MUST ALSO BE USED TO START THE LOW SPEED EXPOSURE.
4. VD/HD OUTPUTS CAN ALSO BE SUPPRESSED USING THE VDHDOFF REGISTER $=1$.

## SUBCK: Suppression

Normally, the SUBCK begins pulsing on the line following the sensor gate line (VSG). Some CCDs require suppressing the SUBCK pulse for one or more lines following the VSG line. The SUBCKSUPPRESS register enables such suppression.

## Readout After Exposure

After the exposure, the readout of the CCD data occurs, beginning with the sensor gate (VSG) operation. By default, the AD9923A generates VSG pulses in every field. When only a single exposure and readout frame are needed, as is the case in the CCD preview mode, the VSG and SUBCK pulses can operate in every field.

However, often during readout, the SUBCK output must be suppressed until the readout is complete. The READOUTNUM register specifies the number of additional fields after the exposure to continue the suppression of SUBCK. READOUTNUM can be programmed for 0 to 7 fields, and should be preprogrammed at startup, not at the same time as the exposure write. A typical interlaced CCD frame readout mode generally requires two fields of SUBCK suppression (READOUTNUM $=2$ ) during readout. A three-field, six-phase CCD requires three fields of SUBCK suppression after the readout begins (READOUTNUM $=3$ ).

If SUBCK output is required to initiate backup during the last field of readout, program the READOUTNUM register to one less than the total number of CCD readout fields. Similar to the exposure operation, the readout operation must be triggered using the TRIGGER register.

## SUBCK: Additional Masking

The SUBCKMASK register (Address 0x65) allows more complex SUBCK masking. If SUBCKMASK $=1$, it starts masking the SUBCK at the next VD edge. If SUBCKMASK = 2, it enables
users to select the internal SHUT3 signal and create a custom SUBCK masking pattern that spans several fields.

When generating an exposure by using the TRIGGER register, as previously described in the Readout After Exposure section, the AD9923A outputs the SUBCK and VSG signals on every field by default. This works well for continuous, single field exposure and readout operations, such as those in the CCD live preview mode. However, if the CCD requires a longer exposure time, or if multiple readout fields are needed, the TRIGGER register is needed to initiate specific exposure and readout sequences.

Typically, the exposure and readout bits in the TRIGGER register are used together. This initiates a complete exposure-plus-readout operation. After the exposure, the readout occurs automatically. The values in the EXPOSURE and READOUTNUM registers determine the length of each operation.

It is possible to independently trigger the readout operation without triggering the exposure operation. This causes the readout to occur at the next VD, and the SUBCK output is suppressed according to the value set in the READOUTNUM register.

The TRIGGER register also controls the SHUT and VSUB signals. Each signal is individually controlled but dependent on the triggering of the exposure and readout operations. See Figure 71 for a complete example of triggering the exposure and readout operations.

Alternatively, it is possible to manually control the exposure and readout operations by carefully updating the SUBCKSUPPRESS and VSG masking registers upon every VD field. As described in the following sections, it is possible to have partial or full manual control of the shutter signals. This allows greater flexibility in generating custom exposure/readout/shutter signal timing.

## AD9923A

Table 39. SUBCK and TRIGGER Register Parameters

Register	Length (Bits)	Range	Description
TRIGGER	8	On/off for eight signals	0: triggers SHUTO signal.   1: triggers SHUT1 signal.   2: triggers SHUT2 signal.   3: triggers SHUT3 signal.   4: triggers VSUBO signal.   5: triggers VSUB1 signal.   6: triggers EXPOSURE operation.   7: triggers READOUT operation.
READOUTNUM	3	0 to 7 fields	Number of fields to suppress SUBCK after exposure.
EXPOSURENUM	12	0 to 4095 fields	Number of fields to suppress to SUBCK and VSG during exposure time (low speed shutter).
VDHDOFF	1	On/off	Disable VD/HD output during exposure. $\begin{aligned} & 1=\text { disable VD. } \\ & 0=\text { enable VD. } \end{aligned}$
SUBCKPOL ${ }^{1}$	1	High/low	SUBCK start polarity for SUBCK1 and SUBCK2.
SUBCK1TOG $1^{1}$	12	0 to 4095 pixel locations	First toggle positions for first SUBCK pulse (normal shutter).
SUBCK1TOG2 ${ }^{1}$	12	0 to 4095 pixel locations	Second toggle positions for first SUBCK pulse (normal shutter).
SUBCK2TOG $1^{1}$	12	0 to 4095 pixel locations	First toggle positions for second SUBCK pulse in last line (high precision).
SUBCK2TOG2 ${ }^{1}$	12	0 to 4095 pixel locations	Second toggle positions for second SUBCK pulse in last line (high precision).
SUBCKNUM ${ }^{1}$	12	1 to 4095 pulses	Total number of SUBCKs per field, at one pulse per line.
SUBCKSUPPRESS ${ }^{1}$	12	0 to 4095 pulses	Number of pulses, after the VSG line, to suppress SUBCK.
SUBCKMASK ${ }^{1}$	2	0 to 3 masking mode	Additional masking of SUBCK output.   $0=$ no additional mask.   1 = start mask at VD edge.   2 = use internal SHUT3 signal to mask.

${ }^{1}$ Register is not VD updated but updated at the start of the line after the sensor gate line.

## Shutter Outputs

The AD9923A contains three shutter output pins: VSUB, MSHUT, and STROBE. Internally, there are six possible shutter signals available: VSUB0, VSUB1, SHUT0, SHUT1, SHUT2, and SHUT3. Any of these signals, and the following combinations: SHUT0 ^ VSUB0, SHUT0 ^ VSUB1, SHUT0 ^ SHUT1, SHUT0 $\wedge$ SHUT2, can be mapped to any of the output pins using the VSUB_CTRL, MSHUT_CTRL, and STROBE_CTRL registers.

The VSUB signals behave differently than the SHUT signals, and are generally used for the VSUB output pin. If a more generic approach is desired for the shutter signals, the SHUT signals can be used for the VSUB output pin.

It is also possible to configure the SYNC pin as an output and send one of the internal shutter signals, or the combinations listed above, to the SYNC pin using the TESTO_CTRL register function. This provides the flexibility of outputting up to four shutter outputs if the external SYNC input function is not needed.

## VSUB Signal Operation

The CCD readout bias (VSUB) can be programmed to accommodate different CCDs. Figure 67 shows two available modes. In Mode 0 , VSUB goes active when the exposure begins during the field of the last SUBCK. The on position (rising edge in Figure 67) is programmable to any line within the field. VSUB remains active until the end of the image readout. In Mode 1, the VSUB is not activated until the start of the readout.

A function called VSUB_KEEPON is also available. When the appropriate VSUB_KEEPON bit is set high, the VSUB output remains active, even after the readout has finished. To disable the VSUB at a later time, return this bit to low.

The AD9923A contains two programmable VSUB signals, VSUB0 and VSUB1. Either of these signals can be mapped to the VSUB output pin, the MSHUT pin, or the STROBE pin.

## SHUT Signal Operation

SHUT signal operation is shown in Figure 68 through Figure 71.

Table 40 shows the register parameters for controlling the SHUT signals. There are three different ways to use the SHUT signals: automatic trigger, single trigger, and manual control.

## Automatic Trigger

Generally, SHUT signals are triggered together with an exposure or readout operation, using the TRIGGER register. The SHUT_ON and SHUT_OFF positions are fully programmable to anywhere within the exposure period, using the field

$$
\begin{aligned}
& \text { (SHUT_ON_FD/SHUT_OFF_FD), line } \\
& \text { (SHUT_ON_LN/SHUT_OFF_LN), and pixel } \\
& \text { (SHUT_ON_PX/SHUT_OFF_PX) registers. }
\end{aligned}
$$

The field registers define the field in which the line and pixel values are used, with respect to the value of the exposure counter. The on and off positions can occur as soon as the field contains the last SUBCK (Exposure Field 0), or as late as the final exposure field before the readout begins. Separate field registers allow the on and off positions to occur in different exposure fields.

## Single Trigger

SHUT signals can be triggered without triggering an exposure or readout operation. In this case, SHUT signals are triggered using the TRIGGER register, but the exposure bit is not triggered. Both the SHUT on and off positions occur in the next field, and the SHUT_ON_FD/SHUT_OFF_FD register values are ignored. Single trigger operation is useful if a pulse is required immediately in the next field without the occurrence of an exposure or readout operation. Also, single trigger operation is useful when the exposure or readout operation is manually generated without using the TRIGGER register, and the SUBCK and VSG masking are manually controlled.

Note that single trigger operation cannot occur if an exposure operation has been triggered. SHUT signals behave in automatic
trigger mode if they, and an exposure operation, have been triggered.

## Manual Control

Any SHUT signal can be controlled in manual control mode, instead of using the TRIGGER register to activate it. In this mode, the individual on and off lines and pixel positions are used separately, depending on the status of the manual signal control register. Note that only a single toggle position, either off or on, can be used in a VD interval.

As with single trigger operation, when manual control is enabled, the SHUT_ON_FD/SHUT_OFF_FD register values are ignored.

Because there is a separate bit to enable manual control on SHUT signals, this operation can be used regardless of the status of a triggered exposure operation.

Note that manual control can be used in conjunction with automatic or single trigger operations. If a SHUT signal is turned on using manual control, and then manual control is disabled, the SHUT signal remains on. If a subsequent trigger operation occurs, the on position toggle is ignored, because the signal is already on. In this case, only the off position can be triggered.

Note that the trigger mechanism for the SHUT signals on the AD9923A is different from the AD9923. On the AD9923, the trigger signals are updated on the UPDATE line (Register 0x18) in the field in which the TRIGGER register (Register 0x61) is written to. If the trigger bit for a SHUT signal is deactivated in a given field, this would cause any toggle positions for that SHUT signal that occur after the UPDATE line to be ignored. In the AD9923A, the internal trigger signals remain active for the entire line following a write to the trigger register. In this case, any toggle locations that are programmed after the UPDATE line is processed.


## AD9923A



SHUT PROGRAMMABLE SETTINGS:
${ }^{1}$ ACTIVE POLARITY. DEFINES THE LOGIC LEVEL DURING ON TIME. ABOVE EXAMPLE USES ACTIVE POLARITY $=1$. 2ON POSITION IS PROGRAMMABLE TO ANY LINE/PIXEL IN FIELD IMMEDIATELY FOLLOWING SINGLE TRIGGER WRITE. ${ }^{3}$ OFF POSITION IS PROGRAMMABLE TO ANY LINE/PIXEL IN FIELD IMMEDIATELY FOLLOWING SINGLE TRIGGER WRITE.

Figure 68. SHUTO to SHUT3 Signal Programmability


SHUT PROGRAMMABLE SETTINGS:
${ }^{1}$ ACTIVE POLARITY. DEFINES THE LOGIC LEVEL DURING ON TIME. ABOVE EXAMPLE USES ACTIVE POLARITY = 1
${ }^{2}$ ON POSITION IS PROGRAMMABLE DURING ANY EXPOSURE FIELD. ABOVE EXAMPLE USES SHUTON_FD = 1 .
${ }^{3}$ OFF POSITION IS PROGRAMMABLE DURING ANY EXPOSURE FIELD. ABOVE EXAMPLE USES SHUTOFF_FD = $\mathbf{2}$.
Figure 69. Manual Control of SHUTO to SHUT3 Signals


Figure 70. Single Trigger Control of SHUTO to SHUT3 Signals

Table 40. VSUB0 to VSUB1 and SHUT0 to SHUT3 Register Parameters

Register	Length (Bits)	Range	Description
VSUB_CTRL	3	0 to 7	Selects which internal shutter signal is mapped to the VSUB pin.   0: SHUTO.   1: SHUT1.   2: SHUT2.   3: SHUT3.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.
MSHUT_CTRL	3	0 to 7	Selects which internal shutter signal is mapped to the MSHUT pin. 0: SHUTO.   1: SHUT1.   2: SHUT2.   3: SHUT3.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.
STROBE_CTRL	3	$0 \text { to } 7$	Selects which internal shutter signal is mapped to the STROBE pin.   0: SHUTO.   1: SHUT1.   2: SHUT2.   3: SHUT3.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.
TESTO_CTRL	3	$0 \text { to } 7$	Selects which internal shutter signal is mapped to the TESTO signal.   0: SHUTO.   1: SHUT1.   2: SHUT2.   3: SHUT3.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.
VSUBO_MUX	1	High/low	$\begin{aligned} & 0=\text { use VSUBO. } \\ & 1=\text { use SHUTO } \wedge \text { VSUBO. } \end{aligned}$
VSUB1_MUX	1	High/low	$\begin{aligned} & 0=\text { use VSUB1. } \\ & 1=\text { use SHUT0 ^ VSUB } 1 . \end{aligned}$
SHUT1_SHUT2_MUX	1	High/low	$\begin{aligned} & 0=\text { use SHUTO } \wedge \text { SHUT1. } \\ & 1=\text { use SHUTO } \wedge \text { SHUT2. } \end{aligned}$
VSUB_MODE	1b	High/low	VSUB mode. See Figure 67. $\begin{aligned} & 0=\text { Mode } 0 . \\ & 1=\text { Mode } 1 . \end{aligned}$
VSUB_KEEPON	1	High/low	VSUB keep-on mode. VSUB stays active after readout when set high.
VSUB_ON	12	0 to 4095 line location	VSUB on position. Can turn on at any line in the field.
VSUBPOL	1	High/low	VSUB start polarity. When VSUB is triggered on.
SHUT_ON	1	On/off	SHUT manual control. $\begin{aligned} & 0=\text { SHUT off. } \\ & 1=\text { SHUT on. } \end{aligned}$
SHUTPOL	1	High/low	SHUT active polarity.

## AD9923A

Register	Length (Bits)	Range	Description
SHUT_MAN	1	Enable/disable	Enables SHUT manual control mode.
		$0=$ disable.	
SHUT_ON_FD	12	0 to 4095 field location	Field location to switch on MSHUT. Inactive, or closed.
SHUT_ON_LN	12	0 to 4095 line location	Line position to switch on MSHUT. Inactive, or closed.
SHUT_ON_PX	13	0 to 8191 pixel location	Pixel position to switch on MSHUT. Inactive, or closed.
SHUT_OFF_FD	12	0 to 4095 field location	Field location to switch off MSHUT. Inactive, or closed.
SHUT_OFF_LN	12	0 to 4095 line location	Line position to switch off MSHUT. Inactive, or closed.
SHUT_OFF_PX	13	0 to 8191 pixel location	Pixel position to switch off MSHUT. Inactive, or closed.

## Explanation of Figure $\mathbf{7 1}$

The numbers in this section, Explanation of Figure 71, correspond precisely to the numbers embedded in Figure 71.

1. Write to the READOUTNUM register (Address 0x62) to specify the number of fields to suppress SUBCK during readout of CCD data. In this example, READOUTNUM $=3$.

Write to the EXPOSURENUM register (Address 0x63) to specify the number of fields to suppress SUBCK and VSG outputs during exposure. In this example, EXPOSURENUM $=1$.

Write to the TRIGGER register (Address 0x61) to trigger the SHUT0 (STROBE), SHUT1 (MSHUT), and VSUB0 (VSUB) signals, and to start the exposure-plus-readout operation. To trigger these events (see Figure 71), set the register TRIGGER $=0 x D 3$. Readout automatically occurs after the exposure period finishes.

Write to the MODE register to configure the next five fields. The first two fields during exposure are the same as the current draft mode fields, and the next three fields are the still frame readout fields. The register settings for the draft mode field and the three readout fields are previously programmed.
2. VD/HD falling edge updates the serial writes from 1 .
3. If VSUB0 MODE $=0$ (Address 0x69), VSUB output turns on at the line specified in the VSUB0_ON register (Address 0x6A).
4. STROBE output turns on and off at the location specified in the SHUT0_ON/SHUT0_OFF registers (Address 0x6D/ Address 0x71).
5. MSHUT output turns off at the location specified in the SHUT1_OFF_FD, SHUT1_OFF_LN, and SHUT1_OFF_PX registers (Address 0x75 and Address 0x76). The SHUT1 on position is ignored because the SHUT1 signal is already on from a previous manual operation (see Step 10).
6. The next VD falling edge automatically starts the first readout field.
7. The next VD falling edge automatically starts the second readout field.
8. The next VD falling edge automatically starts the third readout field.
9. Write to the MODE register to reconfigure the single draft mode field timing.

Write a 1 to the SHUT1_MAN and SHUT1_ON registers (Address $0 \times 72$ ) to turn the MSHUT output back manually.
10. VD/HD falling edge updates the serial writes from 9. VSG outputs return to draft mode timing. SUBCK output resumes operation.

MSHUT output returns to the on position (active or open). Be sure to disable manual control of SHUT1 before another automatic trigger of the SHUT1 signal is needed.

VSUB output returns to the off position (inactive).

## EXAMPLE OF EXPOSURE AND READOUT OF INTERLACED FRAME



Figure 71. Example of Exposure and Still Image Readout Using Shutter Signals and MODE Register

## AD9923A

## FG_TRIG OPERATION

The AD9923A contains one additional signal that can be used in conjunction with shutter operation or general system operation. The FG_TRIG signal is an internally generated pulse that can be output on the SYNC pins for shutter or other system functions. A unique feature of the FG_TRIG signal is that it is output with respect to the MODE register field status.

The FG_TRIG signal is generated using the SHUT1 start polarity and toggle position registers, programmable with line
and pixel resolution. The field registers for SHUT1 are ignored because the field placement of the FG_TRIG pulse is matched to the field count specified by the MODE register operation. The FG_TRIGEN register contains a three-bit value that specifies which field count contains the FG_TRIG pulse. Figure 72 shows how the FG_TRIG pulse is generated using these registers.

After the FG_TRIG signal is specified, it can be enabled using Bit 3 of the FG_TRIGEN register. The FG_TRIG signal is mapped to the SYNC output if the SYNC pin is configured as an output $(S Y N C E N A B L E=0)$.

Table 41. FG_TRIG Operation Registers

Register	Address	Bit Location	Description
SYNCENABLE	$0 \times 12$	$[0]$	$0=$ configures SYNC pin as an output. By default, the FG_TRIG signal is output on the SYNC pin.
			$1=$ SYNC pin is an external synchronization input.
FG_TRIGEN	$0 \times F 1$	$[3: 0]$	$[2: 0]$ selects the field count for the pulse based on the mode field counter.
			$[3]=1$ to enable FG_TRIG signal output.
SHUT1POL	$0 \times 72$	$[1]$	$[1]$ FG_TRIG start polarity.
SHUT1_ON_LN	$0 \times 74$	$[11: 0]$	FG_TRIG first toggle, line location.
SHUT1_ON_PX	$0 \times 74$	$[25: 13]$	FG_TRIG first toggle, pixel location.
SHUT1_OFF_LN	$0 \times 76$	$[11: 0]$	FG_TRIG second toggle, line location.
SHUT1_OFF_PX	$0 \times 76$	$[25: 13]$	FG_TRIG second toggle, pixel location.



Figure 72. FG_TRIG Signal Generation


Figure 73. Analog Front End Functional Block Diagram

## ANALOG FRONT END DESCRIPTION/OPERATION

The AD9923A signal processing chain is shown in Figure 73. Each step is essential to achieve a high quality image from the raw CCD pixel data.

## DC Restore

To reduce the large dc offset of the CCD output signal, a dc restore circuit is used with an external $0.1 \mu \mathrm{~F}$ series coupling capacitor. This restores the dc level of the CCD signal to approximately 1.5 V so that it is compatible with the 3 V supply voltage of the AD9923A.

## Correlated Double Sampler

The CDS circuit samples each CCD pixel twice to extract video information and reject low frequency noise. The timing shown in Figure 20 illustrates how the two internally generated CDS clocks, SHP and SHD, are used to sample the reference and data levels of the CCD signal, respectively. The placement of the SHP and SHD sampling edges is determined by the setting of the SHPLOC and SHDLOC registers located at Address 0x37. Placement of these clock signals is critical to achieve the best CCD performance.

The CDS gain can be set to $-3 \mathrm{~dB}, 0 \mathrm{~dB}$ (default), +3 dB , or +6 dB in the CDSGAIN register, Address $0 \times 04$. The +3 dB and +6 dB settings improve noise performance, but reduce the input range (see Figure 8).

## Variable Gain Amplifier

The VGA stage provides gain in the range of 6 dB to 42 dB , programmable with 10-bit resolution through the serial digital interface. A minimum gain of 6 dB is needed to match a 1 V input
signal with an ADC full-scale range of 2 V . When compared to 1 V full-scale systems, the equivalent range of gain is 0 dB to 36 dB .

The VGA gain curve follows a linear-in- dB characteristic. The exact VGA gain can be calculated for any gain register value using the following equation

$$
\text { Gain }(\mathrm{dB})=(0.0358 \times \text { Code })+5.5 \mathrm{~dB}
$$

where the code range is 0 to 1023 .


Figure 74. VGA Gain Curve

## ADC

The AD9923A uses a high performance ADC architecture optimized for high speed and low power. Differential nonlinearity (DNL) performance is typically better than 1 LSB. The ADC uses a 2 V input range. See Figure 6 and Figure 8 for typical linearity and noise performance plots.

## AD9923A

## Optical Black Clamp

The optical black clamp loop removes residual offsets in the signal chain and tracks low frequency variations in the CCD black level. During the optical black (shielded) pixel interval on each line, the ADC output is compared with a fixed black level reference, selected by the user in the CLAMPLEVEL register. The value can be programmed between 0 LSB and 255 LSB in 1023 steps. The resulting error signal is filtered to reduce noise and the correction value is applied to the ADC input through a DAC. Normally, the optical black clamp loop is turned on once per horizontal line, but this loop can be updated more slowly to suit a particular application. If external digital clamping is used during postprocessing, the AD9923A optical black clamping can be disabled using the CLPENABLE register (Address 0x00, Bit D2). Even though the loop is disabled, the CLAMPLEVEL register can still be used to provide programmable offset adjustment.

The CLPOB pulse should be placed during the CCD optical black pixels. It is recommended that the CLPOB pulse duration is at least 20 pixels wide to minimize clamping noise. Shorter pulse widths can be used, but clamping noise might increase, reducing the ability to track low frequency variations in the black level. See the Horizontal Clamping and Blanking section for timing examples.

## Digital Data Outputs

The digital output data is latched using the DOUTPHASE register value, as shown in Figure 73. Output data timing is shown in Figure 21 and Figure 22. It is also possible to leave the output latches transparent, so that the data outputs from the ADC are immediately valid. Programming the DOUTLATCH register, Bit D1 to 1 sets the output latches transparent. The data outputs can also be disabled (three-stated) by setting the DOUTDISABLE Register 0x01, Bit D0 to 1.

The DCLK output can be used for external latching of the data outputs. By default, the DCLK output tracks the value of the DOUTPHASE register. By changing the DCLKMODE register, the DCLK output can be held at a fixed phase, and the DOUTPHASE register value is ignored.

To optimize the delay between the DCLK rising edge and the data output transition, the DOUTDELAY register is used. By default, there is approximately 8 ns of delay from the rising edge of DCLK to the transition of the data outputs. See the High Speed Timing Generation section for more information.

Switching the data outputs can couple noise into the analog signal path. To minimize switching noise, set the DOUTPHASE register to the same edge as the SHP sampling location, or up to 11 edges after the SHP sampling location. Other settings can produce good results but require experimentation. It is recommended that the DOUTPHASE location not occur between the SHD sampling location and 11 edges after the SHD location. For example, if SHDLOC $=0$, set DOUTPHASE to an
edge location of 12 or greater. If adjustable phase is not required for the data outputs, the output latch can be left transparent using Register 0x01, Bit D1.

Data output coding is normally straight binary, but can be changed to gray coding by setting the GRAYEN Register 0x01, Bit D2 to 1 .

## Recommended Power-Up Sequence for Master Mode

When the AD9923A is powered up, the following sequence is recommended (see Figure 75):

1. Turn on the +3 V power supplies for the AD9923A, and start the master clock (CLI).
2. Turn on the V-driver supplies (VH and VL). There are no restrictions on the order in which VH and VL are turned on.
3. Reset the internal AD9923A registers by writing 1 to the SW_RST register (Address 0x10).
4. Load the required registers to configure the required VPAT group, V-sequence, field timing information, high speed timing, horizontal timing, and shutter timing information.
5. To place the part into normal power operation, write $0 \times 04$ to the AFE STANDBY register (Bits[1:0], Address 0x00) and $0 x 60$ to TEST3 Register $0 x E A$. If the CLO output is being used to drive a crystal, also power up the CLO oscillator by writing 1 to Register 0x16.
6. By default, the internal timing core is held in a reset state with TGCORE_RSTB register $=0$. Write 1 to the TGCORE_RSTB register (Address 0x15) to start the internal timing core operation. If a $2 \times$ clock is used for the CLI input, set the CLIDIVIDE register (Address 0x30) to 1 before resetting the timing core. It is important to wait at least $500 \mu \mathrm{~s}$ after starting the master clock (CLI) before resetting the timing core, especially if using a crystal or crystal oscillator.
7. Configure the AD9923A for master mode timing by writing 1 to the MASTER register (Address 0x20).
8. Bring the VDR_EN signal high to +3 V to enable the V-driver outputs. If VDR_EN $=0 \mathrm{~V}$, all V-driver outputs $=$ VM, and SUBCK = VLL.
9. Write 1 to the OUTCONTROL register (Address 0x11). This allows the outputs to become active after the next SYNC rising edge.
10. Generate a SYNC event. If SYNC is high at power-up, bring SYNC input low for a minimum of 100 ns . Then, bring SYNC high. This causes the internal counters to reset and starts a VD/HD operation. The first VD/HD edge allows VD register updates to occur, including

OUTCONTROL to enable all outputs. If an external SYNC pulse is not available, generate an internal SYNC pulse by writing to the SYNCPOL register as described in the Generating Software Sync Without External Sync Signal section.


Figure 75. Recommended Power-Up Sequence and Synchronization, Master Mode
Table 42. Power-Up Register Write Sequence

Register	Address	Data	Description
SW_RST	$0 \times 10$	$0 \times 01$	Resets all registers to default values
	$0 \times 20$ to 0xFFF	User defined	Horizontal, vertical, shutter timing
STANDBY	$0 \times 00$	$0 \times 04$	Powers up the AFE
TEST3	$0 \times$ EA	$0 \times 60$	Set TEST3 register to required value
OSC_RST	$0 \times 16$	$0 \times 01$	Resets crystal oscillator circuit
TGCORE_RSTB	$0 \times 15$	$0 \times 01$	Resets internal timing core
MASTER	$0 \times 20$	$0 \times 01$	Configures master mode
OUTCONTROL	$0 \times 11$	$0 \times 01$	Enables all outputs after SYNC
SYNCPOL	$0 \times 13$	$0 \times 01$	SYNC active polarity (for software SYNC only)

## AD9923A



Figure 76. SYNC Timing to Synchronize AD9923A with External Timing

## Generating Software Sync Without External Sync Signal

If an external sync pulse is not available, it is possible to generate an internal sync pulse by writing to the SYNCPOL register (Address 0x13). If the software SYNC option is used, the SYNC input (Pin 35) should be low (VSS) during the power-up procedure. After the power-up procedure is complete, the SYNC pin can be used as an output by setting the SYNCENABLE register low (Address 0x12).

After power-up, follow Step 1 to Step 9 of the procedure in the Recommended Power-Up Sequence for Master Mode section. For Step 10, instead of using the external sync pulse, write 1 to the SYNCPOL register to generate an internal sync pulse and begin the timing operation.

## SYNC During Master Mode Operation

The SYNC input can be used anytime during master mode operation to synchronize the AD9923A counters with external timing, as shown in Figure 76.

To suspend operation of the digital outputs during the SYNC operation, set the SYNCSUSPEND register (Address 0x14) to 1 . If SYNCSUSPEND $=1$, the polarities of the outputs are held at the same state as when OUTCONTROL = low, as shown in Table 43 and Table 44.

## Power-Up and Synchronization in Slave Mode

The power-up procedure for slave mode operation is the same as the procedure described for master mode operation, with two exceptions:

- Eliminate Step 8. Do not configure the part for master mode timing.
- No sync pulse is required in slave mode. Substitute Step 10 with starting the external VD and HD signals. This synchronizes the part, allows the register updates, and starts the timing operation.

Note that DCLK does not begin to transition until Step 7 is complete.

When the AD9923A is in slave mode, the VD/HD inputs synchronize the internal counters. After a falling edge of VD, there is a latency of 34 master clock edges (CLI) after the falling edge of HD until the internal H -counter is reset. The reset operation is shown in Figure 77.

Note that if SHDLOC is set so that the 3 ns minimum delay between the rising edge of SLI and the falling edge of the internal SHD signal is not met, the internal H-counter can reset after only 33 master clock edges (CLI).


Figure 77. External VD/HD and Internal H-Counter Synchronization, Slave Mode


Figure 78. Toggle Position Inhibited Area-Master Mode


Figure 79. Toggle Position Inhibited Area—Slave Mode

## Vertical Toggle Position Placement Near Counter Reset

One additional consideration during the reset of the internal counters is the vertical toggle position placement. Prior to the internal counters being reset, there is a region of 28 pixels during which no toggle positions can be programmed.

As shown in Figure 78, in master mode, the last 28 pixels before the HD falling edge should not be used for toggle position placement of the XV, VSG, SUBCK, HBLK, PBLK, or CLPOB pulses.

Figure 79 shows the same example for slave mode. The same restriction applies-the last 28 pixels before the counters are reset cannot be used. However, the counter reset is delayed with respect to VD/HD placement; therefore, the inhibited area is different than it is in master mode.

It is also recommended that Pixel Location 0 is not used for toggle positions for the VSG and SUBCK pulses.

## AD9923A

## STANDBY MODE OPERATION

The AD9923A contains three standby modes to optimize the overall power dissipation in various applications. Bits[1:0] of Register 0x00 control the power-down state of the device:

$$
\begin{aligned}
& \text { STANDBY[1:0] }=00=\text { normal operation (full power) } \\
& \text { STANDBY[1:0] }=01=\text { Standby } 1 \text { mode } \\
& \text { STANDBY[1:0] }=2=\text { Standby } 2 \text { mode } \\
& \text { STANDBY }[1: 0]=3=\text { Standby } 3 \text { mode (lowest power) }
\end{aligned}
$$

Table 43 and Table 44 summarize the operation of each powerdown mode. Note that when OUTCONTROL = LO, it takes priority over the Standby 1 and Standby 2 modes in determining the digital output states, but Standby 3 mode takes priority over OUTCONTROL. Standby 3 has the lowest power consumption, and can shut down the crystal oscillator circuit between CLI and CLO. If CLI and CLO are being used with a crystal to generate the master clock, this circuit is powered down and there is no clock signal. When returning the device from Standby 3 mode to normal operation, reset the timing core at least $500 \mu \mathrm{~s}$ after writing to the STANDBY register (Bits[1:0], Address 0x00). This allows sufficient time for the crystal circuit to settle. The vertical and shutter outputs can be programmed
to hold a specific value during the Standby 3 mode using Register 0xE2, as detailed in Table 44. The vertical outputs can be programmed to hold a specific value when OUTCONTROL $=$ low, or when in Standby 1 or Standby 2 mode, by using Register 0xF3. The following list provides guidelines for the mapping of the bits in these registers to the various vertical and shutter outputs when the device is in one of the three standby modes, or when OUTCONTROL $=$ low.

- Standby 3 mode takes priority over OUTCONTROL for determining the output polarities.
- These polarities assume OUTCONTROL = high, because OUTCONTROL = low takes priority over Standby 1 and Standby 2.
- Standby 1 and Standby 2 set H and RG drive strength to their minimum values ( 4.3 mA ).
- VD and HD default to High-Z status when in slave mode regardless of standby mode or OUTCONTROL status.

This feature is useful during power-up if different polarities are required by the V -driver and CCD to prevent damage.

It is important to note that when VDR_EN $=0 \mathrm{~V}, \mathrm{~V} 1$ to V13 are at VM, and SUBCK is at VLL regardless of the state of the value of the STANDBY and OUTCONTROL registers.

Table 43. Standby Mode Operation

I/O Block	Standby 3 (Default) ${ }^{1,2}$	OUTCONTROL = LOW ${ }^{2}$	Standby $\mathbf{2}^{\text {3,4 }}$	Standby $\mathbf{1}^{3,4}$
AFE	Off	No change	Off	Only REFT, REFB on
Timing Core	Off	No change	Off	On
CLO Oscillator	Off	No change	On	On
CLO	High	Running	Running	Running
HL	High-Z	Low	Low ( 4.3 mA )	Low ( 4.3 mA )
H1	High-Z	Low	Low ( 4.3 mA )	Low ( 4.3 mA )
H2	High-Z	High	High ( 4.3 mA )	High ( 4.3 mA )
H3	High-Z	Low	Low ( 4.3 mA )	Low ( 4.3 mA )
H4	High-Z	High	High ( 4.3 mA )	High ( 4.3 mA )
RG	High-Z	Low	Low ( 4.3 mA )	Low ( 4.3 mA )
VD ${ }^{5}$	Low	$\overline{\text { VDHDPOL }}$ value	$\overline{\text { VDHDPOL }}$ value	Running
HD	Low	$\overline{\text { VDHDPOL }}$ value	$\overline{\text { VDHDPOL }}$ value	Running
DCLK	Low	Running	Low	Running
D0 to D11	Low	Low	Low	Low

[^3]Table 44. Standby Mode Operation-Vertical and Shutter Outputs

Output	Standby 3 (Default) ${ }^{1,2}$	OUTCONTROL = Low	Standby 23,4	Standby $\mathbf{1}^{3,4}$
XV1	Low	Low	Low	Low
XV2	Low	Low	Low	Low
XV3	Low	Low	Low	Low
XV4	Low	Low	Low	Low
XV5	Low	Low	Low	Low
XV6	Low	Low	Low	Low
XV7	Low	Low	Low	Low
XV8	Low	Low	Low	Low
XV9	Low	Low	Low	Low
XV10	Low	Low	Low	Low
XV11	Low	Low	Low	Low
XV12	Low	Low	Low	Low
XV13	Low	Low	Low	Low
VSG1	Low	High	High	High
VSG2	Low	High	High	High
VSG3	Low	High	High	High
VSG4	Low	High	High	High
VSG5	Low	High	High	High
VSG6	Low	High	High	High
VSG7	Low	High	High	High
VSG8	Low	High	High	High
XSUBCK	Low	High	High	High
VSUB ${ }^{5}$	Low	Low	Low	Low
MSHUT ${ }^{5}$	Low	Low	Low	Low
STROBE ${ }^{5}$	Low	Low	Low	Low

${ }^{1}$ Polarities for vertical and shutter outputs when the AD9923 is in Standby 3 mode are programmable using the STANDBY3POL register, Address 0xE2 (default register value $=0 \times 000000$ ).
${ }^{2}$ Bit assignments for the STANDBY3POL[23:0] register (Address 0xE2): (MSB) STROBE, MSHUT, VSUB, XSUBCK, VSG8, VSG7, VSG6, VSG3, VSG5, VSG4, VSG2, VSG1, XV13, XV12, XV11, XV10, XV9, XV8, XV7, XV6, XV5, XV4, XV3, XV2, and XV1 (LSB).
${ }^{3}$ Polarities for vertical outputs when the AD9923 is in Standby 1, Standby 2, or if OUTCONTROL = low, are programmable using the STANDBY12POL register,
Address 0xF3 (default register value $=0 \times 3$ FE000)
${ }^{4}$ Bit assignments for the STANDBY12POL[20:0] register (Address 0xF3): (MSB) XSUBCK, VSG8, VSG7, VSG6, VSG3, VSG5, VSG4, VSG2, VSG1, XV13, XV12, XV11, XV10, XV9, XV8, XV7, XV6, XV5, XV4, XV3, XV2, and XV1 (LSB).
${ }^{5}$ VSUB, MSHUT, and STROBE polarities for Standby 1, Standby 2, or if OUTCONTROL = low are controlled by STANDBY3POL.

## AD9923A

## CIRCUIT LAYOUT INFORMATION

The AD9923A typical circuit connections are shown in Figure 82. The PCB layout is critical for achieving good image quality from the AD9923A. All supply pins, particularly the pins for the AVDD, TCVDD, RGVDD, and HVDD supplies, must be decoupled to ground with quality, high frequency chip capacitors.

The decoupling capacitors should be as close as possible to the supply pins and have a very low impedance path to a continuous ground plane. There should be a bypass capacitor of at least $4.7 \mu \mathrm{~F}$ for each main supply-AVDD, HVDD, and DRVDDbut this is not necessary for each individual pin. In most applications, it is easier to share the supply for RGVDD and HVDD; this requires bypassing each supply pin separately. A separate 3 V supply can also be used for DRVDD, but it should be decoupled to the same ground plane as the rest of the chip. A separate ground for DRVSS is not recommended.

The analog bypass pins (REFT and REFB) should be carefully decoupled to ground, as close as possible to their respective pins. The analog input (CCDIN) capacitor should also be located close to the pin.

To avoid excessive distortion of the signals, design the HL, H1 to H4, and RG traces to have low inductance. To minimize
mutual inductance, route the complementary signals, H 1 and H 2 , as symmetrically and close together as possible. The same should be done for the H3 and H4 signals. Heavier PCB traces are recommended because of the large transient current demand placed by the CCD on HL and H 1 to H 4 . If possible, physically locating the AD9923A closer to the CCD reduces the inductance on these lines. The routing path should be as direct as possible from the AD9923A to the CCD.

The AD9923A also contains an on-chip oscillator for driving an external crystal. The maximum crystal frequency that the AD9923A can support is 36 MHz . Figure 80 shows an example application using a typical 24 MHz crystal. For the exact values of the external resistors and capacitors, see the crystal manufacturer's data sheet.


Figure 80. Crystal Driver Application


Figure 81. AD9923A Recommended Power up Sequence


Figure 82. AD9923ABBCZ Typical Circuit Configuration using External Hardware Sync

## AD9923A



Figure 83. Typical Circuit Configuration When Using Software Sync Function

## SERIAL INTERFACE TIMING

All of the AD9923A internal registers are accessed through a 3-wire serial interface. Each register consists of a 12-bit address and a 28-bit data-word. Both the address and data-word are written by starting with the LSB. To write to each register, a 40-bit operation is required, as shown in Figure 84. Although many data-words are fewer than 28 bits wide, all 28 bits must be written for each register. For example, if the data-word is only 20 bits wide, the upper 8 bits are don't cares and must be filled
with 0 s during the serial write operation. If fewer than 28 data bits are written, the register is not updated with new data.

Figure 85 shows a more efficient way to write to the registers, using the AD9923A address auto-increment capability. Using this method, the lowest desired address is written first, followed by multiple 28 -bit data-words. Each data-word is automatically written to the address of the next highest register. By eliminating the need to write each address, faster register loading is achieved. Continuous write operations can start with any register location.


Figure 85. Continuous Serial Write Operation

## AD9923A

## LAYOUT OF INTERNAL REGISTERS

The AD9923A address space is divided into two register areas, as illustrated in Figure 86. In the first area, Address 0x00 to Address $0 \times 91$ contain the registers for the AFE , miscellaneous functions, VD/HD parameters, timing core, CLPOB masking, SG patterns, shutter functions, and memory configuration. The second area of the address space, beginning at Address 0x400, consists of the registers for the V-pattern groups, V-sequences, and fields. This is a configurable set of registers; the user can decide how many V-pattern groups, V-sequences, and fields are used in a particular design. Therefore, the addresses for these registers vary, depending on the number of V-patterns and V-sequences chosen.

Register 0x90 (VPAT_NUM) and Register 0x91 (VSEQ_NUM) specify the total number of $V$-pattern groups and $V$-sequences used. The starting address for the V-pattern groups is $0 \times 400$. The starting address for a $V$-sequence is based on the number of V-pattern groups used, with each V-pattern group occupying 40 register addresses. The starting address for a field register depends on both the number of V-pattern groups and the


Figure 86. Layout of AD9923A Registers


Figure 87. Example of Register Configuration

## UPDATING NEW REGISTER VALUES

The AD9923A internal registers are updated at different times, depending on the particular register. Table 45 summarizes the four types of register updates. The register listing (Table 46 through Table 58) also contain a column with update type to identify when each register is updated:

- SCK Updated-Some registers are updated when the $28^{\text {th }}$ data bit (D27) is written. These registers are used for functions, such as power-up and reset, that do not require gating with the next VD boundary.
- VD Updated-Many of the registers are updated at the next VD falling edge. By updating these values at the next VD edge, the current field is not corrupted, and the new register values are applied to the next field. The VD update can be further delayed, past the VD falling edge, by using the UPDATE register (Address 0x18). This delays the VD-updated register updates to any desired HD line in the field. Note that the field registers are not affected by the UPDATE register.
- SG Updated-A few shutter registers are updated at the HD falling edge at the end of an SG active line. These registers control the SUBCK signal; therefore, the SUBCK output is not updated until the SG line is complete.
- SCP Updated-All V-pattern and V-sequence registers are updated at the next SCP where they are used. For example, in Figure 88, this field has selected Region 1 to use VSequence 3 for the vertical outputs; therefore, a write to a V-Sequence 3 or V-pattern group register, which is referenced by V-Sequence 3, is updated at SCP 1. If there are multiple writes to the same register, only the last one before SCP1 is updated. Likewise, a register write to a V-Sequence 5 register is updated at SCP 2, and a register write to a V-Sequence 8 register is updated at SCP 3.

Table 45. Register Update Locations

Update   Type	Description
SCK	Register is immediately updated when the $28^{\text {th }}$ data   bit (D27) is written.
VD	Register is updated at the VD falling edge. VD   updated registers can be delayed further by using the   UPDATE register at Address 0x18. Field registers are   not affected by the UPDATE register.
SG	Register is updated at the HD falling edge at the end   of the SG active line.   Register is updated at the next SCP when the register   is used.



Figure 88. Register Update Locations (See Table 45 for Definitions)

## AD9923A

## COMPLETE REGISTER LISTING

When an address contains less than 28 data bits, all remaining bits must be written as 0 s.

Table 46. AFE Registers

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
00	[1:0]	3	SCK	STANDBY	Standby modes.   0 : normal operation.   1: Standby 1 mode.   2: Standby 2 mode.   3: Standby 3 mode.
	[2]	1		CLPENABLE	0: disable OB clamp.   1: enable OB clamp.
	[3]	0		CLPSPEED	0 : select normal OB clamp settling.   1: select fast $O B$ clamp settling.
	[4]	0		FASTUPDATE	0 : ignore VGA update.   1: very fast clamping when VGA is updated.
	[5]	0		PBLK_LVL	0 : blank data outputs to 0 during PBLK.   1: blank data outputs to programmed clamp level during PBLK.
	[6]	0		DCBYP	0 : enable input dc-restore circuit during PBLK.   1: disable input dc-restore circuit during PBLK.
	[15:11]	0		XSUBCNT_MUX	Selects which internal signal is used for the XSUBCNT signal. 0: assign XV6 to XSUBCNT.
					1: assign XV8 to XSUBCNT.
					2: assign XV9 to XSUBCNT.
					3: assign XV10 to XSUBCNT.
					4: assign VSG5 to XSUBCNT.
					5: assign VSG6 to XSUBCNT.
					6: assign VSG7 to XSUBCNT.
					7: assign VSG8 to XSUBCNT.
					8: assign VSG2 to XSUBCNT.
					9: assign VSG3 to XSUBCNT.
					10: assign VSG4 to XSUBCNT.
					11: assign VSG1 to XSUBCNT.
					12: assign XV13 to XSUBCNT.
					13: assign VSUB to XSUBCNT.
					14: assign MSHUT to XSUBCNT.
					15: assign STROBE to XSUBCNT.
					16: assign XV1 to XSUBCNT.
					17: assign XV2 to XSUBCNT.
					18: assign XV3 to XSUBCNT.
					19: assign XV4 to XSUBCNT.
					20: assign XV5 to XSUBCNT.
					21: assign XV7 to XSUBCNT.
					22: assign XV11 to XSUBCNT.
					23: assign XV12 to XSUBCNT.
					24: assign SHUT0 to XSUBCNT.
					25: assign SHUT1 to XSUBCNT.
					26: assign SHUT2 to XSUBCNT.
					27: assign SHUT3 to XSUBCNT.
					28: assign FG_TRIG to XSUBCNT.
					29: invalid setting.
					30: tie XSUBCNT high.
					31: tie XSUBCNT low.


Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
01	[0]   [1]   [2]   [3]	$0$   0   0   1	SCK	DOUTDISABLE DOUTLATCH   GRAYEN TEST	0 : data outputs are driven.   1: data outputs are three-stated.   0 : latch data outputs using DOUT PHASE register setting.   1: output latch is transparent.   0 : straight binary encoding of ADC digital output data.   1: enable gray encoding of ADC digital output data.   Set to 1 .
04	[1:0]	1	VD	CDSGAIN	CDS gain setting. $\begin{aligned} & 0:-3 \mathrm{~dB} . \\ & 1: 0 \mathrm{~dB} . \\ & 2:+3 \mathrm{~dB} . \\ & 3:+6 \mathrm{~dB} . \end{aligned}$
05	[9:0]	F	VD	VGAGAIN	VGA gain. 6 dB to 42 dB ( 0.035 dB per step).
06	[9:0]	1EC	VD	CLAMPLEVEL	Optical black clamp level. 0 LSB to 256 LSB (0.25 LSB per step).

## AD9923A

Table 47. Miscellaneous Registers

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
10	[0]	0	SCK	SW_RST	Software reset. Bit resets to 0 .   1: reset Register 0x00 to Register 0x91 to default values.
11	[0]	0	VD	OUTCONTROL	0 : make all outputs dc inactive. 1: enable outputs at next VD edge.
12	$\begin{aligned} & \hline[0] \\ & \\ & {[7: 1]} \\ & {[9: 8]} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	SCK	SYNCENABLE   TEST OUTPUTPBLK	0: configure Ball G7 as an output signal, determined by Register 0x12, Bits[9:8].   1: external synchronization enable (configure Ball G7 as SYNC input).   Test mode only. Must be set to 0 .   When SYNCENABLE $=0$, selects which signal is output on the SYNC pin.   0: CLPOB.   1: PBLK.   2: GPO (from Register 0x1A).   3: TESTOUT (from shutter registers).
13	[0]	0	SCK	SYNCPOL	SYNC active polarity.   0 : active low.   1: active high.
14	[0]	0	SCK	SYNCSUSPEND	Suspends clocks during SYNC active pulse. 0 : don't suspend.   1: suspend.
15	[0]	0	SCK	TGCORE_RSTB	Timing core reset bar. 0 : reset TG core.   1: resume operation.
16	[0]	0	SCK	OSC_RST	CLO oscillator reset.   0: oscillator in power-down state.   1: resume oscillator operation.
17	$\begin{aligned} & {[7: 0]} \\ & {[8]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	SCK	$\begin{aligned} & \hline \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	Test mode only. Must be set to 0 . Test mode only. Must be set to 0 .
18	[11:0]	0	VD	UPDATE	Serial update line. Sets the HD line within the field to update the VD updated registers.
19	[0]	0	SCK	PREVENTUP	Prevents the updating of the VD updated registers.   0 : normal update.   1: prevent update of VD updated registers.
1A	[0]	0	VD	GPO	General-purpose output (GPO) value when SYNCENABLE $=0$ and OUTPUTPBLK = 2.   0 : GPO is low at next VD edge.   1: GPO is high at next VD edge.

Table 48. VD/HD Registers

Address   (Hex)	Data   Bits	Default   Value	Update   Type	Name	Description
20	$[0]$	0	SCK	MASTER	VD/HD master or slave mode.   $0:$ slave mode.   $1:$ master mode.
21	$[0]$	0	SCK	VDHDPOL	VD/HD active polarity.   $0:$ low.   $1:$ high.
22	$[12: 0]$	0	VD	HDRISE   VDRISE	Rising edge location for HD.   Rising edge location for VD.

Table 49. Timing Core Registers

Address   (Hex)	Data   Bits	Default Value	Update Type	Name	Description
30	[0]	0	SCK	CLIDIVIDE	Divide CLI input frequency by 2.   0 : no divide.   1 : divide by 2 .
31	$\begin{aligned} & {[5: 0]} \\ & {[13: 8]} \\ & {[16]} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 20 \\ & 1 \end{aligned}$	SCK	H1POSLOC H1NEGLOC H1H2POL	H 1 rising edge location.   H1 falling edge location.   H1/H2 polarity control.   0 : inverse of convention in Figure 18.   1: no inversion.
32	$\begin{aligned} & \hline[5: 0] \\ & {[13: 8]} \\ & {[16]} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 20 \\ & 1 \end{aligned}$	SCK	H3POSLOC H3NEGLOC H3H4POL	H 3 rising edge location.   H3 falling edge location.   H3/H4 polarity control.   0 : inverse of convention in Figure 18.   1: no inversion.
33	$\begin{aligned} & {[5: 0]} \\ & {[13: 8]} \\ & {[16]} \end{aligned}$	$\begin{aligned} & 0 \\ & 20 \\ & 1 \end{aligned}$	SCK	HLPOSLOC HLNEGLOC HLPOL	HL rising edge location.   HL falling edge location.   HL polarity control.   0: inverse of convention in Figure 18.   1: no inversion.
34	$\begin{aligned} & {[5: 0]} \\ & {[13: 8]} \\ & {[16]} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 10 \\ & 1 \end{aligned}$	SCK	RGPOSLOC   RGNEGLOC   RGPOL	RG rising edge location.   RG falling edge location.   RG polarity control.   0 : inverse of convention in Figure 18.   1: no inversion.
35	[0]   [1]   [2]   [3]   [6:4]	$0$   0   0   0   0	VD	H1H2RETIME   H3H4RETIME   HLRETIME   HLHBLKEN   HBLKWIDTH	Retime HBLK for $\mathrm{H} 1 / \mathrm{H} 2$ to the internal H 1 clock. The preferred setting is 1 , which adds one cycle of delay to the HBLK toggle positions.   0 : no retime.   1: retime.   Retime HBLK for $\mathrm{H} 3 / \mathrm{H} 4$ to the internal H3 clock.   Retime HBLK for HL to the internal HL clock.   Enable HBLK for HL output.   0 : disable.   1: enable.   Controls H 1 to H 4 width during HBLK as a fraction of pixel rate.   0 : same frequency as pixel rate.   : $1 / 2$ pixel frequency, that is, it doubles the H 1 to H 4 pulse width.   2: $1 / 4$ pixel frequency.   3: 1/6 pixel frequency.   : $1 / 8$ pixel frequency.   5: 1/10 pixel frequency.   6: 1/12 pixel frequency.   7: $1 / 14$ pixel frequency.
36	[3:0]	1	SCK	H1DRV	H1 drive strength. 0: off. 1: 4.3 mA. 2: 8.6 mA. 3: 12.9 mA. 4: 17.2 mA. 5: 21.5 mA. 6: 25.8 mA. 7: 30.1 mA.

## AD9923A

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
	[7:4]	1		H2DRV	H2 drive strength.
	[11:8]	1		H3DRV	H3 drive strength.
	[15:12]	1		H4DRV	H4 drive strength.
	[19:16]	1		HLDRV	HL drive strength.
	[23:20]	1		RGDRV	RG drive strength.
37	[5:0]	24	SCK	SHPLOC	SHP sample location.
	[13:8]	0		SHDLOC	SHD sample location.
38	[5:0]   [7:6]   [8]	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	SCK	DOUTPHASE	DOUT (internal signal) phase control.
				Unused	Must be set to 0 .
				DCLKMODE	DCLK mode.
					0: DCLK tracks DOUT phase.
					1: DCLK phase is fixed.
	[10:9]	2		DOUTDELAY	Data output delay (too) with respect to DCLK rising edge.
					0 : no delay.
					1:~4 ns.
					2: $\sim 8 \mathrm{~ns}$.
					3: $\sim 12 \mathrm{~ns}$.
	[11]	0		DCLKINV	Invert DCLK output.
					0 : no inversion.
					1: inversion of DCLK.

Table 50. CLPOB and PBLK Masking Registers

Address   (Hex)	Data Bits	Default Value	Update Type	Name	Description
40	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[24: 13]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \\ & \hline \end{aligned}$	VD	CLPOBMASKSTART1 Unused CLPOBMASKEND1	CLPOB Masking Start Line 1. Must be set to 0 . CLPOB Masking End Line 1.
41	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[24: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \end{aligned}$	VD	CLPOBMASKSTART2   Unused   CLPOBMASKEND2	CLPOB Masking Start Line 2. Must be set to 0 .   CLPOB Masking End Line 2.
42	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[24: 13]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \\ & \hline \end{aligned}$	VD	CLPOBMASKSTART3   Unused   CLPOBMASKEND3	CLPOB Masking Start Line 3. Must be set to 0 . CLPOB Masking End Line 3.
43	$\begin{aligned} & {[11: 0]} \\ & {[12]} \\ & {[24: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \end{aligned}$	VD	PBLKMASKSTART1   Unused   PBLKMASKEND1	PBLK Masking Start Line 1. Must be set to 0 . PBLK Masking End Line 1.
44	$\begin{aligned} & {[11: 0]} \\ & {[12]} \\ & {[24: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \end{aligned}$	VD	PBLKMASKSTART12   Unused   PBLKMASKEND2	PBLK Masking Start Line 2. Must be set to 0 . PBLK Masking End Line 2.
45	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[24: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { FFF } \\ & 0 \\ & \text { FFF } \end{aligned}$	VD	PBLKMASKSTART3   Unused   PBLKMASKEND3	PBLK Masking Start Line 3. Must be set to 0 .   PBLK Masking End Line 3.

Table 51. SG Pattern Registers

Address   (Hex)	Data Bits	Default Value	Update Type	Name	Description
50	[0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGPOL_0 } \\ & \\ & \text { SGPOL_1 } \\ & \text { SGPOL_2 } \\ & \text { SGPOL_3 } \\ & \text { SGPOL_4 } \\ & \text { SGPOL_5 } \\ & \text { SGPOL_6 } \\ & \text { SGPOL_7 } \end{aligned}$	Start polarity for SGPattern 0. 0: low.   1: high.   Start polarity for SGPattern 1.   Start polarity for SGPattern 2.   Start polarity for SGPattern 3.   Start polarity for SGPattern 4.   Start polarity for SGPattern 5.   Start polarity for SGPattern 6.   Start polarity for SGPattern 7.
51	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_0 } \\ & \text { SGTOG2_0 } \end{aligned}$	Pattern 0. Toggle Position 1.   Pattern 0. Toggle Position 2.
52	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_1 } \\ & \text { SGTOG2_1 } \end{aligned}$	Pattern 1. Toggle Position 1.   Pattern 1. Toggle Position 2.
53	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	SGTOG1_2	Pattern 2. Toggle Position 1. Pattern 2. Toggle Position 2.
54	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_3 } \\ & \text { SGTOG2_3 } \\ & \hline \end{aligned}$	Pattern 3. Toggle Position 1.   Pattern 3. Toggle Position 2.
55	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_4 } \\ & \text { SGTOG2_4 } \end{aligned}$	Pattern 4. Toggle Position 1.   Pattern 4. Toggle Position 2.
56	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_5 } \\ & \text { SGTOG2_5 } \end{aligned}$	Pattern 5. Toggle Position 1.   Pattern 5. Toggle Position 2.
57	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_6 } \\ & \text { SGTOG2_6 } \end{aligned}$	Pattern 6. Toggle Position 1.   Pattern 6. Toggle Position 2.
58	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \hline \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	VD	$\begin{aligned} & \hline \text { SGTOG1_7 } \\ & \text { SGTOG2_7 } \end{aligned}$	Pattern 7. Toggle Position 1.   Pattern 7. Toggle Position 2.
59	[7:0]   [8]	0 0	$\begin{aligned} & \text { SCK } \\ & \text { SCK } \end{aligned}$	SGMASK_BYP   SGMASK_BYP_EN	SGMASK override. These values override the VSG mask value located in the field registers.   SGMASK override enable. Must be set to 1 to enable override.

## AD9923A

Table 52. Shutter Control Registers

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
60	$[2: 0]$	0	VD	VSUB_CTRL	Selects which internal signal is used for the VSUB output pin.   0: use SHUTO parameters (Register 0x06D to Register 0x071).   1: use SHUT1 parameters (Register 0x072 to Register 0x076).   2: use SHUT2 parameters (Register 0x077 to Register 0x07B).   3: use SHUT3 parameters (Register 0x07C to Register 0x080).   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.   See Register 0xEB, Bits[15,13:12] for VSUB0_MUX, VSUB1_MUX, and SHUT1_SHUT2_MUX.
	[5:3]	1		MSHUT_CTRL	Selects which internal signal is used for the MSHUT output pin.   0: use SHUTO parameters.   1: use SHUT1 parameters.   2: use SHUT2 parameters.   3: use SHUT3 parameters.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.   See Register 0xEB, Bits[15,13:12] for VSUB0_MUX, VSUB1_MUX, and SHUT1_SHUT2_MUX.
	[8:6]	2		STROBE_CTRL	Selects which internal signal is used for the STROBE output pin.   0: use SHUTO parameters.   1: use SHUT1 parameters.   2: use SHUT2 parameters.   3: use SHUT3 parameters.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.   See Register 0xEB, Bits[15,13:12] for VSUB0_MUX, VSUB1_MUX, and SHUT1_SHUT2_MUX.
	[11:9]	3		TESTO_CTRL	Selects which internal signal is used for the TESTO signal.   0: use SHUTO parameters.   1: use SHUT1 parameters.   2: use SHUT2 parameters.   3: use SHUT3 parameters.   4: use VSUBO_MUX output.   5: use VSUB1_MUX output.   6: invalid setting.   7: use SHUT1_SHUT2_MUX output.   See Register 0xEB, Bits[15,13:12] for VSUBO_MUX, VSUB1_MUX, and SHUT1_SHUT2_MUX.
61	[7:0]	0	VD	TRIGGER	Trigger for exposure/readout operation. Set bits high to trigger. [0]: SHUTO.   [1]: SHUT1.   [2]: SHUT2.   [3]: SHUT3.   [4]: VSUBO.   [5]: VSUB1.


Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
					[6]: EXPOSURE.   [7]: READOUT.   Note that if EXPOSURE and READOUT are triggered together, READOUT occurs immediately after the exposure is complete.
62	[2:0]	2	VD	READOUTNUM	Number of fields to suppress the SUBCK pulses during READOUT.
63	$\begin{aligned} & {[11: 0]} \\ & {[12]} \end{aligned}$	$0$ $0$	VD	EXPOSURENUM VDHDOFF	Number of fields to suppress the SUBCK and VSG pulses during exposure.   Disable VD and HD during exposure.   0: enable.   1: disable.
64	$\begin{aligned} & {[11: 0]} \\ & {[23: 12]} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	SG	SUBSUPPRESS SUBCKNUM	Number of SUBCK pulses to suppress after VSG line. Number of SUBCK pulses per field.
65	[1:0]	0	SG	SUBCKMASK	Additional masking of SUBCK output.   0: no mask.   1: begin mask on VD edge.   2: mask using internal SHUT3 signal.   3: same as 1 and 2 ( 1 has priority).
66	[0]	1	SG	SUBCKPOL	SUBCK pulse start polarity.
67	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	SG	SUBCK1TOG1 SUBCK1TOG2	First SUBCK Pulse Toggle Position 1. First SUBCK Pulse Toggle Position 2.
68	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & \text { 1FFF } \\ & \text { 1FFF } \end{aligned}$	SG	SUBCK2TOG1   SUBCK2TOG2	Second SUBCK Pulse Toggle Position 1. Second SUBCK Pulse Toggle Position 2.
69	$[0]$ $[1]$	$0$   0	VD	$\begin{aligned} & \text { VSUBO_MODE } \\ & \text { VSUBO_KEEPON } \end{aligned}$	VSUBO readout mode.   0 : Mode 0.   1: Mode 1.   VSUBO keep-on mode.   0 : turn VUBO off after READOUT or at next VD.   1: keep VSUBO active beyond READOUT, until reset to 0 .
6A	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[13]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	VD	VSUBO_ON   Unused VSUBOPOL	VSUBO on position.   Must be set to 0 . VSUBO start polarity.
6B	[0] [1]	$0$   0	VD	VSUB1_MODE   VSUB1_KEEPON	VSUB1 readout mode.   0 : Mode 0.   1: Mode 1.   VSUB1 keep on mode.   1: keep VSUB1 active beyond readout.
6C	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[13]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	VD	VSUB1_ON   Unused VSUB1POL	VSUB1 on position. Must be set to 0 . VSUB1 start polarity.
6D	[0]   [1]   [2]	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	VD	SHUTO_ON   SHUTOPOL   SHUTO_MAN	SHUTO manual control of signal.   0: off.   1:on.   SHUT0 active polarity. 1: on state produces high output.   SHUTO manual control enable.   0 : disable.   1: enable manual control.
6E	[11:0]	0	VD	SHUTO_ON_FD	SHUT0 field on position. Ignored during manual or nonshutter mode.
6F	$\begin{aligned} & {[11: 0]} \\ & {[12]} \\ & {[25: 13]} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	VD VD	SHUTO_ON_LN   Unused SHUTO_ON_PX	SHUTO line on position.   Must be set to 0 .   SHUTO pixel on position.
70	[11:0]	0	VD	SHUTO_OFF_FD	SHUTO field off position. Ignored during manual or nonshutter mode.

## AD9923A

\begin{tabular}{|c|c|c|c|c|c|}
\hline Address (Hex) \& Data Bits \& Default Value \& Update Type \& Name \& Description \\
\hline 71 \& \[
\begin{aligned}
\& {[11: 0]} \\
\& {[12]} \\
\& {[25: 13]} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
VD \\
VD
\end{tabular} \& SHUTO_OFF_LN Unused SHUTO_OFF_PX \& SHUTO line off position. Must be set to 0 . SHUTO pixel off position. \\
\hline 72 \& \begin{tabular}{l}
[0] \\
[1] \\
[2]
\end{tabular} \& \[
\begin{aligned}
\& \hline 0 \\
\& 1 \\
\& 0
\end{aligned}
\] \& VD \& \begin{tabular}{l}
SHUT1_ON \\
SHUT1POL \\
SHUT1_MAN
\end{tabular} \& \begin{tabular}{l}
SHUT1 manual control of signal. \\
0: off. \\
1: on. \\
SHUT1 active polarity. 1 = on state produces high output. \\
SHUT1 manual control enable. \\
0 : disable. \\
1: enable manual control.
\end{tabular} \\
\hline 73 \& [11:0] \& 0 \& VD \& SHUT1_ON_FD \& SHUT1 field on position. Ignored during manual or nonshutter mode. \\
\hline 74 \& \[
\begin{aligned}
\& \hline[11: 0] \\
\& {[12]} \\
\& {[25: 13]} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
VD \\
VD
\end{tabular} \& \begin{tabular}{l}
SHUT1_ON_LN Unused \\
SHUT1_ON_PX
\end{tabular} \& SHUT1 line on position. Must be set to 0 . SHUT1 pixel on position. \\
\hline 75 \& [11:0] \& 0 \& VD \& SHUT1_OFF_FD \& SHUT1 field off position. Ignored during manual or nonshutter mode. \\
\hline 76 \& \[
\begin{aligned}
\& \hline[11: 0] \\
\& {[12]} \\
\& {[25: 13]} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
VD \\
VD
\end{tabular} \& SHUT1_OFF_LN Unused SHUT1_OFF_PX \& SHUT1 line off position. Must be set to 0 . SHUT1 pixel off position. \\
\hline 77 \& \begin{tabular}{l}
[0] \\
[1] \\
[2]
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
1
\[
0
\]
\end{tabular} \& VD \& \begin{tabular}{l}
SHUT2_ON \\
SHUT2POL \\
SHUT2_MAN
\end{tabular} \& \begin{tabular}{l}
SHUT2 manual control of signal. \\
0: off. \\
1:on. \\
SHUT2 active polarity. 1: on state produces high output. \\
SHUT2 manual control enable. \\
0 : disable. \\
1: enable manual control.
\end{tabular} \\
\hline 78 \& [11:0] \& 0 \& VD \& SHUT2_ON_FD \& SHUT2 field on position. Ignored during manual or nonshutter mode. \\
\hline 79 \& \[
\begin{aligned}
\& \hline[11: 0] \\
\& {[12]} \\
\& {[25: 3]} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
VD \\
VD
\end{tabular} \& SHUT2_ON_LN Unused SHUT2_ON_PX \& SHUT2 line on position. Must be set to 0 . SHUT2 pixel on position. \\
\hline 7A \& [11:0] \& 0 \& VD \& SHUT2_OFF_FD \& SHUT2 field off position. Ignored during manual or nonshutter mode. \\
\hline 7 B \& \[
\begin{aligned}
\& {[11: 0]} \\
\& {[12]} \\
\& {[25: 13]}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
VD \\
VD
\end{tabular} \& \begin{tabular}{l}
SHUT2_OFF_LN \\
Unused SHUT2_OFF_PX
\end{tabular} \& SHUT2 line off position. Must be set to 0 . SHUT2 pixel off position. \\
\hline 7C \& [0]

$[1]$

$[2]$ \& \[
$$
\begin{aligned}
& \hline 0 \\
& 1 \\
& 0
\end{aligned}
$$

\] \& VD \& | SHUT3_ON |
| :--- |
| SHUT3POL |
| SHUT3_MAN | \& | SHUT3 manual control of signal. |
| :--- |
| 0 : off. |
| 1:on. |
| SHUT3 active polarity. 1: on state produces high output. |
| SHUT3 manual control enable. |
| 0 : disable. |
| 1: enable manual control. | <br>

\hline 7D \& [11:0] \& 0 \& VD \& SHUT3_ON_FD \& SHUT3 field on position. Ignored during manual or nonshutter mode. <br>

\hline 7E \& $$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[25: 13]} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& | VD |
| :--- |
| VD | \& SHUT3_ON_LN Unused SHUT3_ON_PX \& SHUT3 line on position. Must be set to 0 . SHUT3 pixel on position. <br>

\hline 7F \& [11:0] \& 0 \& VD \& SHUT3_OFF_FD \& SHUT3 field off position. Ignored during manual or nonshutter mode. <br>

\hline 80 \& $$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[25: 13]} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

\] \& | VD |
| :--- |
| VD | \& SHUT3_OFF_LN Unused SHUT3_OFF_PX \& SHUT3 line off position. Must be set to 0 . SHUT3 pixel off position. <br>

\hline
\end{tabular}

Table 53. Memory Configuration Registers

Address   (Hex)	Data   Bits	Default   Value	Update	Name	Description
90	$[4: 0]$	0	VD	VPAT_NUM	Total number of V-pattern groups.
91	$[4: 0]$	0	VD	VSEQ_NUM	Total number of V-sequences.

Table 54. Standby Polarity, Shutter Mux, and FG_TRIG Registers

Address   (Hex)	Data Bits	Default Value	Update	Name	Description
E2	[24:0]	0	SCK	STANDBY3POL	Programmable polarities for vertical and shutter outputs during Standby 3.   $[0]=$ XV1 polarity.   [1] $=$ XV2 polarity.   [2] $=$ XV3 polarity.   [3] = XV4 polarity.   [4] $=$ XV5 polarity.   [5] = XV6 polarity.   [6] $=$ XV7 polarity.   [7] $=$ XV8 polarity.   [8] $=$ XV9 polarity.   [9] = XV10 polarity.   $[10]=$ XV11 polarity.   [11] $=$ XV12 polarity.   [12] = XV13 polarity.   [13] = VSG1 polarity.   $[14]=$ VSG2 polarity.   [15] = VSG3 polarity.   [16] = VSG4 polarity.   [17] = VSG5 polarity.   [18] = VSG6 polarity.   [19] = VSG7 polarity.   [20] = VSG8 polarity.   [21] = XSUBCK polarity.   [22] = VSUB polarity.   Note: controls polarity for Standby 1, Standby 2, Standby 3, or if OUTCONTROL = low.   [23] = MSHUT polarity.   Note: controls polarity for Standby 1, Standby 2, Standby 3, or if OUTCONTROL = low.   [24] = STROBE polarity.   Note: controls polarity for Standby 1, Standby 2, Standby 3, or if OUTCONTROL = low.
E6	[0]	0	SCK	VCNT_RUN	0: counters behave the same as AD9923 in sweep region.   1: enables additional toggles after last repeat of sweep region.
EA	[9:0]	0	SCK	TEST3	Required start-up register; must be set to 0x60
EB	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[13]} \\ & {[14]} \\ & {[15]} \end{aligned}$	$\begin{array}{\|l\|} \hline 300 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SCK } \\ & \text { SCK } \end{aligned}$	TEST4   VSUBO_MUX   VSUB1_MUX   TEST5   SHUT1_SHUT2_MUX	Test register.   0 : use VSUBO, 1 : use SHUTO ^ VSUBO.   0 : use VSUB1, 1: use SHUT0 ^ VSUB1.   Test register. Set to 0.   0 : use SHUTO ^ SHUT1.   1: Use SHUTO ^ SHUT2.
F1	[3:0]	0	SCK	FG_TRIGEN	FG_TRIG operation enable and field count selection.   [2:0] Selects field count for pulse (based on mode field counter).   [3] = 1 to enable FG_TRIG signal output.

## AD9923A

Address   (Hex)	Data Bits	Default Value	Update	Name	Description
F3	[21:0]	3FE000	SCK	STANDBY12POL	Programmable polarities for V-outputs and XSUBCK during Standby 1, Standby 2, or if OUTCONTROL = low.   [0] $=$ XV1 polarity.   $[1]=$ XV2 polarity.   [2] $=$ XV3 polarity.   [3] $=$ XV4 polarity.   $[4]=$ XV5 polarity.   [5] = XV6 polarity.   [6] $=$ XV7 polarity.   [7] $=$ XV8 polarity.   $[8]=$ XV9 polarity.   [9] = XV10 polarity.   [10] $=$ XV11 polarity.   $[11]=$ XV12 polarity.   [12] $=$ XV13 polarity.   [13] = VSG1 polarity.   $[14]=$ VSG2 polarity.   [15] = VSG3 polarity.   [16] $=$ VSG4 polarity.   [17] = VSG5 polarity.   [18] = VSG6 polarity.   [19] = VSG7 polarity.   [20] = VSG8 polarity.   [21] = XSUBCK polarity.

Table 55. Mode Register: VD Updated

Address (Binary)	Data Bits	Default Value	Description
12b10_xx_xxxx_xxxx	$[37: 0]$	0	A11, A10 set to 10, remaining A9 to A0 bits used for D37:D28.
(Set A11, A10 $=10$ )	$[37: 35]$		Number of fields (maximum of seven).
	$[34: 30]$		Selected field for Field 7.
	$[29: 25]$		Selected field for Field 6.
	$[24: 20]$		Selected field for Field 5.
	$[19: 15]$		Selected field for Field 4.
	$[14: 10]$		Selected field for Field 3.
	$[9: 5]$		Selected field for Field 2.
	$[4: 0]$		Selected field for Field 1.

Unused XV-channels must have toggle positions programmed to maximum values. For example, if XV1 to XV8 are used, XV9 to XV12 must have all toggle positions set to maximum values. This prevents unpredictable behavior because the default values are unknown.

Table 56. V-Pattern Group 0 (VPAT0) Registers

Address   (Hex)	Data Bits	Default Value	Update Type	Name	Description
00	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV1TOG1   XV1TOG2	XV1 Toggle Position 1. XV1 Toggle Position 2.
01	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV1TOG3   XV1TOG4	XV1 Toggle Position 3. XV1 Toggle Position 4.
02	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV2TOG1 } \\ & \text { XV2TOG2 } \\ & \hline \end{aligned}$	XV2 Toggle Position 1. XV2 Toggle Position 2.
03	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV2TOG3 } \\ & \text { XV2TOG4 } \end{aligned}$	XV2 Toggle Position 3. XV2 Toggle Position 4.
04	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \text { XV3TOG1 } \\ & \text { XV3TOG2 } \end{aligned}$	XV3 Toggle Position 1. XV3 Toggle Position 2.
05	$\begin{aligned} & \hline[12: 0] \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV3TOG3 } \\ & \text { XV3TOG4 } \\ & \hline \end{aligned}$	XV3 Toggle Position 3. XV3 Toggle Position 4.
06	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV4TOG1 } \\ & \text { XV4TOG2 } \end{aligned}$	XV4 Toggle Position 1. XV4 Toggle Position 2.
07	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV4TOG3 } \\ & \text { XV4TOG4 } \\ & \hline \end{aligned}$	XV4 Toggle Position 3. XV4 Toggle Position 4.
08	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV5TOG1 } \\ & \text { XV5TOG2 } \end{aligned}$	XV5 Toggle Position 1. XV5 Toggle Position 2.
09	$\begin{aligned} & \hline[12: 0] \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV5TOG3 } \\ & \text { XV5TOG4 } \end{aligned}$	XV5 Toggle Position 3. XV5 Toggle Position 4.
0A	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV6TOG1   XV6TOG2	XV6 Toggle Position 1. XV6 Toggle Position 2.
OB	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV6TOG3   XV6TOG4	XV6 Toggle Position 3. XV6 Toggle Position 4.
OC	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV7TOG1 } \\ & \text { XV7TOG2 } \end{aligned}$	XV7 Toggle Position 1. XV7 Toggle Position 2.
OD	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \text { XV7TOG3 } \\ & \text { XV7TOG4 } \end{aligned}$	XV7 Toggle Position 3. XV7 Toggle Position 4.
OE	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV8TOG1   XV8TOG2	XV8 Toggle Position 1. XV8 Toggle Position 2.
OF	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV8TOG3 } \\ & \text { XV8TOG4 } \end{aligned}$	XV8 Toggle Position 3. XV8 Toggle Position 4.
10	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV9TOG1 } \\ & \text { XV9TOG2 } \end{aligned}$	XV9 Toggle Position 1. XV9 Toggle Position 2.
11	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \text { XV9TOG3 } \\ & \text { XV9TOG4 } \\ & \hline \end{aligned}$	XV9 Toggle Position 3. XV9 Toggle Position 4.
12	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV10TOG1   XV10TOG2	XV10 Toggle Position 1. XV10 Toggle Position 2.
13	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV10TOG3   XV10TOG4	XV10 Toggle Position 3. XV10 Toggle Position 4.
14	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	XV11TOG1   XV11TOG2	XV11 Toggle Position 1. XV11 Toggle Position 2.
15	$\begin{aligned} & \hline[12: 0] \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV11TOG3   XV11TOG4	XV11 Toggle Position 3. XV11 Toggle Position 4.
16	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV12TOG1   XV12TOG2	XV12 Toggle Position 1. XV12 Toggle Position 2.

## AD9923A

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
17	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV12TOG3   XV12TOG4	XV12 Toggle Position 3. XV12 Toggle Position 4.
18	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV1TOG5   XV1TOG6	XV1 Toggle Position 5. XV1 Toggle Position 6.
19	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV2TOG5 } \\ & \text { XV2TOG6 } \end{aligned}$	XV2 Toggle Position 5. XV2 Toggle Position 6.
1A	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV3TOG5 } \\ & \text { XV3TOG6 } \end{aligned}$	XV3 Toggle Position 5. XV3 Toggle Position 6.
1B	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	$\begin{aligned} & \text { SCP } \\ & \text { SCP } \end{aligned}$	XV4TOG5   XV4TOG6	XV4 Toggle Position 5. XV4 Toggle Position 6.
1 C	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV5TOG5   XV5TOG6	XV5 Toggle Position 5. XV5 Toggle Position 6.
1D	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV6TOG5   XV6TOG6	XV6 Toggle Position 5. XV6 Toggle Position 6.
1E	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \text { XV7TOG5 } \\ & \text { XV7TOG6 } \end{aligned}$	XV7 Toggle Position 5. XV7 Toggle Position 6.
1F	$\begin{aligned} & \hline[12: 0] \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \hline \text { XV8TOG5 } \\ & \text { XV8TOG6 } \end{aligned}$	XV8 Toggle Position 5. XV8 Toggle Position 6.
20	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV9TOG5   XV9TOG6	XV9 Toggle Position 5. XV9 Toggle Position 6.
21	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV10TOG5   XV10TOG6	XV10 Toggle Position 5. XV10 Toggle Position 6.
22	$\begin{aligned} & \hline[12: 0] \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV11TOG5   XV11TOG6	XV11 Toggle Position 5. XV11 Toggle Position 6.
23	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	XV12TOG5   XV12TOG6	XV12 Toggle Position 5. XV12 Toggle Position 6.
24	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV13TOG1   XV13TOG2	XV13 Toggle Position 1. XV13 Toggle Position 2.
25	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV13TOG3   XV13TOG4	XV13 Toggle Position 3. XV13 Toggle Position 4.
26	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	XV13TOG5   XV13TOG6	XV13 Toggle Position 5. XV13 Toggle Position 6.
27	[25:0]	Undefined	SCP	Unused	Must be set to 0 .

Table 57. V-Sequence Registers

Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
00	[0]	Undefined	SCP	CLPOBPOL	CLPOB start polarity.
	[1]	Undefined		PBLKPOL	PBLK start polarity.
	[2]	Undefined		HOLD	HOLD function.
	[4:3]	Undefined		VMASK	Enable masking of V-outputs.
					0 : no mask.
					1: enable Freeze 1/Resume1.
					2: enable Freeze2/Resume2.
					3: enable both Freeze1/Resume1 and Freeze2/Resume2.
	[7:5]	Undefined		HBLKALT	Enable HBLK alternation.
	[12:8]	Undefined		Unused	Must be set to 0 .
	[25:13]	Undefined		HDLEN	HD line length (number of pixels in the line).


Address (Hex)	Data Bits	Default Value	Update Type	Name	Description
01	[0]	Undefined	SCP	XV1POL	XV1 start polarity.
	[1]	Undefined		XV2POL	XV2 start polarity.
	[2]	Undefined		XV3POL	XV3 start polarity.
	[3]	Undefined		XV4POL	XV4 start polarity.
	[4]	Undefined		XV5POL	XV5 start polarity.
	[5]	Undefined		XV6POL	XV6 start polarity.
	[6]	Undefined		XV7POL	XV7 start polarity.
	[7]	Undefined		XV8POL	XV8 start polarity.
	[8]	Undefined		XV9POL	XV9 start polarity.
	[9]	Undefined		XV10POL	XV10 start polarity.
	[10]	Undefined		XV11POL	XV11 start polarity.
	[11]	Undefined		XV12POL	XV12 start polarity.
	[12]	Undefined		XV13POL	XV13 start polarity.
	[13]	Undefined		XV1POL2	XV1 second polarity.
	[14]	Undefined		XV2POL2	XV2 second polarity.
	[15]	Undefined		XV3POL2	XV3 second polarity.
	[16]	Undefined		XV4POL2	XV4 second polarity.
	[17]	Undefined		XV5POL2	XV5 second polarity.
	[18]	Undefined		XV6POL2	XV6 second polarity.
	[19]	Undefined		XV7POL2	XV7 second polarity.
	[20]	Undefined		XV8POL2	XV8 second polarity.
	[21]	Undefined		XV9POL2	XV9 second polarity.
	[22]	Undefined		XV10POL2	XV10 second polarity.
	[23]	Undefined		XV11POL2	XV11 second polarity.
	[24]	Undefined		XV12POL2	XV12 second polarity.
	[25]	Undefined		XV13POL13	XV13 second polarity.
02	$\begin{aligned} & {[12: 0]} \\ & {[13]} \end{aligned}$	Undefined Undefined	SCP	GROUPSEL TWO_GROUP	1: use all Group A and Group B toggle positions for single Vpattern.
	[18:14]	Undefined		VPATSELB	Selected V-pattern Group B or special V-pattern second position.
	[23:19]	Undefined		VPATSELA	Selected V-pattern Group A.
	[25:24]	Undefined		VPATA_MODE	Number of alternation repeats.
					0 : disable alternation, use VREPA_1 for all lines.   1: 2-line alternation.   2: 3-line alternation.   3: 4-line alternation.
03		Undefined	SCP	VSTARTB	Start position of selected V-pattern Group B, or start position of special V-pattern.
	[25:13]	Undefined		VLENB	Length of selected V-pattern Group B.
04	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	VSTARTA VLENA	Start position of selected V-pattern Group A. Length of selected V-pattern Group A.
05	$\begin{aligned} & {[11: 0]} \\ & {[12]} \\ & {[24: 13]} \\ & \hline \end{aligned}$	Undefined Undefined Undefined	SCP	VREPB_ODD   Unused VREPB_EVEN	Number of repetitions for V-pattern Group B for odd lines. Must be set to 0 .   Number of repetitions for V-pattern Group B for even lines.
06	$\begin{aligned} & {[11: 0]} \\ & {[12]} \\ & {[24: 13]} \end{aligned}$	Undefined Undefined Undefined	SCP	VREPA_1   Unused   VREPA_2	Number of repetitions for V-pattern Group A for first lines. Must be set to 0 .   Number of repetitions for V-pattern Group A for second lines.

## AD9923A

Address   (Hex)	Data Bits	Default Value	Update Type	Name	Description
07	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined   Undefined	SCP	VREPA_3   VEPA_4	Number of repetitions for V-pattern Group A for third lines, or first HBLK toggle position for odd lines.   Number of repetitions for V-pattern Group A for fourth lines, or second HBLK toggle position for odd lines.
08	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined   Undefined	SCP	FREEZE1   RESUME1	Holds the XV1 to XV13 outputs at their current levels, or third HBLK toggle position for odd lines.   Resumes the operation of XV1 to XV13 outputs to finish the pattern, or fourth HBLK toggle position for odd lines.
09	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined   Undefined	SCP	FREEZE2   RESUME2	Holds the XV1 to XV13 outputs at their current levels, or fifth HBLK toggle position for odd lines.   Resumes the operation of XV1 to XV13 outputs to finish the pattern, or sixth HBLK toggle position for odd lines.
OA	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	HBLKTOGE1   HBLKTOGE2	First HBLK toggle position for even lines. Second HBLK toggle position for even lines.
OB	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	HBLKTOGE3 HBLKTOGE4	Third HBLK toggle position for even lines. Fourth HBLK toggle position for even lines.
OC	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined   Undefined	SCP	HBLKSTART   HBLKEND	Start location for HBLK in Alternation Mode 4 to Alternation Mode 7, or fifth HBLK toggle position for even lines. End location for HBLK in Alternation Mode 4 to Alternation Mode 7, or sixth HBLK toggle position for even lines.
OD	$\begin{aligned} & {[12: 0]} \\ & {[20: 13]} \\ & {[21]} \\ & {[22]} \\ & {[23]} \\ & \hline \end{aligned}$	Undefined Undefined   Undefined Undefined Undefined	SCP	HBLKLEN   HBLKREP   HBLKMASK_H1   HBLKMASK_H3   HBLKMASK_HL	HBLK length in HBLK Alternation Mode 4 to Alternation Mode 7.   Number of HBLK repetitions in HBLK Alternation Mode 4 to Alternation Mode 7.   Masking polarity for H 1 during HBLK.   Masking polarity for H3 during HBLK.   Masking polarity for HL during HBLK.
OE	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \end{aligned}$	Undefined Undefined	SCP	$\begin{aligned} & \text { CLPOBTOG1 } \\ & \text { CLPOBTOG2 } \end{aligned}$	CLPOB Toggle Position 1. CLPOB Toggle Position 2.
OF	$\begin{aligned} & {[12: 0]} \\ & {[25: 13]} \\ & \hline \end{aligned}$	Undefined Undefined	SCP	PBLKTOG1   PBLKTOG2	PBLK Toggle Position 1. PBLK Toggle Position 2.
10	[25:0]	Undefined	SCP	UNUSED	Must be set to 0 .
11	$\begin{aligned} & \hline[11: 0] \\ & {[12]} \\ & {[13]} \\ & \hline \end{aligned}$	Undefined Undefined Undefined	SCP	$\begin{aligned} & \text { SPXV_ACT } \\ & \text { UNUSED } \\ & \text { SPXV_EN } \\ & \hline \end{aligned}$	Special XV-pattern active line.   Must be set to 0 .   Special XV-pattern enable (active high).
12	[25:0]	Undefined	SCP	UNUSED	Must be set to 0 .
13	[25:0]	Undefined	SCP	UNUSED	Must be set to 0 .

Table 58. Field Registers

\begin{tabular}{|c|c|c|c|c|c|}
\hline Address (Hex) \& Data Bits \& Default Value \& Update Type \& Name \& Description <br>
\hline 00 \& $$
\begin{aligned}
& \hline[4: 0] \\
& {[9: 5]} \\
& {[14: 10]} \\
& {[19: 15]} \\
& {[24: 20]}
\end{aligned}
$$ \& Undefined Undefined Undefined Undefined Undefined \& VD \& $$
\begin{aligned}
& \hline \text { SEQ0 } \\
& \text { SEQ1 } \\
& \text { SEQ2 } \\
& \text { SEQ3 } \\
& \text { SEQ4 }
\end{aligned}
$$ \& Selected V-sequence for first region in the field. Selected V-sequence for second region in the field. Selected V-sequence for third region in the field . Selected V-sequence for fourth region in the field. Selected V-sequence for fifth region in the field. <br>
\hline 01 \& $$
\begin{aligned}
& \hline[4: 0] \\
& {[9: 5]} \\
& {[14: 10]} \\
& {[19: 15]}
\end{aligned}
$$ \& Undefined Undefined Undefined Undefined \& VD \& $$
\begin{aligned}
& \text { SEQ5 } \\
& \text { SEQ6 } \\
& \text { SEQ7 } \\
& \text { SEQ8 }
\end{aligned}
$$ \& Selected $V$-sequence for sixth region in the field. Selected V-sequence for seventh region in the field. Selected $V$-sequence for eighth region in the field. Selected V-sequence for ninth region in the field. <br>
\hline 02 \& $[1: 0]$

$[3: 2]$
$[5: 4]$
$[7: 6]$
$[9: 8]$
$[11: 10]$
$[13: 12]$
$[15: 14]$

$[17: 16]$ \& | Undefined |
| :--- |
| Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined | \& VD \& | MULT_SWEEPO |
| :--- |
| MULT_SWEEP1 |
| MULT_SWEEP2 |
| MULT_SWEEP3 |
| MULT_SWEEP4 |
| MULT_SWEEP5 |
| MULT_SWEEP6 |
| MULT_SWEEP7 |
| MULT_SWEEP8 | \& | Enables multiplier mode and/or sweep mode for Region 0. |
| :--- |
| 0 : multiplier off/sweep off. |
| 1: multiplier off/sweep on. |
| 2: multiplier on/sweep off. |
| 3: multiplier on/sweep on. |
| Enables multiplier mode and/or sweep mode for Region 1. |
| Enables multiplier mode and/or sweep mode for Region 2. |
| Enables multiplier mode and/or sweep mode for Region 3. |
| Enables multiplier mode and/or sweep mode for Region 4. |
| Enables multiplier mode and/or sweep mode for Region 5. |
| Enables multiplier mode and/or sweep mode for Region 6. |
| Enables multiplier mode and/or sweep mode for Region 7. |
| Enables multiplier mode and/or sweep mode for Region 8. | <br>

\hline 03 \& $$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[24: 13]}
\end{aligned}
$$ \& Undefined Undefined Undefined \& VD \& SCP0

Unused
SCP1 \& V-Sequence Change Position 0. Must be set to 0 . V-Sequence Change Position 1. <br>

\hline 04 \& \[
$$
\begin{aligned}
& {[11: 0]} \\
& {[12]} \\
& {[24: 13]} \\
& \hline
\end{aligned}
$$

\] \& Undefined Undefined Undefined \& VD \& | SCP2 |
| :--- |
| Unused SCP3 | \& | V-Sequence Change Position 2. |
| :--- |
| Must be set to 0 . |
| V-Sequence Change Position 3. | <br>

\hline 05 \& $$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[24: 13]} \\
& \hline
\end{aligned}
$$ \& Undefined Undefined Undefined \& VD \&  \& V-Sequence Change Position 4. Must be set to 0 . V-Sequence Change Position 5. <br>

\hline 06 \& $$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[24: 13]}
\end{aligned}
$$ \& Undefined Undefined Undefined \& VD \& SCP6

Unused
SCP7 \& V-Sequence Change Position 6. Must be set to 0 . V-Sequence Change Position 7. <br>

\hline 07 \& \[
$$
\begin{aligned}
& \hline[11: 0] \\
& {[12]} \\
& {[24: 13]} \\
& \hline
\end{aligned}
$$

\] \& Undefined Undefined Undefined \& VD \& | SCP8 |
| :--- |
| Unused VDLEN | \& | V-Sequence Change Position 8. |
| :--- |
| Must be set to 0 . |
| VD field length (number of lines in the field). | <br>

\hline 08 \& $$
\begin{aligned}
& {[12: 0]} \\
& {[25: 13]}
\end{aligned}
$$ \& Undefined Undefined \& VD \& \[

$$
\begin{aligned}
& \hline \text { HDLAST } \\
& \text { VSTARTSECOND }
\end{aligned}
$$
\] \& HD last line length. Line length of last line in the field. Start position for second V-pattern on SG active line. <br>

\hline 09 \& $$
\begin{aligned}
& {[4: 0]} \\
& {[20: 5]}
\end{aligned}
$$ \& Undefined Undefined \& VD \& VPATSECOND SGMASK \& Selected second V-pattern group for SG active line. Masking of VSG outputs during SG active line. <br>

\hline OA \& [23:0] \& Undefined \& VD \& SGPATSEL \& Selection of VSG patterns for each VSG output. <br>
\hline OB \& $[11: 0]$
$[12]$

$[24: 13]$ \& Undefined Undefined Undefined \& VD \& | SGACTLINE1 |
| :--- |
| Unused SGACTLINE2 | \& SG Active Line 1. Must be set to 0 . SG Active Line 2. <br>

\hline
\end{tabular}

## AD9923A

## OUTLINE DIMENSIONS


*COMPLIANT TO JEDEC STANDARDS MO-225 WITH THE EXCEPTION TO PACKAGE HEIGHT

Figure 89. 105-Lead Chip Scale Package Ball Grid Array [CSP_BGA] (BC-105)
Dimensions shown in millimeters

## ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature Range	Package Description	Package Option
AD9923ABBCZ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	105-Lead Chip Scale Package Ball Grid Array [CSP_BGA]	$\mathrm{BC}-105$
AD9923ABBCZRL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	105-Lead Chip Scale Package Ball Grid Array [CSP_BGA]	BC-105

${ }^{1} Z=$ RoHS Compliant Part.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Front End - AFE category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
WM8255SEFL ADE9078ACPZ-RL ADA4355ABCZ MAX86176ENX+T MAX86176EVKIT\# TC500ACPE MCP3914A1-E/MV ISL51002CQZ-165 AFE5803ZCF TC500CPE AD73311ARSZ-REEL ADAS1000-3BCPZ AD73311LARUZ AD5590BBCZ ADPD1080WBCPZR7 AD73311ARSZ AD73311ARZ AD73311LARSZ AD73311LARSZ-REEL7 AD73360ARZ AD73360ASUZ AD73360LARZ AD8232ACPZ-R7 AD8456ASTZ AD9082BBPZ-2D2AC AD9081BBPZ-4D4AC AD9670BBCZ AD9675KBCZ AD73360LARZ-REEL AD9826KRSZ AD9826KRSZRL AD9860BSTZ AD9861BCPZ-50 AD9861BCPZ-80 AD9862BSTZ AD9865BCPZ AD9867BCPZ AD9895KBCZ AD9923ABBCZ AD9942BBCZ AD9943KCPZ AD9945KCPZ AD9945KCPZRL7 AD9949KCPZ $\underline{\text { AD9963BCPZ AD9972BBCZ AD9974BBCZ AD9977BBCZ AD9978BCPZ AD9979BCPZ }}$


[^0]:    ${ }^{1} \mathrm{AI}=$ analog input, $\mathrm{AO}=$ analog output, $\mathrm{DI}=$ digital input, $\mathrm{DO}=$ digital output, $\mathrm{DIO}=$ digital input/output, $\mathrm{P}=$ power, $\mathrm{VO} 2=$ Vertical Driver Output 2 level, $\mathrm{VO} 3=$ Vertical Driver Output 3 level.

[^1]:    ${ }^{1}$ See Table 12 and Table 13 for CLPOB, PBLK, and HBLK registers.

[^2]:    ${ }^{1}$ See field registers in Table 17.

[^3]:    ${ }^{1}$ To exit Standby 3, write 00 to STANDBY (Bits[1:0], Address 0x00), then reset the timing core after $500 \mu \mathrm{~s}$ to guarantee proper settling of the oscillator.
    ${ }^{2}$ Standby 3 mode takes priority over OUTCONTROL for determining the output polarities.
    ${ }^{3}$ These polarities assume OUTCONTROL = high, because OUTCONTROL = low takes priority over Standby 1 and Standby 2.
    ${ }^{4}$ Standby 1 and Standby 2 set H and RG drive strength to their minimum values ( 4.3 mA ).
    ${ }^{5}$ VD and HD default to High-Z status when in slave mode regardless of Standby mode or OUTCONTROL status.

