Low Noise, Low Input Bias Current, Rail-to-Rail Output, JFET Dual Operational Amplifier

Data Sheet

FEATURES

Low $\mathrm{T}_{\mathrm{C}} \mathrm{V}_{\text {os }} \pm \mathbf{5} \boldsymbol{\mu \mathrm { V } / { } ^ { \circ } \mathrm { C } \text { typical }}$
Low input bias current: $\mathbf{2 0} \mathrm{pA}$ typical at $\mathrm{V}_{\mathrm{sy}}= \pm \mathbf{1 5} \mathrm{V}$
Low noise
$7.7 \mathbf{n V} / \sqrt{ } \mathrm{Hz}$ typical at $\mathbf{f}=\mathbf{1} \mathbf{~ k H z}$
$1.2 \boldsymbol{\mu V}$ rms at 20 Hz to $\mathbf{2 0 ~ k H z}$

Low distortion: 0.00006\%
No phase reversal
Rail-to-rail output
Unity-gain stable

APPLICATIONS

Instrumentation
Medical instruments
Multipole filters
Precision current measurement
Photodiode amplifiers
Sensors
Audio

GENERAL DESCRIPTION

The ADA4001-2 is a dual channel JFET amplifier that features low input voltage noise and current noise, input bias current, and rail-to-rail output.

The combination of low noise and low input bias current makes this amplifier especially suitable for high impedance sensor amplification. With low noise and fast settling times, the ADA4001-2 provides good accuracy for medical instruments, electronic measurement, and automated test equipment. Unlike many competitive amplifiers, the ADA4001-2 maintains fast settling performance even with substantial capacitive loads, and, unlike many older JFET amplifiers, the ADA4001-2 does not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range.

PIN CONFIGURATION

Figure 1. 8-Lead SOIC_N (R Suffix)

With fast slew rate and great stability under capacitive loads, the ADA4001-2 is a good fit for filter applications. With low input bias currents and noise, it offers a wide dynamic range for photodiode amplifier circuits. Low noise and distortion, along with high output current and excellent speed, make the ADA4001-2 a great choice for audio applications.

The ADA4001-2 is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ extended industrial temperature range.
The ADA4001-2 is available in an 8-lead narrow SOIC package.

TABLE OF CONTENTS

Features 1
Applications.
Pin Configuration 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics. 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
REVISION HISTORY
5/13-Rev. B to Rev C
Changes to Photodiode Circuits Section 10
5/12—Rev. A to Rev B
Changes to General Description Section 1
Changed Input Impedance to Input Capacitance Throughout..Added Input Resistance Parameter, Table 1 3
Change to Figure 5 Caption 5
2/12—Rev. 0 to Rev. A
Changes to Figure 27. 9
2/12—Revision 0: Initial Version
Typical Performance Characteristics 5
Applications Information 10
Total Noise Including Source Resistors 10
I-V Conversion Applications 10
Input Bias Current 11
Noise Considerations 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{SY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}_{\mathrm{sY}}$
Output Short-Circuit Duration to GND	Observe derating curves
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Electrostatic Discharge	3000 V
\quad (Human Body Model)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 3.

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Unit
8-Lead SOIC_N (R-8)	130	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{JA}}$ is specified for worst-case conditions, that is, θ_{JA} is specified for a device soldered in a circuit board for surface-mount packages.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 2. Input Offset Voltage Distribution

Figure 3. TcVos Distribution

Figure 4. Input Offset Voltage vs. Common-Mode Voltage

Figure 5. Input Bias Current vs. Common-Mode Voltage

Figure 6. Input Bias Current vs. Vсм and Temperature

Figure 7. Dropout Voltage vs. Source Current

Figure 8. Dropout Voltage vs. Sink Current

Figure 9. Open-Loop Gain and Phase vs. Frequency

Figure 10. Closed-Loop Gain vs. Frequency

Figure 11. Closed-Loop Output Impedance vs. Frequency

Figure 12. PSRR vs. Frequency

Figure 13. CMRR vs. Frequency

Figure 14. Settling Time Positive Step

Figure 15. Large Signal Transient Response

Figure 16. Small Signal Transient Response

Figure 17. Settling Time Negative Step

Figure 18. Voltage Noise Density

Figure 19. Overshoot vs. Load Capacitance

Figure 20. Channel Separation

Figure 21. THD + N vs. Amplitude

Figure 22. THD + N vs. Frequency

Figure 23. No Phase Reversal

Figure 24. Positive Slew Rate

Figure 25. Negative Slew Rate

Figure 26. Peak-to-Peak Voltage Noise

Figure 27. Supply Current vs. Supply Voltage and Temperature

APPLICATIONS INFORMATION

TOTAL NOISE INCLUDING SOURCE RESISTORS

The low input current noise and input bias current of the ADA4001-2 makes it the ideal amplifier for circuits with substantial input source resistance. Input offset voltage increases by less than 15 nV per 500Ω of source resistance at room temperature. The total noise density of the circuit is

$$
e_{n \text { TOTAL }}=\sqrt{e_{n}^{2}+\left(i_{n} R_{S}\right)^{2}+4 k T R_{S}}
$$

where:
e_{n} is the input voltage noise density of the part.
i_{n} is the input current noise density of the part.
R_{S} is the source resistance at the noninverting terminal. k is Boltzmann's constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$).
T is the ambient temperature in Kelvin $\left(\mathrm{T}=273+{ }^{\circ} \mathrm{C}\right)$.
For $\mathrm{R}_{\mathrm{S}}<4 \mathrm{k} \Omega, \mathrm{e}_{\mathrm{n}}$ dominates and $\mathrm{e}_{\mathrm{nTOTAL}} \approx \mathrm{e}_{\mathrm{n}}$. The current noise of the ADA4001-2 is so low that its total density does not become a significant term unless R_{s} is greater than $100 \mathrm{M} \Omega$, an impractical value for most applications.
The total equivalent rms noise over a specific bandwidth is expressed as

$$
e_{n \text { TOTAL }}=e_{n \text { TOTAL }} \sqrt{B W}
$$

where $B W$ is the bandwidth in hertz.
Note that the previous analysis is valid for frequencies larger than 150 Hz and assumes flat noise above 10 kHz . For lower frequencies, flicker noise (1/f) must be considered.

I-V CONVERSION APPLICATIONS

Photodiode Circuits

Common applications for I-V conversion include photodiode circuits where the amplifier is used to convert a current emitted by a diode placed at the negative input terminal into an output voltage.
The ADA4001-2 low input bias current, wide bandwidth, and low noise makes it an excellent choice for various photodiode applications, including fax machines, fiber optic controls, motion sensors, and bar code readers.

The circuit shown in Figure 28 uses a silicon diode with zero bias voltage. This is known as a photovoltaic mode; this configuration limits the overall noise and is suitable for instrumentation applications.

A larger signal bandwidth can be attained at the expense of additional output noise. The total input capacitance (Ct) consists of the sum of the diode capacitance and the amplifier's input capacitance (8 pF), which includes external parasitic capacitance. Ct creates a pole in the frequency response that can lead to an unstable system. To ensure stability and optimize the bandwidth of the signal, a capacitor is placed in the feedback loop of the circuit shown in Figure 28. It creates a zero and yields a bandwidth whose corner frequency is $1 /(2 \pi(\mathrm{R} 2 \mathrm{Cf}))$.
The value of R 2 can be determined by the ratio

$$
V / I_{D}
$$

where:
V is the desired output voltage of the op amp.
I_{D} is the diode current.
For example, if I_{D} is $100 \mu \mathrm{~A}$ and a 10 V output voltage is desired, R 2 should be $100 \mathrm{k} \Omega$. Rd (see Figure 28) is a junction resistance that drops typically by a factor of 2 for every $10^{\circ} \mathrm{C}$ increase in temperature.
A typical value for Rd is $1000 \mathrm{M} \Omega$. Because $\mathrm{Rd} \gg \mathrm{R} 2$, the circuit behavior is not impacted by the effect of the junction resistance. The maximum signal bandwidth is

$$
f_{M A X}=\sqrt{\frac{f t}{2 \pi R 2 C t}}
$$

where $f t$ is the unity gain frequency of the amplifier.
Cf can be calculated by

$$
C f=\sqrt{\frac{C t}{2 \pi R 2 f t}}
$$

where $f t$ is the unity gain frequency of the op amp, and it achieves a phase margin, φ_{M}, of approximately 45°.
A higher phase margin can be obtained by increasing the value of Cf. Setting Cf to twice the previous value yields approximately $\varphi_{\mathrm{M}}=65^{\circ}$ and a maximal flat frequency response, but it reduces the maximum signal bandwidth by 50%.

INPUT BIAS CURRENT

Because the ADA4001-2 has a JFET input stage, the input bias current, due to the reverse-biased junction, has a leakage current that approximately doubles every $10^{\circ} \mathrm{C}$. The power dissipation of the part, combined with the thermal resistance of the package, results in the junction temperature increasing $30^{\circ} \mathrm{C}$ above ambient. This parameter is tested with high speed ATE equipment, which does not result in the die temperature reaching equilibrium. This is correlated with bench measurements to match the guaranteed maximum at room temperature in Table 1.
The input current can be reduced by keeping the temperature as low as possible and using a light load on the output.

NOISE CONSIDERATIONS

The JFET input stage offers very low input voltage noise and input current noise. The thermal noise of a $1 \mathrm{k} \Omega$ resistor at room temperature is $4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, thus low values of resistance should be used for dc-coupled inverting and noninverting amplifier configurations. In the case of transimpedance amplifiers (TIAs), current noise is more important.
The ADA4001-2 is an excellent choice for both of these applications. Analog Devices, Inc., offers a wide variety of low voltage noise and low current noise op amps in a variety of processes optimized for different supply voltage ranges. Refer to the AN-940 Application Note for a complete discussion of noise, calculations, and selection tables for more than three dozen low noise, op amp families.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 29. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADA4001-2ARZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
ADA4001-2ARZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8
ADA4001-2ARZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB LT1013DDR TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TS9222IYDT TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZR7 TLC272CD AD8539ARMZ LTC6084HDD\#PBF LTC1050CN8\#PBF LT1112ACN8\#PBF LT1996AIDD\#PBF LT1112CN8\#PBF

[^0]: ${ }^{1}$ Guaranteed by design and characterization.

