$50 \mathrm{~V}, 130 \mathrm{kHz}, 32.5 \mu \mathrm{~A}$, Robust, Over-The-Top Precision Op Amp

Data Sheet

FEATURES

Ultrawide common-mode input range: - $\mathrm{V}_{\mathrm{s}}-0.1 \mathrm{~V}$ to $-\mathrm{V}_{\mathrm{s}}+70 \mathrm{~V}$ Wide power supply voltage range: $+\mathbf{3} \mathrm{V}$ to +50 V (to $\pm \mathbf{2 5} \mathrm{V}$ for PSRR) Low power supply current: $\mathbf{3 2 . 5} \mu \mathrm{A}$ (typical) Low input offset voltage: $\pm 60 \mu \mathrm{~V}$ maximum Low input offset voltage drift: $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum (B grade) Low input voltage noise

6 Hz typical 1/f noise corner
1000 nV p-p typical at $0.1 \mathbf{H z}$ to 10 Hz
GBP: $\mathbf{1 3 0} \mathbf{~ k H z}$ typical for $\mathrm{f}_{\text {test }}=\mathbf{2 5 0 ~ H z}$
Slew rate: $0.1 \mathrm{~V} / \mu \mathrm{s}$ typical at $\Delta \mathrm{V}_{\text {out }}=4 \mathrm{~V}$
Low power supply current shutdown: $\mathbf{2 0} \mu \mathrm{A}$ maximum Low input offset current: $\pm 300 \mathrm{pA}$ maximum Large signal voltage gain: 120 dB minimum for $\Delta \mathrm{V}_{\text {out }}=4 \mathrm{~V}$ CMRR: 120 dB minimum at $\mathrm{V}_{\mathrm{cm}}=-\mathbf{0 . 1} \mathrm{V}$ to +70 V PSRR: 123 dB minimum at $\mathrm{V}_{\mathrm{sY}}=+3 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ Input overdrive tolerant with no phase reversal $\pm 2 \mathrm{kV}$ HBM and $\pm \mathbf{1 . 2 5} \mathrm{kV}$ FICDM
Wide temperature range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (H grade)
6-lead TSOT package

APPLICATIONS

Industrial sensor conditioning

Supply current sensing
Battery and power supply monitoring
Front-end amplifiers in abusive environments
$4 \mathbf{m A}$ to $\mathbf{2 0} \mathbf{~ m A}$ transmitters

GENERAL DESCRIPTION

The ADA4097-1 is a robust, precision, rail-to-rail input and output operational amplifier (op amp) with inputs that operate from $-\mathrm{V}_{\mathrm{s}}$ to +Vs and beyond, which is referred to in this data sheet as Over-The-Top ${ }^{\text {m". }}$. The device features offset voltages of $<60 \mu \mathrm{~V}$, input bias currents (I_{B}) of $<0.3 \mathrm{nA}$, and can operate on single or split supplies that range from 3 V to 50 V . The ADA4097-1 draws $32.5 \mu \mathrm{~A}$ of supply current.

The ADA4097-1 Over-The-Top input stage has robust input protection features for abusive environments. The inputs can tolerate up to 80 V of differential voltage without damage or degradation to dc accuracy. The operating common-mode input range extends from rail-to-rail and beyond, up to $70 \mathrm{~V}>-\mathrm{V}_{\mathrm{s}}$, independent of the +V supply.

The ADA4097-1 is unity-gain stable and can drive loads requiring up to 20 mA . The device can also drive capacitive loads as large as 200 pF . The amplifier is available with low power shutdown.
The ADA4097-1 is available in a standard, 6-lead, thin small outline transistor (TSOT) package.

TYPICAL APPLICATION CIRCUIT

Figure 1.1 V/A Over-The-Top Current Sense Application ($V_{B A T}$ Is the Battery Voltage.)

Figure 2. Output Error vs. Load Current

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 © 2021 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Typical Application Circuit 1
Revision History 2
Specifications 3
5 V Supply 3
± 15 V Supply 5
Absolute Maximum Ratings 8
Maximum Power Dissipation 8
Thermal Resistance 8
Electrostatic Discharge (ESD) Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions. 9
Typical Performance Characteristics 10
Theory of Operation 18
Input Protection. 19
Over-The-Top Operation Considerations 19
Output 20
Shutdown Pin (SHDN) 20
Applications Information 21
Large Resistor Gain Operation. 21
Recommended Values for Various Gains. 21
Noise 22
Distortion 22
Power Dissipation and Thermal Shutdown 23
Circuit Layout Considerations 23
Power Supply Bypassing 23
Grounding 24
ESD Protection when Powered. 24
Related Products 24
Typical Applications. 25
Outline Dimensions 27
Ordering Guide 27

REVISION HISTORY

5/2021—Revision 0: Initial Version

ADA4097-1

SPECIFICATIONS

5 V SUPPLY

Common-mode voltage $\left(V_{C M}\right)=2.5 \mathrm{~V}$, SHDN pin is open, load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)=499 \mathrm{k} \Omega$ to midsupply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

ADA4097-1

Parameter	Test Conditions/Comments	B Grade			H Grade			Unit
		Min	Typ	Max	Min	Typ	Max	
POWER SUPPLY								
Maximum Operating Voltage ${ }^{5}$				50			50	V
Voltage Range ($\mathrm{V}_{\text {SY }}$)	Guaranteed by power supply rejection ratio (PSRR)	3		50	3		50	V
Supply Current	Amplifier active		32.5	36		32.5	36	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {max }}$			55			60	$\mu \mathrm{A}$
	Amplifier shutdown, $V_{\text {SHDN }}=-V_{s}+1.5 \mathrm{~V}$		12	20		12	20	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {max }}$			22.5			22.5	$\mu \mathrm{A}$
PSRR	$\mathrm{V}_{\mathrm{SY}}=+3 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$	123	145		123	145		dB
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$	120			120			dB
THERMAL SHUTDOWN ${ }^{6}$								
Temperature	TJ		175			175		${ }^{\circ} \mathrm{C}$
Hysteresis			20			20		${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40		+125	-55		+150	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Thermoelectric voltages present in the high speed production test limit the measurement accuracy of this parameter. The limits shown in Table 1 are determined by test capability and are not necessarily indicative of actual device performance.
${ }^{2}$ Offset voltage drift is guaranteed through lab characterization and is not production tested.
${ }^{3}$ Test accuracy is limited by high speed production test equipment repeatability. Bench measurements indicate that the input offset current in Over-The-Top configuration is typically controlled to under 50 nA at $+25^{\circ} \mathrm{C}$ and 100 nA over the $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+150^{\circ} \mathrm{C}$ temperature range.
${ }^{4} \mathrm{~V}$ od is +30 mV for Vout high and -30 mV for Vout low.
${ }^{5}$ Maximum operating voltage is limited by the time-dependent dielectric breakdown (TDDB) of the on-chip capacitor oxides. The amplifier tolerates temporary transient overshoot up to the specified absolute maximum rating, but the dc supply voltage must be limited to the maximum operating voltage.
${ }^{6}$ Thermal shutdown is lab characterized only and is not tested in production.

± 15 V SUPPLY

$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, SHDN pin is open, $\mathrm{R}_{\mathrm{L}}=499 \mathrm{k} \Omega$ to ground, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	B Grade			H Grade			Unit
		Min	Typ	Max	Min	Typ	Max	
DC PERFORMANCE								
Vos ${ }^{1}$			± 20	± 60		± 20	± 60	$\mu \mathrm{V}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			± 150			± 175	$\mu \mathrm{V}$
	$\mathrm{V}_{\mathrm{SY}}= \pm 25 \mathrm{~V}$		± 20	± 60		± 20	± 60	$\mu \mathrm{V}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			± 150			± 175	$\mu \mathrm{V}$
Input Offset Voltage Drift ${ }^{2}$ I_{B}	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$		± 0.1	± 1		± 0.1	± 1.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
			± 0.1	± 0.3		± 0.1	± 0.3	nA
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			± 10			± 25	nA
	$\mathrm{V}_{\text {SY }}= \pm 25 \mathrm{~V}$		± 0.1	± 0.3		± 0.1	± 0.3	nA
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			± 10			± 25	nA
los			± 0.1	± 0.3		± 0.1	± 0.3	nA
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {Max }}$			± 5			± 10	nA
	$\mathrm{V}_{S Y}= \pm 25 \mathrm{~V}$		± 0.1	± 0.3		± 0.1	± 0.3	nA
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			± 5			± 10	nA

Parameter	Test Conditions/Comments	B Grade			H Grade			Unit
		Min	Typ	Max	Min	Typ	Max	
OUTPUT CHARACTERISTICS								
Output Voltage Swing Low	$\mathrm{V}_{\text {OD }}{ }^{3}=30 \mathrm{mV}$, no load		15	40		15	40	mV
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			45			50	mV
	$\mathrm{V}_{\text {OD }}=30 \mathrm{mV}, \mathrm{I}_{\text {IINK }}=5 \mathrm{~mA}$		240	325		240	325	mV
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			380			400	mV
Output Voltage Swing High	$V_{O D}=30 \mathrm{mV}$, no load		2.5	10		2.5	10	mV
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$			15			20	mV
	$V_{\text {OD }}=30 \mathrm{mV}$, ISOURCE $=5 \mathrm{~mA}$		570	700		570	700	mV
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			1000			1100	mV
Short-Circuit Current	I Source	20	30		20	30		mA
	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {max }}$	10			6			mA
	$\mathrm{I}_{\text {IINK }}$	35	45		35	45		mA
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$	10			6			mA
POWER SUPPLY								
Maximum Operating Voltage ${ }^{4}$				50			50	V
Voltage Range	Guaranteed by PSRR	3		50	3		50	V
Supply Current	Amplifier active		40	44		40	44	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$			65			70	$\mu \mathrm{A}$
	$\mathrm{V}_{S Y}= \pm 25 \mathrm{~V}$		42	48		42	48	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$			70			75	$\mu \mathrm{A}$
	Amplifier shutdown, $V_{\text {SHIN }}=-V_{\mathrm{s}}+1.5 \mathrm{~V}$		15	22.5		15	22.5	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$			25			25	$\mu \mathrm{A}$
PSRR	$\mathrm{V}_{\text {SY }}=3 \mathrm{~V}$ to 50 V	123	145		123	145		dB
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$	120			120			dB
THERMAL SHUTDOWN ${ }^{5}$								
Temperature	TJ		175			175		${ }^{\circ} \mathrm{C}$
Hysteresis			20			20		${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	-40		+125	-55		+150	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Thermoelectric voltages present in the high speed production test limit the measurement accuracy of this parameter. The limits shown in Table 2 are determined by test capability and are not necessarily indicative of actual device performance.
${ }^{2}$ Offset voltage drift is guaranteed through lab characterization and is not production tested.
${ }^{3}$ Vod is +30 mV for Vout high and -30 mV for Vout low.
${ }^{4}$ Maximum operating voltage is limited by the TDDB of the on-chip capacitor oxides. The amplifier tolerates temporary transient overshoot up to the specified absolute maximum rating and the dc supply voltage must be limited to the maximum operating voltage.
${ }^{5}$ Thermal shutdown is lab characterized only and is not tested in production.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage 1	
\quad Transient	60 V
\quad Continuous	50 V
Power Dissipation (PD)	See Figure 3
Differential Input Voltage	$\pm 80 \mathrm{~V}$
\pm IN Pin Voltage	
\quad Continuous	-10 V to +80 V
\quad Survival	-15 V to +80 V
\pm IN Pin Current	10 mA
SHDN Pin Voltage	-0.3 V to +60 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$
TJ	$175^{\circ} \mathrm{C}$

${ }^{1}$ Maximum supply voltage is limited by the TDDB of the on-chip capacitor oxides. The amplifier tolerates temporary transient overshoot up to the specified transient maximum rating. The continuous operating supply voltage must be limited to no more than 50 V .
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
T_{J} exceeding $125^{\circ} \mathrm{C}$ promotes accelerated aging. The ADA4097-1 demonstrates $\pm 25 \mathrm{~V}$ supply operation beyond 1000 hours at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$.

MAXIMUM POWER DISSIPATION

The maximum safe P_{D} on the device is limited by the associated rise in either T_{C} or T_{J} on the die. At approximately $\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$, which is the glass transition temperature, the properties of the plastic changes. Exceeding this temperature limit, even temporarily, may change the stresses that the package exerts on the die, which permanently shifts the parametric performance of the ADA4097-1. Exceeding $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ for an extended period may result in changes in the silicon devices and may potentially cause failure of the device.
The P_{D} on the package is the sum of the quiescent power dissipation and the power dissipated in the package due to the output load drive. The quiescent power is expressed as $\mathrm{V}_{\mathrm{SY}} \times \mathrm{I}_{\mathrm{SY}}$, where I_{SY} is the quiescent current.
The P_{D} due to the load drive depends on the application. The P_{D} due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.

Airflow increases heat dissipation, effectively reducing θ_{JA}. Additional metal that is directly in contact with the package leads
from metal traces through vias, ground, and power planes reduces $\theta_{J A}$.

Figure 3 shows the maximum P_{D} vs. T_{A} for the single and dual 6-lead TSOT packages on a JEDEC standard, 4-layer board, with $-\mathrm{V}_{\mathrm{s}}$ connected to a pad that is thermally connected to a printed circuit board (PCB) plane. θ_{JA} values are approximations.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature THERMAL RESISTANCE
Thermal performance is directly linked to PCB design and operating environment. Careful attention to PCB thermal design is required.
$\theta_{J A}$ is the junction to ambient thermal resistance.
Table 4. Thermal Resistance

Package Type	θ_{JA}	Unit
UJ-6	192	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged device model (FICDM) per
ANSI/ESDA/JEDEC JS-002.
ESD Ratings for ADA4097-1
Table 5. ADA4097-1, 6-Lead TSOT

ESD Model	Withstand Threshold	Class
HBM	$\pm 2 \mathrm{kV}$	3 A
FICDM	$\pm 1.25 \mathrm{kV}$	3

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	Vout	Amplifier Output.
2	- V_{5}	Negative Power Supply. In single-supply applications, the $-V_{s}$ pin is normally soldered to a low impedance ground plane. In split-supply applications, bypass the $-\mathrm{V}_{s}$ pin with a capacitance of at least $0.1 \mu \mathrm{~F}$ to a low impedance ground plane, as close to the $-\mathrm{V}_{\mathrm{s}}$ pin as possible.
3	+IN	Noninverting Input of the Amplifier.
4	-IN	Inverting Input of the Amplifier.
5	SHDN	Op Amp Shutdown. The threshold for shutdown is approximately 1 V above the negative supply. If the SHDN pin is not connected or hard tied to $-\mathrm{V}_{s}$, the amplifier is active. If the SHDN pin is asserted high ($\mathrm{V}_{\text {sHDN }}>-\mathrm{V}_{s}+1.5 \mathrm{~V}$), the amplifier is placed in a shutdown state, and the output of the amplifier goes to a high impedance state. If the SHDN pin is left unconnected, it is recommended to connect a small capacitor of 1 nF between the SHDN pin and the $-\mathrm{V}_{\mathrm{s}}$ pin to prevent signals from the $-\mathbb{I N}$ pin from capacitively coupling to the SHDN pin.
6	$+\mathrm{V}_{5}$	Positive Power Supply. Bypass the $+V_{s}$ pin with a capacitance of at least $0.1 \mu \mathrm{~F}$ to a low impedance ground plane, as close to the $+\mathrm{V}_{\mathrm{s}}$ pin as possible.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Supply Current vs. Supply Voltage

Figure 6. Supply Current vs. Temperature Across Various Supply Voltages

Figure 7. Supply Current vs. $V_{\text {SHDN }}$ with Respect to $-V_{S}$

Figure 8. Shutdown Supply Current vs. Supply Voltage

Figure 9. Typical Distribution of Input Offset Voltage, $V_{S Y}=5 \mathrm{~V}$

Figure 10. Typical Distribution of Input Offset Voltage with $V_{S Y}= \pm 15 \mathrm{~V}$

Figure 11. Typical Distribution of Input Offset Voltage with $V_{S Y}= \pm 25 \mathrm{~V}$

Figure 12. Midsupply Offset Voltage vs. Temperature with $V_{S Y}=5 \mathrm{~V}$

Figure 13. Offset Voltage vs. Temperature with $V_{S Y}= \pm 15 \mathrm{~V}$

Figure 14. Offset Voltage vs. Temperature with $V_{s Y}= \pm 25 \mathrm{~V}$

Figure 15. Midsupply Input Bias Current vs. Temperature with $V_{S Y}=5 \mathrm{~V}$

Figure 16. Input Bias Current vs. Temperature with $V_{S Y}= \pm 15 \mathrm{~V}$

Figure 17. Offset Voltage vs. Temperature with $V_{C M}=6 \mathrm{~V}$, Over-The-Top

Figure 18. Offset Voltage vs. Temperature with $V_{C M}=70 \mathrm{~V}$

Figure 19. Typical Distribution of Input Bias Current, $V_{S Y}=5 \mathrm{~V}$

Figure 20. Input Bias Current vs. Temperature with $V_{C M}=6 V$, Over-The-Top

Figure 21. Input Bias Current vs. Temperature Across Various VCM

Figure 22. Input Bias Current vs. Temperature Across Various Supply Voltages

Figure 23. Offset Voltage vs. Temperature Across Various Supply Voltages

Figure 24. Offset Voltage vs. Input Common-Mode Voltage from Normal Operation to Over-The-Top Operation

Figure 25. Offset Voltage vs. Input Common-Mode Voltage over the Input Common-Mode Range

Figure 26. Input Bias Current vs. Input Common-Mode Voltage from Normal Operation to Over-The-Top Operation

Figure 27. Offset Voltage vs. Input Common-Mode Voltage for Ground Sensing Applications

Figure 28. Input Bias Current vs. Input Common-Mode Voltage for Ground Sensing Applications

Figure 29. Input Bias Current vs. Input Common-Mode Voltage

Figure 30. Supply Current vs. Minimum Supply Voltage

Figure 31. Offset Voltage vs. Minimum Supply Voltage

Figure 32. Offset Voltage vs. Supply Voltage

Figure 33. Δ Offset Voltage vs. Vout Across Various R LOAD

Figure 34. Δ Offset Voltage vs. Vout Across Various Temperatures

Figure 35. SHDN Pin Current (ISHDN) vs. VSHDN with Respect to -Vs over Various Temperatures

Figure 36. Output Swing Relative to Supply vs. Temperature

Figure 37. Gain Bandwidth vs. Temperature

Figure 38. Open-Loop Gain and Open-Loop Phase Margin vs. Frequency

Figure 39. Noninverting Small Signal Frequency Response

Figure 40. Inverting Small Signal Frequency Response

Figure 41. Output Noise vs. Frequency

Figure 42. 0.1 Hz to 10 Hz Noise

Figure 43. Unity-Gain Small Signal Step Response

Figure 44. Unity-Gain Large Signal Step Response

Figure 45. THD $+N$ vs. Frequency over Load

Figure 46. THD $+N$ vs. Output Amplitude

Figure 47. THD + N vs. Output Amplitude and Load

Figure 48. CMRR vs. Frequency

Figure 49. PSRR vs. Frequency

Figure 50. Output Impedance vs. Frequency

THEORY OF OPERATION

The ADA4097-1 is a robust, voltage feedback amplifier that combines unity-gain stability with low offset, low offset drift, and $53 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ of input voltage noise. Figure 53 shows a simplified schematic of the device. The ADA4097-1 has two input stages: a common emitter differential input stage consisting of the Q1 and Q2 PNP transistors that operate with the inputs biased between $-\mathrm{V}_{\mathrm{s}}$ and 1 V below $+\mathrm{V}_{\mathrm{S}}$, and a common base input stage that consists of the Q3 to Q6 PNP transistors that operate when the common-mode input is biased $>+\mathrm{V}_{s}-1 \mathrm{~V}$. These input stages result in two distinct operating regions, as shown in Figure 51.

Figure 51. Input Bias Current vs. Input Common-Mode Voltage over Temperature, $V_{S Y}=5 \mathrm{~V}$

For common-mode input voltages that are approximately 1 V below the $+\mathrm{V}_{\mathrm{S}}$ supply, where Q1 and Q2 are active (see Figure 51), the common emitter PNP input stage is active and the input bias current is typically $<0.3 \mathrm{nA}$. When the common-mode input is above $+\mathrm{V}_{s}-1 \mathrm{~V}$, the Q 9 transistor turns on, which diverts bias current away from the common emitter differential input pair to the mirror that consists of M3 and M4. The current from M4 biases the common base differential input pair (Q3 to Q6). The Over-The-Top input pair operates in a common base configuration and the input bias current increases to $\sim 0.8 \mu \mathrm{~A}$. The offset voltages of both input stages are tightly trimmed and are specified in Table 1 and Table 2.
As the input common-mode transitions to the Over-The-Top region, the input CMRR degrades slightly when compared to the rest of the input common-mode range, as shown in Figure 52.

Figure 52. Offset Voltage vs. Input Common-Mode Voltage over Temperature, $\mathrm{V}_{s Y}=5 \mathrm{~V}$

Figure 53. Simplified ADA4097-1 Schematic

INPUT PROTECTION

The inputs are protected against temporary voltage excursions to 15 V below - Vs (see Figure 54) by internal 880Ω resistors (see Figure 53). These resistors limit the current in the series D1 diode and D2 diode that are tied to the bases of the Q1 and Q2 transistors, respectively. Adding additional external series resistance extends the protection to $>15 \mathrm{~V}$ below $-\mathrm{V}_{\mathrm{s}}$, at the cost of stability and added thermal noise. The input stage of the ADA4097-1 incorporates phase reversal protection to prevent the output from phase reversing for inputs below $-\mathrm{V}_{\mathrm{s}}$. The ADA4097-1 op amp does not have clamping diodes between the inputs and can be differentially overdriven up to 80 V without damage, inducing parametric shifts, or drawing appreciable input current. Figure 55 summarizes the input fault types that can be applied to the ADA4097-1 without compromising input integrity.

Figure 54. ADA4097-1 as Unity-Gain Buffer with Noninverting Input Driven Beyond the Supply $\left(V_{s y}=5 \mathrm{~V}\right)$

Figure 55. ADA4097-1 Fault Tolerant Conditions

OVER-THE-TOP OPERATION CONSIDERATIONS

When the ADA4097-1 input common-mode is biased near or $>+V_{s}$ supply, the amplifier operates in the Over-The-Top configuration. The differential input pair that controls amplifier operation is the common base pair, Q3 to Q6 (see Figure 53).

Input bias currents change from $< \pm 0.3 \mathrm{nA}$ in normal operation to approximately $0.8 \mu \mathrm{~A}$ in Over-The-Top operation when the input stage transitions from common emitter to common base. The Over-The-Top input bias currents are well matched, and the associated offset is typically $<50 \mathrm{nA}$. Ensure that the impedance connected to the inverting and noninverting inputs is well matched to avoid any input bias current induced voltage offsets.

Differential input impedance, R R (see Figure 56), decreases from $>10 \mathrm{M} \Omega$ in normal operation to $\sim 60 \mathrm{k} \Omega$ in Over-The-Top operation (see Table 1 and Table 2).

Figure 56. Difference Amplifier Configured for Normal Operation and Over-The-Top Operation (R/Is a Gain Setting Resistor)

This R_{IN} resistance appears across the summing nodes in Over-The-Top operation due to the configuration of the common base input stage.

The R_{IN} value is derived from the specified I_{B} that flows to the op amp inputs, as expressed in the following equation:

$$
R_{I N}=2 k T /\left(q I_{B}\right)
$$

where:
k is Boltzmann's constant.
T is the operating temperature.
q is the charge of an electron.
I_{B} is the operating input bias current in Over-The-Top operation.

The inputs are biased proportional to absolute temperature. Therefore, $\mathrm{R}_{\text {IN }}$ is relatively constant with temperature. This resistance appears across the summing nodes of the amplifier, which is forced to 0 V differentially by the feedback action of the amplifier and can seem relatively harmless. However, depending on the configuration, this input resistance can boost the noise gain, lower overall amplifier loop gain and closedloop bandwidth, and raise output noise. The singular benefit of this configuration is an increase in closed-loop amplifier stability.

In normal mode ($-\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CM}}<+\mathrm{V}_{\mathrm{s}}-1 \mathrm{~V}$), , R in is typically large compared to the value of the gain setting resistors (R_{F} and R_{I}), and $\mathrm{R}_{\text {IN }}$ can be ignored.

In this case, the noise gain is defined by the following equation:

$$
\text { Noise Gain }=1+R_{F} / R_{I}
$$

When the amplifier transitions to Over-The-Top operation with the input common-mode biased near or above the $+\mathrm{V}_{S}$ supply, consider the value of $\mathrm{R}_{\text {IN }}$.

The noise gain of the amplifier increases as shown in the following equation:

$$
\text { Noise Gain }{ }_{O T T}=\left(\left(1+\frac{R_{F}}{R_{I}\left\|R_{I N}+R_{I}\right\| R_{F}}\right) \times\left(1+\frac{R_{I} \| R_{F}}{R_{I N}}\right)\right)
$$

where Noise Gainotт is the Over-The-Top noise gain.
The dc closed-loop gain remains mostly unaffected ($\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{I}}$). However, the loop gain of the amplifier decreases, as expressed in the following equation:

$$
\frac{A_{O L}}{1+\frac{R_{F}}{R_{I}}} \text { to } \frac{A_{O L}}{\text { Noise Gain }{ }_{\text {OTT }}}
$$

Likewise, the closed-loop bandwidth (BW closed_loop) of the amplifier changes going from normal operation to Over-TheTop operation.
In normal operation,

$$
B W_{\text {CLOSED_LOOP }} \approx \frac{G B P}{1+\frac{R_{F}}{R_{I}}}
$$

In Over-The-Top operation,

$$
B W_{\text {CLOSED_LOOP }} \approx \frac{G B P}{\text { Noise Gain }}
$$

Output voltage noise density (e_{no}) is impacted when the device transitions from normal operation to Over-The-Top operation. Resistor noise is neglected in both modes of operation in the following equations.

In normal operation, neglecting resistor noise,

$$
e_{n o} \cong e_{n}\left(1+\frac{R_{F}}{R_{I}}\right)
$$

where e_{n} is input referred voltage noise density.
In Over-The-Top operation, neglecting resistor noise,

$$
e_{n o} \cong e_{n} \times \text { Noise Gain } \text { OTT }
$$

OUTPUT

The output of the ADA4097-1 can swing rail-to-rail to within 15 mV of the either supply with no load. The output can source 30 mA and sink 40 mA . The amplifier is internally compensated to drive at least 200 pF of CLOAD. Adding a series resistance of 50Ω between the output and larger capacitive loads extends the capacitive drive capability of the amplifier.
If the ADA4097-1 enters shutdown, the Vout pin appears as high impedance with two steering diodes connected to either supply. In this state, the output typically leaks $<5 \mathrm{nA}$.

SHUTDOWN PIN (SHDN)

The ADA4097-1 has a dedicated SHDN pin to place the amplifier in a very low power shutdown state when asserted high. A logic high is defined by a voltage $\geq 1.5 \mathrm{~V}$ applied to the SHDN pin with respect to the $-\mathrm{V}_{\mathrm{s}}$ pin. In shutdown, the amplifier draws $<20 \mu \mathrm{~A}$ of supply current (see Figure 7) and the Vout pin is placed in a high impedance state.
The SHDN pin can be driven beyond the $+\mathrm{V}_{\mathrm{s}}$ supply up to the absolute maximum voltage (60 V with respect to $-\mathrm{V}_{\mathrm{s}}$) and draws little current ($<2.5 \mu \mathrm{~A}$). For normal active amplifier operation, the SHDN pin can be floated or driven by an external voltage source low (within 0.5 V of $-\mathrm{Vs}_{\mathrm{s}}$). If the SHDN pin is left floating, an internal current source ($\sim 600 \mathrm{nA}$) pulls the SHDN pin to $-\mathrm{V}_{\mathrm{s}}$, which places the amplifier into a default, active amplifying state. Because of the close proximity of the -IN pin and SHDN pin, fast edges on the -IN pin may ac-couple to the adjacent high impedance SHDN pin, inadvertently placing the device in shutdown. If this scenario is a concern, add a 1 nF capacitor between the SHDN pin and the $-\mathrm{V}_{\mathrm{s}}$ pin.
Alternatively, the amplifier can be effectively placed in a low power state by removing $+\mathrm{V}_{\mathrm{s}}$. In this low power state, the inputs typically leak $<1 \mathrm{nA}$ with either $\pm \mathrm{IN}$ pin biased between $-\mathrm{V}_{\mathrm{s}}$ and 70 V above $-V_{s}$. If the \pm IN pins are taken below $-V_{s}$, they appear as a diode connected to the $-V_{s}$ supply in series with a resistance of 880Ω. In this condition, limit the current to $<10 \mathrm{~mA}$.
Using an external source to drive the output beyond either $\pm \mathrm{V}_{\mathrm{s}}$ supply under shutdown conditions may produce unlimited current and may damage the device.

APPLICATIONS INFORMATION

LARGE RESISTOR GAIN OPERATION

The ADA4097-1 has approximately 3.5 pF of input capacitance.
The parallel combination of the R_{F} and R_{G} on the inverting input can combine with this input capacitance (C_{IN}) to form a pole that can reduce bandwidth, cause frequency response peaking, or produce oscillations (see Figure 58). To mitigate these consequences, place a feedback capacitor with a value of $\mathrm{C}_{\mathrm{F}}>\mathrm{C}_{\mathrm{IN}}\left(\mathrm{R}_{\mathrm{G}} / \mathrm{R}_{\mathrm{F}}\right)$ in parallel with R_{F} for summing node impedances $>200 \mathrm{k} \Omega\left(\mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{G}}>200 \mathrm{k} \Omega\right)$. This capacitor placement cancels the input pole and optimizes dynamic performance (see Figure 57).

For applications where the noise gain is unity $\left(\mathrm{R}_{\mathrm{G}} \rightarrow \infty\right)$, and the feedback resistor exceeds $200 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{F}} \geq \mathrm{C}_{\mathrm{I}}$. Optimize PCB layouts to keep layout related summing node capacitance to an absolute minimum.

Figure 57. Inverting Gain Schematic

Figure 58. Inverting Gain of 1, Small Signal Frequency Response, $R_{F}=R_{G}=1 \mathrm{M} \Omega$

RECOMMENDED VALUES FOR VARIOUS GAINS

Table 7 is a reference for determining various recommended gains and associated noise performance. The total impedance seen at the inverting input is kept to $<200 \mathrm{k} \Omega$ for gains >1 to maintain ideal small signal bandwidth.

Table 7. Gains and Associated Recommended Resistor Values ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Gain	$\mathrm{R}_{\mathrm{F}}(\mathrm{k} \Omega)$	RG (k)	$\mathbf{C F}$ (pF)	Approximate -3 dB Frequency (kHz)	Total System Noise (nV/VHz at 1 kHz), Referred to Input
+1	0	Not applicable	Not applicable	220	53
+2	10	10	0	80	54
+2	100	100	0	100	59.5
+5	10	40.2	0	33.5	53.2
+10	10	90	0	18	53.2
-1	10	10	0	87	108
-1	100	100	0	95	119
-1	1000	1000	2	55	215
-2	10	20	0	56	80
-5	10	49.9	0	29	64.2
-10	10	100	0	17	58.5

NOISE

To analyze the noise performance of an amplifier circuit, identify the noise sources, and then determine if each source has a significant contribution to the overall noise performance of the amplifier. To simplify the noise calculations, noise spectral densities (NSDs) are used rather than actual voltages, to leave bandwidth out of the expressions. NSD is generally expressed in $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ and is equivalent to the noise in a 1 Hz bandwidth.

The noise model shown in Figure 59 has six individual noise sources: the Johnson noise of the three resistors (R1 to R3), the op amp voltage noise, and the current noise ($\mathrm{I}_{\mathrm{N}_{ \pm}}$) in each input of the amplifier. Each noise source has its own contribution to the noise at the output. Noise is generally specified as referring to input (RTI), but it is often simpler to calculate the noise referred to the output (RTO), and then divide by the noise gain to obtain the RTI noise.

RTI NOISE $=\sqrt{e_{N^{2}+4 k T R 3+4 k T R 1\left(\frac{R 2}{R 1+R 2}\right)^{2}{ }^{2} R 3{ }^{2}+I_{N-} 2\left(\frac{R 1 \times R 2}{R 1+R 2}\right)^{2}+4 k T R 2\left(\frac{R 1}{R 1+R 2}\right)^{2}}}$

RTO NOISE $=$ NG \times RTI NOISE

Figure 59. Op Amp Noise Analysis Model

Assuming $\mathrm{I}_{\mathrm{N}+}=\mathrm{I}_{\mathrm{N}-}=\mathrm{I}_{\mathrm{N}}$, the equation for RTI noise can be simplified to the following form:

$$
\begin{aligned}
& \text { RTI Noise }=\sqrt{e_{n}^{2}+e_{n, R}^{2}+\left(I_{N} R_{E Q}\right)^{2}} \\
& e_{n, R}=\sqrt{4 k T R_{E Q}} \\
& R_{E Q}=R 3+R 1 \| R 2
\end{aligned}
$$

where:
e_{n} is the op amp voltage noise.
$e_{n, R}$ is the thermal noise contribution of the surrounding R1 to R3 resistors.
$R_{E Q}$ is the equivalent input resistance.
k is Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$.
T is the absolute temperature in Kelvin.
A 50Ω resistor generates a Johnson noise of $1 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $25^{\circ} \mathrm{C}$.
For optimal performance, the lower bound of resistance in a feedback network is determined by the amount of quiescent power and distortion that can be tolerated. The upper bound
is determined by the resistor and current noise density. The ADA4097-1 has an e_{n} of $53 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$.

If resistor and current noise contributions are less than half this value, the e_{n} introduced by the op amp dominates and provides optimal noise performance of the device.

Figure 60. Noise Contributions vs. Equivalent Input Resistance
For the ADA4097-1, this lower bound of resistance in the feedback network is about $40 \mathrm{k} \Omega$. For the amplifier configuration shown in Figure $59, \mathrm{R}_{\mathrm{EQ}}<40 \mathrm{k} \Omega$ provides stable noise performance. If noise performance is not important, e_{n} is typically fixed for a given $T_{A}, e_{n, R}$ increases with the square root of the resistor value, and the $\mathrm{I}_{\mathrm{N}} \times$ REQ resistance increases linearly, but does not impact total noise until it approaches the value of $e_{n, R}$. With $\mathrm{R}_{\mathrm{EQ}}<\sim 6 \mathrm{M} \Omega$, $e_{n, R}$ is larger than $I_{N} \times R_{\mathrm{EQ}}$. A safe value for $\mathrm{R}_{\mathrm{EQ}}<2 \mathrm{M} \Omega$ to ensure that I_{N} is not the majority contributor to total noise seen by the input.

Figure 60 shows the noise contributions for the range of resistance values discussed in this section.

DISTORTION

There are two main contributors of distortion in op amps: output crossover distortion as the output transitions from sourcing to sinking, and distortion caused by nonlinear common-mode rejection. If the op amp is operating in an inverting configuration, there is no common-mode induced distortion. If the op amp is operating in the noninverting configurations within the normal input common-mode range ($-\mathrm{V}_{\mathrm{s}}$ to $+\mathrm{V}_{s}-1 \mathrm{~V}$), distortion is acceptable. When the inputs transition from normal to Over-The-Top operation or vice versa, a significant degradation occurs in linearity due to the change of input circuitry.
As R_{L} decreases, distortion increases due to a net decrease in loop gain and greater signal swings internal to the amplifier that are necessary to drive the load. The lowest distortion can be achieved with the ADA4097-1 operating in Class A operation in an inverting configuration, with the input common-mode biased at midsupply.

POWER DISSIPATION AND THERMAL SHUTDOWN

The ADA4097-1 can drive heavy loads on power supplies up to $\pm 25 \mathrm{~V}$. Therefore, ensure that T_{J} on the integrated circuit does not exceed $175^{\circ} \mathrm{C}$. The ADA4097-1 is housed in a 6 -lead TSOT package $\left(\theta_{\mathrm{JA}}=192^{\circ} \mathrm{C} / \mathrm{W}\right)$.

Junction temperatures exceeding $125^{\circ} \mathrm{C}$ promote accelerated aging. Reliability of the ADA4097-1 may be impaired if the junction temperature exceeds $175^{\circ} \mathrm{C}$. If the junction temperature exceeds $175^{\circ} \mathrm{C}$, the ADA4097-1 has a final safety measure in the form of a thermal shutdown that shuts off the output stage and reduces the internal device currents. When this thermal shutdown function triggers, the output remains disabled in a high impedance state until the junction temperature drops $20^{\circ} \mathrm{C}$. Persistent heavy loads and elevated ambient temperatures can cause the ADA4097-1 to oscillate in and out of thermal shutdown depending on the power dissipated on the die, until the heavy load is removed (see Figure 61).

Figure 61. ADA4097-1 Cycling In and Out of Thermal Shutdown
It is not recommended to operate near the maximum junction temperature.

Typically, T_{J} can be estimated from T_{A} and the device power dissipation $\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$, as shown in the following equation:

$$
T_{J}=T_{A}+P_{D} \times \theta_{I A}
$$

The power dissipation in the IC varies as a function of supply voltage, the output voltage, and load resistance. For a given supply voltage, the worst case power dissipation ($\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$) in the IC occurs when the supply current is maximum, and the output voltage is at half of either supply voltage.

$$
P_{D(M A X)}=V_{s} I_{s(M A X)}+\frac{\left(\frac{V_{S Y}}{2}\right)^{2}}{R_{L}}
$$

For a given supply voltage, use Figure 62 as a guide for estimating the minimum load resistance that the ADA4097-1 can drive for a given supply voltage and a given rise in junction temperature $\left(\Delta \mathrm{T}_{\mathrm{J}}\right)$. For example, to limit $\Delta \mathrm{T}_{\mathrm{J}}$ to $50^{\circ} \mathrm{C}$, the load driven on the $\pm 15 \mathrm{~V}$ supplies (+30 V total supply) must not be lower than $0.8 \mathrm{k} \Omega$. It is assumed that θ_{JA} is $192^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 62. Minimum Load Resistance for Given ΔT_{J} and $V_{S Y}$

CIRCUIT LAYOUT CONSIDERATIONS

Careful and deliberate attention to detail when laying out the ADA4097-1 boards yields optimal performance. Power supply bypassing, parasitic capacitance, and component selection all contribute to the overall performance of the amplifier.

POWER SUPPLY BYPASSING

On single supplies, solder the $-\mathrm{V}_{\mathrm{S}}$ supply pin directly to a low impedance ground plane. Bypass the $+\mathrm{V}_{s}$ pin to a low impedance ground plane with a low effective series resistance (ESR) multilayer ceramic capacitor (MLCC) of $0.1 \mu \mathrm{~F}$, typically, as close to the $\pm \mathrm{V}_{\text {s }}$ supply pins as possible. When driving heavy loads, add $10 \mu \mathrm{~F}$ of supply capacitance. When using split supplies, these conditions are applicable to the $-V_{s}$ supply pin.
The ADA4097-1 has an internal current source of $\sim 0.6 \mu \mathrm{~A}$ on the SHDN pin to pull the pin down to $-\mathrm{V}_{\mathrm{s}}$ and to place the amplifier in the default amplifying state. If the SHDN state is not required, hard tie the SHDN pin to the $-\mathrm{V}_{\mathrm{s}}$ pin. If the SHDN pin is left floating or driven by a source with significant source impedance ($>100 \Omega$), bypass the - Vs supply pin with a small, 1 nF capacitor to prevent stray signals from coupling on the SHDN pin, which can inadvertently trigger shutdown.

GROUNDING

Use ground and power planes where possible to reduce the resistance and inductance of the supply and ground returns. Place bypass capacitors as close as possible to the $\pm \mathrm{V}_{\mathrm{S}}$ supply pins, with the other ends connected to the ground plane. It is recommended to use a bypass capacitor of at least $0.1 \mu \mathrm{~F}$ when driving light loads (load currents $<100 \mu \mathrm{~A}$), and more capacitance when driving heavier loads. Routing from the output to the load and return to the ground plane must have minimal loop area to keep inductance to a minimum.

ESD PROTECTION WHEN POWERED

ICs react to ESD strikes differently when unpowered vs. powered, which falls under IEC-61000-4-2 standards (see the Absolute Maximum Ratings section). A device that performs well under HBM conditions can perform poorly under International Electrotechnical Commission (IEC) conditions. The ADA4097-1 is thoroughly abused with ESD strikes under IEC conditions to create a front-end circuit protection scheme that protects the device if subjected to ESD strikes. Figure 63 and Figure 64 show two different protection schemes that extend the protection of the ADA4097-1 to $\pm 8 \mathrm{kV}$ ESD strikes.

Consider the following when selecting components:

- A component size of 0805 or larger to reduce chance of arc-over.
- Pulse withstanding, thick film resistors.
- C0G MLCC with a minimum rating of 100 V .
- Bidirectional, transient voltage suppression (TVS) diodes.

In the circuit shown in Figure 64, R1 is a 220Ω, Panasonic, 0805, ERJ-P6 series, and D1 is a Bourns CDSOD323-T36SC. An ESD varistor can be considered for D1.

For more information on system level ESD considerations, see the technical article, When Good Electrons Go Bad: How to Protect Your Analog Front End, on the Analog Devices, Inc., website.

RELATED PRODUCTS

Table 8 describes several alternative precision amplifiers that can also be considered for certain applications.

Figure 64. ESD Protection Circuit (R-TVS Network)
Table 8. ADA4097-1 Related Products

Model	Vos ($\mu \mathrm{V}$)	$\mathrm{I}_{\mathrm{B}}(\mathrm{nA})$	GBP (kHz)	$\mathbf{e n}_{\mathrm{n}}(\mathrm{nV} / \sqrt{ } \mathrm{Hz})$	IsY ($\mu \mathrm{A}$)	Common-Mode Input Range (V)
ADA4097-1	60	0.3	130	53	33	$-\mathrm{V}_{s}$ to $-\mathrm{V}_{\mathrm{s}}+70$
ADA4098-1	30	0.7	1000	17	165	$-\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}+70$
ADA4099-1	30	10	8000	7	1500	$-\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}+70$
ADA4077-1	35	1	3900	7	500	$-\mathrm{V}_{\mathrm{s}}$ to $+\mathrm{V}_{\mathrm{s}}$
LT6015	50	5	3200	18	335	$-\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}+76$
LT6014	60	0.4	1600	9.5	165	$-\mathrm{V}_{\mathrm{s}}$ to $+\mathrm{V}_{\mathrm{s}}$
LT1494	375	1	2.7	185	1.5	$-\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}+36$
LT1490A	500	8	180	50	55	$-\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}+44$

TYPICAL APPLICATIONS

Figure 65. ± 10 V to 0 V to +5 V Funnel Amplifier, High CMRR and ± 80 V Input Protection via LT5400-7 Resistor Network

Figure 66. $\pm 10 \mathrm{~V}$ to 0 V to +5 V Funnel Amplifier, Input and Output Voltages

Figure 67. $\pm 10 \mathrm{~V}$ to 0 V to +5 V Funnel Amplifier, System Gain

Figure 68. $\pm 10 \mathrm{~V}$ to 0 V to +5 V Funnel Amplifier, Large Signal Pulse Response

Figure 70.1 V/A High-Side Current Sense

Figure 71. Microprocessor Control of SHDN Pin in Split Supply Applications

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-193-AA
Figure 72. 6-Lead Thin Small Outline Transistor Package [TSOT] (UJ-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADA4097-1BUJZ-R5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 -Lead TSOT	$\mathrm{UJ}-6$	Y7K
ADA4097-1BUJZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$6-$ Lead TSOT	UJ-6	Y7K
ADA4097-1HUJZ-RL7	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	6 -Lead TSOT	$\mathrm{UJ}-6$	Y7L
EVAL-ADA4097-1HUJZ		Evaluation Board		

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB LT1678IS8 042225DB 058184EB UPC822G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17TE/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZRL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG NCV4333DTBR2G

