1:3 and 1:4 Single-Ended, Low Cost, Active RF Splitters

Data Sheet

ADA4304-3/ADA4304-4

FEATURES

Ideal for CATV and terrestrial applications

2.4 GHz, -3 dB bandwidth

1 dB flatness: 54 MHz to 865 MHz
Low noise figure: $\mathbf{4 . 6 ~ d B}$
Low distortion
Composite second-order (CSO): -62 dBc
Composite triple beat (CTB): -72 dBc
Nominal 3 dB gain per output channel
$\mathbf{2 5 d B}$ output-to-output isolation, $50 \mathbf{~ M H z}$ to $1000 \mathbf{~ M H z}$
75Ω input and outputs
Small package size: 16 -lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP

APPLICATIONS

Set-top boxes

Residential gateways
CATV distribution systems

Splitter modules

Digital cable ready (DCR) TVs

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

GENERAL DESCRIPTION

The ADA4304-3/ADA4304-4 are 75Ω active splitters for use in applications where a lossless signal split is required. Typical applications include multituner digital set-top boxes, cable splitter modules, multituners/digital cable ready (DCR) televisions, and home gateways where traditional solutions require discrete passive splitter modules with separate fixed gain amplifiers.

The ADA4304-3/ADA4304-4 are fabricated using the Analog Devices, Inc., proprietary silicon germanium (SiGe), complementary bipolar process, enabling them to achieve very low levels of distortion with a noise figure of 4.6 dB . The parts provide low cost alternatives that simplify designs and improve system performance by integrating a signal splitter element and a gain block into a single IC. The ADA4304-3/ADA4304-4 are available in a 16 -lead LFCSP and operate in the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features .1
Applications 1
Functional Block Diagrams 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
REVISION HISTORY
7/2016-Rev. 0 to Rev. A
Changes to Figure 4, Figure 5, Table 4, and Table 5

\qquadDeleted Evaluation Boards Section, RF Layout ConsiderationsSection, Power Supply Section, and Figure 21; RenumberedSequentially10
Deleted Figure 22 and Figure 23 11
Updated Outline Dimensions 12
Changes to Ordering Guide 12
Pin Configurations and Function Descriptions 5
Typical Performance Characteristics 6
Test Circuits 9
Applications 10
Circuit Description 10
Outline Dimensions 11
Ordering Guide 11

11/2007—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	ADA4304-3			ADA4304-4			Unit
		Min	Typ	Max	Min	Typ	Max	
DYNAMIC PERFORMANCE Bandwidth (-3 dB) Frequency Range Gain Gain Flatness	See Figure 19 for test circuit $\begin{aligned} & f=100 \mathrm{MHz} \\ & 54 \mathrm{MHz} \text { to } 865 \mathrm{MHz} \end{aligned}$	54	$\begin{aligned} & 2400 \\ & \\ & 3.3 \\ & 1.0 \end{aligned}$	865	54	$\begin{aligned} & 2400 \\ & 2.9 \\ & 1.0 \end{aligned}$	865	MHz MHz dB dB
NOISE/DISTORTION PERFORMANCE Noise Figure ${ }^{1}$ Output IP3 Output IP2 Composite Triple Beat (CTB) Composite Second Order (CSO) Cross Modulation (CXM)	@ 54 MHz @ 550 MHz @ 865 MHz $\begin{aligned} & f_{1}=97.25 \mathrm{MHz}, f_{2}=103.25 \mathrm{MHz} \\ & f_{1}=97.25 \mathrm{MHz}, f_{2}=103.25 \mathrm{MHz} \end{aligned}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, 100% modulation @ $15.75 \mathrm{kHz}, \mathrm{f}=865 \mathrm{MHz}$		4.0 4.6 4.8 26 43 -72 -62 -68			$\begin{aligned} & 4.0 \\ & 4.6 \\ & 4.8 \\ & 26 \\ & 43 \\ & -72 \\ & -62 \\ & -68 \end{aligned}$		dB dB dB dBm dBm dBc dBC dBc
INPUT CHARACTERISTICS Input Return Loss Output-to-Input Isolation	See Figure 19 for test circuit @ 54 MHz @ 550 MHz @ 865 MHz Any output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz		$\begin{aligned} & -17 \\ & -22 \\ & -12 \\ & -33 \\ & -33 \\ & -34 \end{aligned}$	$\begin{aligned} & -13 \\ & -16 \\ & -8 \\ & -30 \\ & -30 \\ & -31 \end{aligned}$		$\begin{aligned} & -18 \\ & -21 \\ & -12 \\ & -33 \\ & -33 \\ & -35 \end{aligned}$	$\begin{aligned} & -14 \\ & -15 \\ & -8 \\ & -31 \\ & -31 \\ & -32 \end{aligned}$	dB dB dB dB dB dB
OUTPUT CHARACTERISTICS Output Return Loss Output-to-Output Isolation 1 dB Compression (P1dB)	See Figure 19 and Figure 20 for test circuits Any output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Any output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Output referred, $\mathrm{f}=100 \mathrm{MHz}$		$\begin{aligned} & -21 \\ & -16 \\ & -14 \\ & -26 \\ & -25 \\ & -25 \\ & 9.0 \end{aligned}$	$\begin{aligned} & -17 \\ & -11 \\ & -9 \end{aligned}$		$\begin{aligned} & -21 \\ & -17 \\ & -14 \\ & -26 \\ & -25 \\ & -25 \\ & 8.7 \end{aligned}$	$\begin{aligned} & -17 \\ & -12 \\ & -9 \end{aligned}$	dB dBm
POWER SUPPLY Nominal Supply Voltage Quiescent Supply Current		4.75	$\begin{aligned} & 5.0 \\ & 92 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 105 \end{aligned}$	4.75	$\begin{aligned} & 5.0 \\ & 92 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 105 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	5.5 V
Power Dissipation	See Figure 3
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the device (including exposed pad) soldered to a high thermal conductivity 4-layer (2s2p) circuit board, as described in EIA/JESD 51-7.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
16-Lead LFCSP (Exposed Pad)	98	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4304-3/ ADA4304-4 package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is essentially equal to the quiescent power dissipation, that is, the supply voltage (V_{s}) times the quiescent current (I_{s}). In Table 1, the maximum power dissipation of the ADA4304-3/ADA4304-4 can be calculated as

$$
P_{D(M A X)}=5.25 \mathrm{~V} \times 105 \mathrm{~mA}=551 \mathrm{~mW}
$$

Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more metal directly in contact with the package leads/exposed pad from metal traces, through-holes, ground, and power planes reduces the $\theta_{\text {JA }}$.
Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 16-lead LFCSP ($98^{\circ} \mathrm{C} / \mathrm{W}$) on a JEDEC standard 4-layer board.

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. NIC = NO INTERNAL CONNECTION.
2. EPAD SHOULD BE CONNECTED TO GND. \%

Figure 4. ADA4304-3Pin Configuration

NOTES

1. EPAD SHOULD BE CONNECTED TO GND.

Figure 5. ADA4304-4 Pin Configuration

Table 4. ADA4304-3 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,15$,	VCC	Supply Pin.
16		
3,5 to 7,	GND	Ground.
9,11		
4	VIN	Input.
8	NIC	No Internal Connection.
10	VOUT3	Output 3.
12	VOUT2	Output 2.
13	VOUT1	Output 1.
14	IL	Bias Pin.
	EPAD	Exposed Pad. Exposed pad should be connected to GND.

Table 5. ADA4304-4 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,15,16$	VCC	Supply Pin.
3,5 to 7,	GND	Ground.
9,11		
4	VIN	Input.
8	VOUT4	Output 4.
10	VOUT3	Output 3.
12	VOUT2	Output 2.
13	VOUT1	Output 1.
14	IL	Bias Pin.
	EPAD	Exposed Pad. Exposed pad should be
		connected to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 6. Composite Second Order (CSO) vs. Frequency

Figure 7. Composite Triple Beat (CTB) vs. Frequency

Figure 8. Cross Modulation (CXM) vs. Frequency

Figure 9. Noise Figure vs. Frequency

Figure 10. Output IP2 vs. Frequency

Figure 11. Output IP3 vs. Frequency

Figure 12. ADA4304-3 Gain vs. Frequency

Figure 13. ADA4304-4 Gain vs. Frequency

Figure 14. Output-to-Input Isolation vs. Frequency

Figure 15. Output-to-Output Isolation vs. Frequency

Figure 16. Input Return Loss vs. Frequency

Figure 17. Output Return Loss vs. Frequency

Figure 18. Quiescent Supply Current vs. Temperature

TEST CIRCUITS

$\begin{array}{ll}\text { 1. TESTED FOR ALL COMBINATIONS OF } & \stackrel{\text { ®. }}{\text { I }} \\ \text { VOUTm AND VOUTn. } & \stackrel{0}{0}\end{array}$
Figure 19. Test Circuit for Transmission, Isolation, and Reflection Measurements

Figure 20. Test Circuit for Output-to-Output Isolation Measurements

APPLICATIONS

The ADA4304-3/ADA4304-4 active splitters are primarily intended for use in the downstream path of television set-top boxes (STBs) that contain multiple tuners. They are typically located directly after the diplexer in a bidirectional CATV customer premise unit. The ADA4304-3/ADA4304-4 provide a single-ended input and three or four single-ended outputs that allow the delivery of the RF signal to multiple signal paths. These paths can include, but are not limited to, a main picture tuner, the picture-in-picture (PIP) tuner, an out-of-band (OOB) tuner, a digital video recorder (DVR), and a cable modem (CM).
The ADA4304-3/ADA4304-4 exhibit composite second-order (CSO) and composite triple beat (CTB) products that are -62 dBc and -72 dBc , respectively. The use of the SiGe bipolar process also allows the ADA4304-3/ADA4304-4 to achieve a noise figure (NF) of 4.6 dB at 550 MHz .

CIRCUIT DESCRIPTION

The ADA4304-3/ADA4304-4 consist of a low noise buffer amplifier followed by a resistive power divider. This arrangement provides 3.3 dB (ADA4304-3) or 2.9 dB (ADA4304-4) of gain relative to the RF signal present at the input of the device. The input and each output must be properly matched to a 75Ω environment for distortion and noise performance to match the data sheet specifications. AC coupling capacitors of $0.01 \mu \mathrm{~F}$ are recommended for the input and outputs.
A $1 \mu \mathrm{H}$ RF choke (Coilcraft chip inductor 0805LS-102X) is required to correctly bias the internal nodes of the ADA4304-3/ ADA4304-4. It should be connected between the 5 V supply and the IL pin (Pin 14). The choke should be placed as close as possible to the ADA4304-3/ADA4304-4 to minimize parasitic capacitance on the IL pin, which is critical for achieving the specified bandwidth and flatness.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.
Figure 21. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-21)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADA4304-3ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ Lead LFCSP	CP-16-21	5,000	H 16
ADA4304-3ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP	CP-16-21	1,500	H 16
ADA4304-3ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$-ead LFCSP	CP-16-21	250	H 16
ADA4304-4ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP	CP-16-21	5,000	H 10
ADA4304-4ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ Lead LFCSP	CP-16-21	1,500	H 10
ADA4304-4ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ Lead LFCSP	CP-16-21	250	H 10

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Wireless Misc category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
R415720000 HMC598-SX RX98-4 MABT-011000-14235P W2SW0001-SHLD HMC1110-SX HMC579-SX R417703118 MA4BN1840-1 HMC443LP4ETR HMC561LP3ETR STHVDAC-253MF3 ADL5390ACPZ-REEL7 ADA4304-2ACPZ-R7 ADA4304-3ACPZ-R2

ADA4304-4ACPZ-R2 ADA4304-4ACPZ-R7 ADA4304-3ACPZ-R7 HMC760LC4B HMC577LC4B HMC370LP4E HMC444LP4E
HMC445LP4E HMC448 HMC1096LP3ETR HMC573LC3BTR HMC575LP4 HMC575LP4E HMC576 HMC576LC3B HMC576LC3BTR HMC578 HMC578LC3B HMC578LC3BTR HMC578-SX HMC579 HMC598 HMC695LP4E HMC814 HMC814LC3B HMC814LC3BTR HMC814-SX SML1 MAX2045ETJ+ CMX882E1 CMX881E1 SA606DK/01,118 MAX1005CEE+ MAX2046ETJ MAX9990ETP+

[^0]: ${ }^{1}$ Characterized with 50Ω noise figure analyzer.

