FEATURES

Supply voltage range: 4.5 V to 36 V
Offset voltage: $\pm 4 \mu \mathrm{~V}$ maximum at 5 V
Offset voltage drift: $0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum at 5 V
Input noise
Voltage: $\mathbf{8 8} \mathbf{n V}$ p-p from $\mathbf{0 . 1} \mathbf{~ H z}$ to $\mathbf{1 0 ~ H z ~ t y p i c a l ~}$
Spectral density voltage: $4.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ typical at $1 \mathbf{k H z}$
Rail-to-rail output
Unity-gain stable
GBP: 5 MHz typical
Slew rate: $1.8 \mathrm{~V} / \mu \mathrm{s}$ typical falling
PSRR: 168 dB typical at $\mathrm{V}_{\mathrm{s}}=4.5 \mathrm{~V}$ to 36 V
Open-loop voltage gain: 160 dB typical at $\mathrm{V}_{\text {out }}=\mathbf{- 1 4 . 7 5} \mathrm{V}$ to $+14.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=\mathbf{3 0} \mathrm{V}$
CMRR: 160 dB typical at $\mathrm{V}_{\mathrm{CM}}=-15.1 \mathrm{~V}$ to $+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=\mathbf{3 0} \mathrm{V}$
Integrated EMI filters
Shutdown mode
Ground sense
Available in 8-lead SOIC, 8-lead MSOP, and 8-lead LFCSP

APPLICATIONS

High resolution data acquisition
Reference buffering
Test and measurement
Electronic scales
Thermocouple amplifiers
Strain gages
Low-side current sense

GENERAL DESCRIPTION

The ADA4523-1 is a high voltage, low noise, zero drift op amp that offers precision dc performance over a wide supply range of 4.5 V to 36 V . Offset voltage and $1 / \mathrm{f}$ noise are suppressed, allowing this op amp to achieve a maximum offset voltage of $\pm 4 \mu \mathrm{~V}$ and a 0.1 Hz to 10 Hz input noise voltage of 88 nV p-p typical. The self calibrating circuitry of the ADA4523-1 results in low offset voltage drift with temperature ($0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum) and zero drift over time. Additionally, the ADA4523-1 uses on-chip filtering to achieve high immunity to electromagnetic interference (EMI).
Wide supply range, combined with low noise, low offset, 168 dB power supply rejection ratio (PSRR), and 160 dB common-mode rejection ratio (CMRR), make the ADA4523-1 well suited for high dynamic range test, measurement, and instrumentation systems.

TYPICAL APPLICATION DIAGRAM

Figure 1. Precision Filtering Voltage Reference Buffer
The ADA4523-1 provides a rail-to-rail output swing and an input common-mode range that includes the V^{-}rail $\left(\mathrm{V}^{-}-0.1 \mathrm{~V}\right.$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).

Figure 2. Input-Referred Voltage Noise Density vs. Frequency, Zero Drift Amplifier Family Comparison

COMPANION PRODUCTS

Voltage References: LTC6655 and ADR4525
Low Noise High Speed Amplifier: LT6202
ADC: LTC2500-32
Low Noise, Low Dropout Regulators: LT3093 and LT3042
Additional companion products for the ADA4523-1 can be found in the Related Products section.

[^0]
TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Typical Application Diagram 1
Companion Products 1
Revision History 2
Specifications 3
5 V Electrical Characteristics 3
30 V Electrical Characteristics 5
Absolute Maximum Ratings 7
Thermal Resistance 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics 10
Theory of Operation 20
REVISION HISTORY
4/2020—Revision 0: Initial Version

SPECIFICATIONS

5 V ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)= \pm 2.5 \mathrm{~V}\left(\mathrm{~V}^{+}=+2.5 \mathrm{~V}\right.$ and $\left.\mathrm{V}^{-}=-2.5 \mathrm{~V}\right)$, and common-mode voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)=$ output voltage $\left(\mathrm{V}_{\text {out }}\right)=0 \mathrm{~V}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage ${ }^{1}$	Vos			± 0.5	± 4	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			± 5	$\mu \mathrm{V}$
Offset Voltage Drift ${ }^{1}$	TCVos	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.01	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current ${ }^{2}$	I_{B}			100	300	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			600	pA
Input Offset Current ${ }^{2}$	los			200	600	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			800	pA
Input Voltage Range	IVR	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-2.6		+1	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {cm }}=-2.6 \mathrm{~V}$ to +1 V	124	146		dB
		$\mathrm{V}_{\text {CM }}=-2.5 \mathrm{~V}$ to $+1 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	124			
Input Resistance Differential	RIN					
				47		$\mathrm{k} \Omega$
Common Mode				100		$\mathrm{G} \Omega$
Input Capacitance	CIN					
Differential				13		pF
Common Mode				20		pF
Open-Loop Voltage Gain	A_{v}	$\begin{aligned} & \text { Vout }=-2.3 \mathrm{~V} \text { to }+2.3 \mathrm{~V}, \\ & \text { load resistance }\left(\mathrm{R}_{\mathrm{L}}\right)=1 \mathrm{k} \Omega \end{aligned}$	125	150		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	125			dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing Low	Vol	Vol $=\mathrm{V}_{\text {OUT }}-\mathrm{V}^{-}$				
		No load		12	20	mV
		No load, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			30	mV
		Sink current (lsink $)=1 \mathrm{~mA}$		52	75	mV
		$\mathrm{I}_{\text {IINK }}=1 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			100	mV
		$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		215	300	mV
		$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			400	mV
Output Voltage Swing High	Vor	$\mathrm{V}_{\text {OH }}=\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}$				
		No load		1.3	10	mV
		No load, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			20	mV
		Source current ($\mathrm{IsOURCE}^{\text {a }}$) $=1 \mathrm{~mA}$		22	40	mV
		ISOURCE $=1 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			55	mV
		$\mathrm{I}_{\text {SOURCE }}=5 \mathrm{~mA}$		106	150	mV
		ISOURCE $=5 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			200	mV
Short-Circuit Current	Isc	Sourcing	+25	+36		mA
		Sinking	-25	-30		mA

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier Shutdown Amplifier Current	PSRR I_{s}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} \text { to } 36 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 168 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 6 \\ & 6 \\ & 7.5 \\ & \hline \end{aligned}$	dB dB mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate Rising Falling Internal Chopping Frequency	GBP SRRISE SR fall f_{c}	$\begin{aligned} & \mathrm{G}=-1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{G}=-1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 5 \\ & 1.85 \\ & 1.8 \\ & 330 \\ & \hline \end{aligned}$		MHz V/ $\mu \mathrm{s}$ V/us kHz
INPUT NOISE Spectral Density Current Voltage Voltage	i_{n} e_{n} en P-p $\mathrm{e}_{\mathrm{n} \text { RMS }}$	1 kHz 1 kHz 0.1 Hz to 10 Hz 0.1 Hz to 10 Hz		$\begin{aligned} & 1 \\ & 4.2 \\ & 88 \\ & 13.3 \end{aligned}$		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ nV p-p nV rms
SHUTDOWN CHARACTERISTICS Shutdown Threshold ($\overline{\mathrm{SD}}$ - SDCOM) Low High SDCOM Voltage Range $\overline{\text { SD }}$ Current SDCOM Current	$V_{\text {sDL }}$ $V_{\text {SDH }}$ $I_{\overline{S D}}$ Isdcom	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{V}_{\overline{\mathrm{SD}}}-\mathrm{V}_{\text {SDCOM }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\overline{\mathrm{SD}}}-\mathrm{V}_{\text {SDCOM }}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & -2.5 \\ & -1.5 \end{aligned}$	-0.5 3	$\begin{aligned} & 0.8 \\ & +0.15 \\ & 6 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & \mu A \\ & \mu A \end{aligned}$

${ }^{1}$ These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing. $V_{o s}$ is measured to a limit determined by the test equipment capabilities.
${ }^{2}$ The input bias current and input offset current are measured using an equivalent source impedance of $100 \mathrm{M} \Omega \| 51 \mathrm{pF}$.

30 V ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\left(\mathrm{~V}^{+}=+15 \mathrm{~V}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}\right)$, and $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {out }}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate Rising Falling Internal Chopping Frequency EMI Rejection Ratio +IN	SRRISE SRfall fc EMIRR	$\begin{aligned} & A_{V}=-1, R_{L}=10 \mathrm{k} \Omega \\ & A_{V}=-1, R_{L}=10 \mathrm{k} \Omega \end{aligned}$ Input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)=-10 \mathrm{dBm}$ peak, frequency (f) $=400 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBm}$ peak, $\mathrm{f}=900 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBm}$ peak, $\mathrm{f}=1800 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBm}$ peak, $\mathrm{f}=2400 \mathrm{MHz}$		5 1.85 1.8 330 80 140 90 94		MHz V/ $\mu \mathrm{s}$ V/us kHz dB dB dB dB
INPUT NOISE Spectral Density Current Voltage Voltage	i_{n} e_{n} $\mathrm{e}_{\mathrm{n} \text { P-P }}$ $\mathrm{e}_{\mathrm{n}} \mathrm{RMS}$	1 kHz 1 kHz 0.1 Hz to 10 Hz 0.1 Hz to 10 Hz		$\begin{aligned} & 1 \\ & 4.2 \\ & 88 \\ & 13.3 \end{aligned}$		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ nV p-p nV rms
SHUTDOWN CHARACTERISTICS Shutdown Threshold ($\overline{\mathrm{SD}}$ - SDCOM) Low High SDCOM Voltage Range $\overline{\text { SD Current }}$ SDCOM Current	$V_{\text {SDL }}$ VSDH $I_{\text {SD }}$ Isdcom	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{V}_{\text {SD }}-\mathrm{V}_{\text {SDCOM }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {SD }}-\mathrm{V}_{\text {SDCOM }}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & -15 \\ & -1.5 \end{aligned}$	-0.5 3	$\begin{aligned} & 0.8 \\ & +12.65 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, V^{+}to V^{-}	40 V
Input Voltage	
+IN and -IN ${ }^{1}$	$\mathrm{V}^{-}-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
$\overline{S D}$ and SDCOM	$\mathrm{V}^{-}-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current	
+IN and -IN ${ }^{1}$	$\pm 10 \mathrm{~mA}$
$\overline{S D}$ and SDCOM	$\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration ${ }^{2}$	Indefinite
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
Electrostatic Discharge (ESD)	
Human Body Model (HBM)	4.0 kV
Field Induced Charge Device Model (FICDM) ${ }^{3}$	2.0 kV
${ }^{1}$ Limit the input current to less than 10 mA . The input voltage must not exceed 300 mV beyond the power supply. These limits are set by the ESD protection structures at the input pins.	
${ }^{2} \mathrm{~A}$ heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.	
${ }^{3}$ JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard.	
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.	

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is the junction to ambient, thermal resistance.
θ_{JC} is the junction to case, thermal resistance. For θ_{JC} on the exposed pad package, such as CP-8-29, heat sink applies to the package bottom exposed pad only.

Table 4. Thermal Resistance

Package Type ${ }^{1}$	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{\prime} \mathbf{c}}$	Unit
R-8	120	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RM-8	163	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
CP-8-29	43	5.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Measured with JEDEC 4-layer high effective thermal conductivity board.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. NIC = NOT INTERNALLY CONNECTED. THIS PIN

IS NOT CONNECTED INTERNALLY.
Figure 3. 8-Lead SOIC_N Pin Configuration

Table 5. 8-Lead SOIC_N Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\overline{\text { SD }}$	Shutdown Control Pin.
2	-IN	Inverting Input of the Amplifier.
3	+IN	Noninverting Input of the Amplifier.
4	$\mathrm{~V}^{-}$	Negative Power Supply.
5	NIC	Not Internally Connected. This pin is not connected internally.
6	OUT	Amplifier Output.
7	$\mathrm{~V}^{+}$	Positive Power Supply.
8	SDCOM 2	Reference Voltage for $\overline{\mathrm{SD} .}$

Figure 4. 8-Lead MSOP Pin Configuration

Table 6. 8-Lead MSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\overline{\text { SD }}$	Shutdown Control Pin.
2	- IN	Inverting Input of the Amplifier.
3	+ IN	Noninverting Input of the Amplifier.
4	$\mathrm{~V}^{-}$	Negative Power Supply.
5	NIC	Not Internally Connected. This pin is not connected internally.
6	OUT	Amplifier Output.
7	$\mathrm{~V}^{+}$	Positive Power Supply.
8	SDCOM 2	Reference Voltage for $\overline{\text { SD. }}$

NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY.
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO V^{-}.

Figure 5. 8-Lead LFCSP Pin Configuration

Table 7. 8-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\overline{S D}$	Shutdown Control Pin.
2	-IN	Inverting Input of the Amplifier.
3	+ IN	Noninverting Input of the Amplifier.
4	$\mathrm{~V}^{-}$	Negative Power Supply.
5	NIC	Not Internally Connected. This pin is not connected internally.
6	OUT	Amplifier Output.
7	$\mathrm{~V}^{+}$	Positive Power Supply.
8	SDCOM	Reference Voltage for $\overline{\text { SD. }}$
9	EPAD	Exposed Pad. The exposed pad must be connected to V^{-}.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 6. Input Offset Voltage (Vos) Distribution, $V_{s}= \pm 2.5 \mathrm{~V}$ (N Is Total Number of Amplifiers, μ is Mean, and σ is Standard Deviation)

Figure 7. Vos Distribution, $V_{S}= \pm 15 \mathrm{~V}$

Figure 8. Input Offset Drift (TCVos) Distribution, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 9. $T C V_{o s}$ Distribution, $V_{s}= \pm 15 \mathrm{~V}$

Figure 10. Vos vs. $V_{с м}, V_{S}=5 \mathrm{~V}$

Figure 11. Vos vs. $V_{с м}, V_{s}=30 \mathrm{~V}$

Figure 12. Vos vs. V_{S}

Figure 13. Vos Long Term Drift

Figure 14. IB vs. Temperature

Figure 15. I_{B} VS. $V_{C M}, V_{S}=5 \mathrm{~V}$

Figure 16. I_{B} Vs. $V_{C M}, V_{S}=30 \mathrm{~V}$

Figure 17. I_{B} vs. V_{S}

Figure 18. 0.1 Hz to 10 Hz , Input Referred Voltage Noise, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 19. 0.1 Hz to 10 Hz , Input Referred Voltage Noise, $V_{s}= \pm 15 \mathrm{~V}$

Figure 20. Input Referred Voltage Noise Density vs. Frequency, $V_{s}= \pm 15 \mathrm{~V}$

Figure 21. Integrated Input Voltage Noise vs. Frequency

Figure 22. Input Referred Current Noise Density vs. Frequency ($C_{\text {EXT }}$ Is the External Capacitance)

Figure 23. CMRR vs. Frequency

Figure 24. PSRR vs. Frequency

Figure 25. Closed-Loop Gain vs. Frequency (C_{F} Is the Feedback Capacitor and $R_{L, \text { efF }}$ Is the Effective Load Resistance)

Figure 26. Gain and Phase vs. Frequency, $V_{s}= \pm 2.5 \mathrm{~V}$
(C_{L} Is the Load Capacitance)

Figure 27. Gain and Phase vs. Frequency, $V_{S}= \pm 15 \mathrm{~V}$

Figure 28. Shutdown Transient with Sinusoid Input, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 29. Shutdown Transient with Sinusoid Input, $V_{S}= \pm 15 \mathrm{~V}$

Figure 30. Closed-Loop Output Impedance ($Z_{\text {OUT }}$) vs. Frequency, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 31. Closed-Loop Zout Vs. Frequency, $V_{S}= \pm 15 \mathrm{~V}$

Figure 32. Zout vs. Frequency in Shutdown

Figure 33. Total Harmonic Distortion plus Noise (THD + N) vs. Output Amplitude ($f_{\text {IN }}$ Is the Input Frequency)

Figure 34. THD $+N$ vs. Frequency

Figure 35. Maximum Undistorted Output Amplitude vs. Frequency

Figure 36. Is vs. Vs for Various Temperatures

Figure 37. Is vs. Temperature

Figure 38. Shutdown Is vs. V ${ }_{s}$ for Various Temperatures

Figure 39. I vs. $\overline{S D}-S D C O M$ Voltage for Various Temperatures, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 40. Is vs. $\overline{S D}-S D C O M$ Voltage for Various Temperatures, $V_{S}= \pm 15 \mathrm{~V}$

Figure 41. $\overline{S D}$ and SDCOM Currents vs. $\overline{S D}-$ SDCOM Voltage

Figure 42. $\overline{S D}$ and SDCOM Currents vs. V_{S}

Figure 43. No Phase Reversal

Figure 44. $V_{O H}$ vs. I ISOURCE for Various Temperatures, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 45. $V_{\text {OH }}$ Vs. I ISOURCE for Various Temperatures, $V_{S}= \pm 15 \mathrm{~V}$

Figure 46. V OL Vs. ISINK for Various Temperatures, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 47. Vol vs. IsIIк for Various Temperatures, $V_{s}= \pm 15 \mathrm{~V}$

Figure 48. $I_{s C}$ vs. Temperature, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 49. Isc vs. Temperature, $V_{S}= \pm 15 \mathrm{~V}$

Figure 50. Large Signal Response, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 51. Large Signal Response, $V_{S}= \pm 15 \mathrm{~V}$

Figure 52. Small Signal Response, $V_{S}= \pm 2.5 \mathrm{~V}$

Figure 53. Small Signal Response, $V_{S}= \pm 15 \mathrm{~V}$

Figure 54. Small Signal Overshoot vs. $C_{L}, V_{S}= \pm 2.5 \mathrm{~V}$

Figure 55. Small Signal Overshoot vs. $C_{L}, V_{S}= \pm 15 \mathrm{~V}$

Figure 56. Output Series Resistance $\left(R_{S}\right)$ vs. C_{L} and Overshoot

Figure 57. Large Signal Positive Settling Transient

Figure 58. Large Signal Negative Settling Transient

Figure 59. EMI Rejection Ratio (EMIRR) +IN vs. Frequency (VIN, PEAK Is the Peak Input Voltage and Vout, DC Is the DC Output Voltage)

Figure 60. Negative Output Overload Recovery, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 61. Negative Output Overload Recovery, $V_{s}= \pm 15 \mathrm{~V}$

Figure 62. Positive Output Overload Recovery, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 63. Positive Output Overload Recovery, $V_{S}= \pm 15 \mathrm{~V}$

THEORY OF OPERATION

The block diagram and clamp circuits are shown in Figure 64.

Figure 64. Block Diagram and Clamp Circuits (SD Is the Internal Shutdown)

INPUT VOLTAGE NOISE

Chopper stabilized amplifiers, such as the ADA4523-1, achieve low offset and 1/f noise by heterodyning dc and flicker noise to higher frequencies. In a typical chopper stabilized amplifier, this process results in idle tones at the chopping frequency and its odd harmonics.

The ADA4523-1 uses circuitry to suppress these spurious artifacts to below the offset voltage. The typical ripple magnitude at the 330 kHz chopping frequency is less than $1 \mu \mathrm{~V} \mathrm{rms}$.
The input voltage noise spectral density of the ADA4523-1 is shown in Figure 20. If lower noise is required, see Figure 75 in the Applications Information section.

INPUT CURRENT NOISE

For applications with high source impedances, input current noise can be a significant contributor to the total output noise. For this reason, it is important to consider noise current interaction with circuit elements placed at the inputs of the amplifier.

The input current noise spectral density of the ADA4523-1 is shown in Figure 22 and as measured by the circuit in Figure 65, with a shunt capacitance $\left(\mathrm{Cext}_{\mathrm{E}}\right)=0 \mathrm{pF}$. The characteristic curve shows no $1 / \mathrm{f}$ behavior. As with all zero drift amplifiers, there is a significant current noise component at the offset nulling frequency, which is discussed further in the Input Bias Current section.

It is important to note that the current noise is not equal to $2 q^{1} \mathrm{I}_{\mathrm{B}}$, where q is the charge of an electron, 1.6×10^{-19} Coulombs. This formula is relevant for base current in bipolar transistors and diode currents. However, for most chopper and autozero amplifiers with switched inputs, the dominant current noise mechanism is not shot noise.

Figure 65. Input Current Noise Spectrum Test Circuit

INPUT BIAS CURRENT

The input bias current of the ADA4523-1 comprises two different currents, leakage and charge injection. Leakage current increases with temperature, while the charge injection current from the switching input remains relatively constant with temperature. The composite of these two currents over temperature is shown in Figure 14.
How the various input bias currents behave and contribute to error depends on the nature of the source impedance. For the input bias currents specified in Table 1 and Table 2, the source impedances are high value resistors bypassed with $\mathrm{C}_{\text {ExT }}$, in the same configuration as shown in Figure 65. Figure 66 shows the effective dc error as an input referred current error (output dc voltage error divided by gain and then by the source resistance) as a function of Cext. Note that the effective dc error decreases as the capacitance increases. The added $\mathrm{C}_{\mathrm{EXT}}$ also reduces the input referred current noise density as shown in Figure 67.

Figure 66. Effective I_{B} vs. $C_{E X T}$

Figure 67. Input Referred Current Noise Density vs. Frequency for $C_{E X T}=0 p F$ and $C_{E X T}=50 \mathrm{pF}$

Another function of the input capacitance is to reduce the effects of charge injection. The charge injection-based current has frequency components at the 330 kHz chopping frequency and its harmonics. In the time domain, these frequency components appear as current pulses (appearing at regular intervals related to the chopping frequency). When these small current pulses interact with source impedances or gain setting resistors, the resulting voltage spikes are amplified by the closed-loop gain.

For higher source impedances, this may cause the 330 kHz chopping frequency to be visible in the output spectrum, which is known as clock feedthrough. To prevent excessive clock feedthrough, keep the gain setting resistors and source impedances as low as possible. When dc highly resistive source impedance is required, the capacitor across the source impedance reduces the ac impedance, reducing the amplitude of the input voltage spikes. Another way to reduce clock injection effects is to bandwidth limit after the op amp output.
Injection currents from the two inputs are of equal magnitude but opposite direction. Therefore, when chopping behavior is the predominant source of I_{B}, the effects of I_{B} on the offset voltage cannot be canceled by placing matched impedances at both inputs.
Above $50^{\circ} \mathrm{C}$, ESD protection diode leakage current begins to dominate the input bias current and continues to increase exponentially at elevated temperatures. The input bias cancellation circuit of the ADA4523-1 minimizes this temperature driven growth of the leakage current to keep the input bias current low over all temperatures. Unlike injection current, leakage currents are in the same direction for both inputs. Therefore, the output error due to leakage current may be mitigated by matching the source impedances seen by the two inputs. If the source impedance matching technique is employed to cancel the effect of the leakage currents, at less than $50^{\circ} \mathrm{C}$, there is an offset voltage error of $2 I_{B} \times R$ due to the charge injection currents. For example, if $\mathrm{I}_{\mathrm{B}}=100 \mathrm{pA}$ and $\mathrm{R}=10 \mathrm{k} \Omega$, the error is $2 \mu \mathrm{~V}$.

THERMOCOUPLE EFFECTS

To achieve accuracy on the microvolt level, consider thermocouple effects. Any connection of dissimilar metals forms a thermoelectric junction and generates a small temperature dependent voltage, which is known as the Seebeck effect. These thermal electric magnetic fields (EMFs) can be the dominant error source in low drift circuits.

Connectors, switches, relay contacts, sockets, resistors, and solders are all candidates for significant thermal EMF generation. Even junctions of copper wire from different manufacturers can generate thermal EMFs of $200 \mathrm{nV} /{ }^{\circ} \mathrm{C}$, which is over 10 times the maximum drift specification of the ADA4523-1. Figure 68 and Figure 69 illustrate the potential magnitude of these voltages and their sensitivity to temperature.

Figure 68. Thermal EMF Generated by the Junction of Two Copper Wires from Different Manufacturers

Figure 69. Solder Copper Thermal EMFs

To minimize thermocouple induced errors, attention must be given to circuit board layout and component selection. It is good practice to minimize the number of junctions in the input signal path of the op amp and to avoid connectors, sockets, switches, and relays whenever possible. If such components are required, select these components for low thermal EMF characteristics. Furthermore, match the number, type, and layout of junctions for both inputs with respect to thermal gradients on the circuit board, which can involve deliberately introducing dummy junctions to offset unavoidable junctions.

Air currents can also lead to thermal gradients and cause significant noise in measurement systems. It is important to prevent airflow across sensitive circuits because doing so often reduces thermocouple noise substantially.
A summary of techniques is shown in Figure 70.

POWER DISSIPATION

Because the ADA4523-1 can operate at a 36 V total supply, take care with respect to power dissipation in the amplifier. When driving heavy loads at high voltages, use the θ_{JA} of the package to estimate the resulting die temperature rise and ensure that the resulting junction temperature does not exceed specified limits. In addition, consider PCB metallization and heat sinking when high power dissipation is expected.
The ADA4523-1 LFCSP features lower package thermal resistances compared to its standard counterparts. The LFCSP exposed pad facilitates heat sinking. The exposed bottom pad must be soldered to the PCB, and due to its internal connection to V^{-}, connecting the exposed pad to V^{-}is a requirement. For more efficient heat sinking, it is recommended that the exposed pad have as much PCB metal connected to the pad as reasonably available.

Thermal information for the ADA4523-1 packages can be found in the Thermal Resistance section.

2INTRODUCE DUMMY JUNCTIONS AND COMPONENTS TO OFFSET UNAVOIDABLE JUNCTIONS OR CANCEL THERMAL EMFS.
${ }^{3}$ ALIGN INPUTS SYMMETRICALLY WITH RESPECT TO THERMAL GRADIENTS.
4INTRODUCE DUMMY TRACES AND COMPONENTS FOR SYMMETRICAL THERMAL HEAT SINKING.
5LOADS AND FEEDBACK CAN DISSIPATE POWER AND GENERATE THERMAL GRADIENTS. BE AWARE OF THEIR THERMAL EFFECTS.
6COVER CIRCUIT TO PREVENT AIR CURRENTS FROM CREATING THERMAL GRADIENTS.

ELECTRICAL OVERSTRESS AND INPUT PROTECTION

Do not exceed the absolute maximum ratings. Avoid driving the input and output pins beyond the rails, especially at supply voltages approaching 40 V . The inputs of the ADA4523-1 are internally protected by ESD diodes and an ESD clamp (see Figure 64). When the inputs are driven above and/or below the supply rail, the inputs draw substantial input currents, as shown in Figure 71.

Figure 71. Input Current vs. Input Voltage Beyond Supply, ESD Protection Diode Forward Bias Voltage

If a large differential input voltage is imposed between +IN and -IN , the resulting input bias current is as shown in Figure 72. Note that the + IN and - IN bias currents are asymmetrical due to the input ESD clamp structure of the ADA4523-1. Some additional current is sourced from the supply when a large input voltage separates + IN from -IN , and this current then exits the device through -IN .

Figure 72. Input Current vs. Differential Input Voltage for $+I N$ and -IN and Various Temperatures

If overvoltage conditions cannot be prevented, a resistor in series (R_{IN}) with the threatened pin can limit fault current, Ioverload, to below the absolute maximum rating and reduce the possibility of device damage (see Figure 73).

$\mathrm{R}_{\text {IN }}$ LIMITS IOVERLOAD TO $<10 \mathrm{~mA}$
FOR $V_{\text {IN }}<10 \mathrm{~V}$ OUTSIDE OF THE SUPPLY RAILS.
Figure 73. Using a Resistor to Limit the Input Current
Keep the current-limit resistance low enough to not add noise and error voltages from interaction with the input bias currents. Resistances $\leq 1 \mathrm{k} \Omega$ do not significantly impact noise or precision. See Figure 71 and Figure 72 for the characteristics of the internal ESD diodes to help determine the appropriate value of the resistor.
In harsh environments, reliability can be enhanced further with protection circuitry. The circuit shown in Figure 74 uses low leakage diodes (Nexperia BAV199) to protect the input. R2 protects the external diodes, and R1 limits the current that may flow through the internal diodes. In this circuit, R1 can be small because the applied voltage is already reduced by the external protection diodes.

Figure 74. Input Protection Circuit Using External Diodes
In high temperature applications where the leakage currents of the internal ESD diodes dominate the input bias current, the circuit can benefit from adding an input bias cancellation resistor in the feedback path.

SHUTDOWN MODE

The ADA4523-1 features a shutdown mode for low power applications. In the off state, both amplifiers are shut off and draw less than $20 \mu \mathrm{~A}$ (maximum over temperature) of supply current per amplifier. In addition, in the off stage, both outputs present high impedances to external circuitry.

Keep in mind that during the off state, even with the amplifier output in high impedance, the output can still modulate by the input signal through the input differential clamp and the feedback resistor. (See Figure 64 for the location of the differential clamp.) In addition, depending on the resistor values, significant current can still be drawn from the input source.
Shutdown control is accomplished using the separate logic $\overline{\mathrm{SD}}$ reference voltage input (SDCOM) and the shutdown pin ($\overline{\mathrm{SD}})$. This method allows low voltage digital control logic to operate independently of the high voltage supply rails of the op amp. A summary of the shutdown control logic and operating ranges is shown in Table 8 and Table 9.

Table 8. Shutdown Control Logic

Shutdown Pin Condition	Amplifier State
$\overline{\mathrm{SD}}=$ float, SDCOM $=$ float	On
$\overline{S D}-$ SDCOM $\geq 2 \mathrm{~V}$	On
$\overline{\mathrm{SD}}-$ SDCOM $\leq 0.8 \mathrm{~V}$	Off

Table 9. Operating Voltage Range for Shutdown Pins

Mnemonic	Minimum	Maximum
$\overline{\mathrm{SD}}-\mathrm{SDCOM}$	-0.2 V	+5.2 V
SDCOM	V^{-}	$\mathrm{V}^{+}-2.35 \mathrm{~V}$
$\overline{\mathrm{SD}}$	V^{-}	V^{+}
If the shutdown feature is not required, leave $\overline{\mathrm{SD}}$ and SDCOM		
floating. Internal circuitry automatically keeps the amplifier in		
the on state.		
For operation in noisy environments, adding a capacitor		
between $\overline{\mathrm{SD}}$ and SDCOM is recommended to prevent noise		
from changing the shutdown state.		
When there is a danger of $\overline{\mathrm{SD}}$ and SDCOM pulling beyond the		
supply rails, adding resistance in series with the shutdown pins		
is recommended to limit current.		

APPLICATIONS INFORMATION

PARALLELING CHOPPERS TO IMPROVE NOISE

By using multiple amplifiers in parallel, voltage noise can be reduced at the cost of higher current noise because the voltage noise sources in each of the amplifiers are uncorrelated, while the input signal at each amplifier is correlated. The power of the correlated signal is multiplied by N , while the power of the uncorrelated noise is multiplied by $\sqrt{ } \mathrm{N}$. The net effect is a $\sqrt{ } N$ improvement in signal-to-noise ratio.

The resulting overall input current of the paralleled amplifiers is the sum of the input currents of each of the amplifiers, and the current noise scales accordingly.
When the current noise of an amplifier is far smaller than its voltage noise, as is the case with ADA4523-1, and the current noise does not pass through large impedances, trading higher current noise for lower voltage noise can be advantageous.
The overall gain of the circuit depicted in Figure 75 is

$$
A_{V}=(R 2 / R 1+1) \times(R 4 / R 3+1)
$$

If N is the number of paralleled amplifiers, the resulting change in input referred noise due to paralleling is

$$
\begin{aligned}
& 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \text { Noise }=88 \mathrm{nV} \text { p-p } / \sqrt{ } N \\
& e_{n}=(4.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}) / \sqrt{ } N \\
& i_{n}=\sqrt{ } N \times 1 \mathrm{pA} / \sqrt{ } \mathrm{Hz} \\
& I_{B}=N \times 300 \mathrm{pA}\left(\text { maximum at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

For the example of $\mathrm{N}=4$, as shown in Figure 75, the exact results are the following:

$$
\begin{aligned}
& 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \text { Noise }=44 \mathrm{nV} \text { p-p } \\
& e_{n}=2.1 \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\
& i_{n}=2 \mathrm{pA} / \sqrt{ } \mathrm{Hz} \\
& I_{B}=300 \mathrm{pA}\left(\text { maximum at } 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

R5 in Figure 75 must be a few hundred ohms to isolate the individual amplifier outputs without contributing significantly to noise or I_{B} induced error.

The choice of output amplifier is important for headroom, precision, and noise concerns as well. In Figure 75, the 60 V headroom of the LTC2057HV allows a wide signal swing, and its zero-drift input does not add significant offset.
If enough gain is taken in the parallel amplifier stage for the input signal of the LTC2057HV to be large compared to its own input noise voltage of $11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, the effect of the noise of the LTC2057HV is reduced in the overall output. To minimize the noise contribution of the output amplifier, choose the first stage gain of $(R 2 / R 1+1)$ to be far larger than $\sqrt{ } \mathrm{N}$ as well.

Figure 75. Paralleling Choppers to Improve Noise

SOLDER PAD LAYOUTS

The recommended solder pad layouts for the 8-lead SOIC_N, 8-lead MSOP, and 8-lead LFCSP are shown in Figure 76,
Figure 77, and Figure 78, respectively. Drawings are not to scale. All dimensions are given in millimeters or millimeters/(inches).

Figure 76. R-8 (8-Lead SOIC) Recommended Solder Pad Layout

Figure 77. RM-8 (8-Lead MSOP) Recommended Solder Pad Layout

Figure 78. CP-8-29 (8-Lead LFCSP) Recommended Solder Pad Layout, Apply Solder Mask to Areas That Are Not Soldered

TYPICAL APPLICATION CIRCUIT AND TRANSFER FUNCTION

Figure 79 shows the low-side current sense amplifier circuit.

Figure 79. Low-Side Current Sense Amplifier Circuit (IIENSE Is the Sense Current, $V_{\text {SENSE }}$ IS the Sense Voltage Produced by $I_{\text {SENSE }}$, and $R_{\text {SENSE }}$ Is the Sense Resistance)

Figure 80 shows the low-side current sense amplifier transfer function.

Figure 80. Low-Side Current Sense Amplifier Transfer Function, RSENSE $=1 \mathrm{k} \Omega$

RELATED PRODUCTS
Table 10. Zero-Drift Op Amp Products

Device(s)	$\mathbf{e}_{\mathbf{n}}$ at $1 \mathbf{k H z}$	GBP (MHz)	Vs Range (V)	Is per Amp (mA)	Function
ADA4523-1	$4.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	5	4.5 to 36	4.5	Rail-to-rail output (RRO)
ADA4528-1/ADA4528-2	$5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	3.4	2.2 to 5.5	1.5	Single or dual, rail to rail input output (RRIO)
$\begin{aligned} & \text { ADA4522-1/ADA4522-2/ } \\ & \text { ADA4522-4 } \end{aligned}$	$5.8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	2.7	4.5 to 55	0.9	Single, dual, or quad, RRO, electromagnetic interference (EMI) filter
LTC2058	$9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	2.5	4.75 to 36	0.95	Dual, RRO, shutdown
LTC2057HV	$11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	1.5	4.75 to 60	1	RRO, shutdown
ADA4254	$17 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	1.8 for $\mathrm{G}=1 \mathrm{~V} / \mathrm{V}$	10 to 56	See Note 1^{1}	High voltage, low power, programmable gain instrumentation amplifier
AD8628/AD8629/AD8630	$22 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$	2.5	2.7 to 5.5	1.0	Single-supply, AEC-Q100, RRIO
LTC2050HV	$1.5 \mu \mathrm{~V}$ p- ${ }^{2}$	3	2.7 to 12	1.5	RRO, enhanced product grade available $\left(-55^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$)
LTC2051/LTC2052	$1.5 \mu \mathrm{Vp-p}{ }^{2}$	3	2.7 to 12	1.5	Dual or quad, RRO
LTC2053-SYNC	$2.5 \mu \mathrm{Vp-p}^{2}$	0.2	2.7 to 11	0.85	In-amp, resistor programmable, RRIO, external clock sync

[^2]
OUTLINE DIMENSIONS

Figure 82. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 83. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
($R-8$)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADA4523-1BCPZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-29	Y77
ADA4523-1BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-29	Y77
ADA4523-1BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y77
ADA4523-1BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y77
ADA4523-1BRZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADA4523-1BRZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8	

[^3]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

[^1]: ${ }^{1}$ These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing. Vos is measured to a limit determined by the test equipment capabilities.
 ${ }^{2}$ The input bias current and input offset current are measured using an equivalent source impedance of $100 \mathrm{M} \Omega \| 51 \mathrm{pF}$.

[^2]: ${ }^{1}$ The supply current for the ADA4254 is specified for each of the independent supplies, VDDH, VSSH, DVDD, and AVDD. Typical supply current values are IvDDH $=600 \mu A$, lvssh $=780 \mu \mathrm{~A}$, $\operatorname{lovDD}=150 \mu \mathrm{~A}$, and $\mathrm{I}_{\text {AVDD }}=980 \mu \mathrm{~A}$.
 ${ }^{2}$ Integrated input voltage noise from 0.01 Hz to 10 Hz is given instead of input voltage noise density at 1 kHz .

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

