FEATURES

Low offset voltage: $\mathbf{2 . 5} \boldsymbol{\mu} \mathrm{V}$ maximum Low offset voltage drift: $0.015 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum Low noise
$5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $\mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}_{\mathrm{v}}=+100$
$97 \mathbf{n V}$ p-p at $\mathrm{f}=\mathbf{0 . 1} \mathrm{Hz}$ to $\mathbf{1 0 ~ H z}, \mathrm{A}_{\mathrm{v}}=+\mathbf{+ 1 0 0}$
Open-loop gain: 130 dB minimum
CMRR: 135 dB minimum
PSRR: 130 dB minimum
Unity-gain crossover: 4 MHz
Gain bandwidth product: $\mathbf{3} \mathbf{~ M H z}$ at $\mathrm{A}_{v}=+\mathbf{1 0 0}$
-3 dB closed-loop bandwidth: 6.2 MHz
Single-supply operation: 2.2 V to 5.5 V
Dual-supply operation: $\pm \mathbf{1 . 1} \mathrm{V}$ to $\pm \mathbf{2 . 7 5} \mathrm{V}$
Rail-to-rail input and output
Unity-gain stable

APPLICATIONS

Thermocouple/thermopile

Load cell and bridge transducers
Precision instrumentation
Electronic scales
Medical instrumentation
Handheld test equipment

GENERAL DESCRIPTION

The ADA4528-1/ADA4528-2 are ultralow noise, zero-drift operational amplifiers featuring rail-to-rail input and output swing. With an offset voltage of $2.5 \mu \mathrm{~V}$, offset voltage drift of $0.015 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and typical noise of 97 nV p-p $(0.1 \mathrm{~Hz}$ to 10 Hz , $A_{v}=+100$), the ADA4528-1/ADA4528-2 are well suited for applications in which error sources cannot be tolerated.

The ADA4528-1/ADA4528-2 have a wide operating supply range of 2.2 V to 5.5 V , high gain, and excellent CMRR and PSRR specifications, which make it ideal for applications that require precision amplification of low level signals, such as position and pressure sensors, strain gages, and medical instrumentation.

The ADA4528-1/ADA4528-2 are specified over the extended industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. The ADA4528-1 and ADA4528-2 are available in 8-lead MSOP and 8-lead LFCSP packages.

For more information about the ADA4528-1/ADA4528-2, see the AN-1114 Application Note, Lowest Noise Zero-Drift Amplifier Has $5.6 n V / \sqrt{ } H z$ Voltage Noise Density.

PIN CONNECTION DIAGRAMS

notes

1. NIC $=$ No INTERNAL CONNECTION.

Figure 1. ADA4528-1 Pin Configuration, 8-Lead MSOP

Figure 2. ADA4528-1 Pin Configuration, 8-Lead LFCSP
For ADA4528-2 pin connections and for more information about the pin connections for these products, see the Pin Configurations and Function Descriptions section.

Figure 3. Voltage Noise Density vs. Frequency
Table 1. Analog Devices, Inc., Zero-Drift Op Amp Portfolio ${ }^{1}$

Type	Ultralow Noise	Micropower $(<\mathbf{2 0} \boldsymbol{\mu A})$	Low Power $\mathbf{(< 1 ~ m A) ~}$	$\mathbf{1 6}$ V Operating Voltage	$\mathbf{3 0}$ V Operating Voltage
Single	ADA4528-1	ADA4051-1	AD8628	AD8638	ADA4638-1
Dual	ADA4528-2	ADA4051-2	AD8629	AD8639	
Quad			AD8539		

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011-2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADA4528-1/ADA4528-2

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Pin Connection Diagrams 1
Revision History 2
Specifications 3
Electrical Characteristics-2.5 V Operation 3
Electrical Characteristics-5 V Operation. 4
Absolute Maximum Ratings 6
Thermal Resistance 6
ESD Caution 6
REVISION HISTORY
8/2017—Rev. E to Rev. F
Deleted CP-8-19 Universal
Updated Outline Dimensions 24
Changes to Ordering Guide 25
6/2017—Rev. D to Rev. E
Deleted CP-8-12 Universal
Added CP-8-19 Universal
Updated Outline Dimensions 24
Changes to Ordering Guide 25
5/2013—Rev. C to Rev. D
Added 8-Lead LFCSP Package (CP-8-11) Universal
Changes to Table 5 7
Added Figure 7, Renumbered Sequentially 8
Added Figure 62 and Figure 63 19
Changes to Comparator Operation Section, Figure 68, Figure 69, Figure 70, and Figure 71 21
Changes to Figure 72. 22
Added Figure 76 24
9/2012-Rev. B to Rev. C
Changes to Features Section 1
Added Comparator Operation Section 21
Added Figure 65 to Figure 69; Renumbered Sequentially 21
7/2012—Rev. A to Rev. B
Added ADA4528-2 Universal
Changes to Features Section, Figure 1, Figure 2, and Table 1 1
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 9
Applications Information 19
Input Protection 19
Rail-to-Rail Input and Output 19
Noise Considerations 19
Comparator Operation 21
Printed Circuit Board Layout 22
Outline Dimensions 23
Ordering Guide 24
Added Pin Connection Diagrams Section and Figure 3; Renumbered Sequentially 1
Changes to Table 2 3
Changes to Table 3 5
Change to Endnote 1 of Table 4 and Thermal Resistance Section. 7
Added Pin Configurations and Function Descriptions Section, Figure 4, Figure 5, and Table 6 8
Added Figure 6 and Table 7 9
Changes to Input Protection Section. 19
Changes to Source Resistance Section and
Caption of Figure 63 20
Changes to Residual Voltage Ripple Section and
Caption of Figure 64 21
Changes to Ordering Guide 22
9/2011-Rev. 0 to Rev. A
Added 8-Lead LFCSP_WD Package Universal
Changes to General Description Section1
Added Figure 2; Renumbered Sequentially1
Changes to Offset Voltage, Offset Voltage Drift, Power Supply
Rejection Ratio, and Settling Time to 0.1% Parameters, Table 2 ... 3
Changes to Thermal Resistance Section and Table 5 5
Changes to Figure 41 and Figure 44 12
Changes to Figure 45 and Figure 48 13
Updated Outline Dimensions 18
Changes to Ordering Guide 18
1/2011—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—2.5 V OPERATION

$\mathrm{V}_{\mathrm{SY}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$\mathrm{Vcm}=0 \mathrm{~V}$ to 2.5 V		0.3	2.5	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, MSOP package			4	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, LFCSP package			4.3	$\mu \mathrm{V}$
Offset Voltage Drift	$\Delta \mathrm{V}_{\text {os }} / \Delta \mathrm{T}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, MSOP package		0.002	0.015	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, LFCSP package			0.018	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}			220	400	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			600	pA
Input Offset Current	los			440	800	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			1	nA
Input Voltage Range			0		2.5	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$ to 2.5 V	135	158		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	116			dB
Open-Loop Gain	Avo	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V}$ to 2.4 V	130	140		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	126			dB
ADA4528-1		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{o}}=0.1 \mathrm{~V}$ to 2.4 V	125	132		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	121			dB
ADA4528-2		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V}$ to 2.4 V	122	132		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	119			dB
Input Resistance						
Differential Mode	Rinom			225		$\mathrm{k} \Omega$
Common Mode	Rincm			1		$\mathrm{G} \Omega$
Input Capacitance						
Differential Mode	Cindm			15		pF
Common Mode	Cincm			30		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	Vor	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}	2.49	2.495		V
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.485			V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to V_{cm}	2.46	2.48		V
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.44			V
Output Voltage Low	Voı	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}		5	10	mV
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			15	mV
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to V_{CM}		20	40	mV
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			60	mV
Short-Circuit Current	Isc			± 30		mA
Closed-Loop Output Impedance	$\mathrm{Z}_{\text {OUt }}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+10$		0.1		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{5 \mathrm{Y}}=2.2 \mathrm{~V}$ to 5.5 V	130	150		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	127			dB
Supply Current per Amplifier	l S	$\mathrm{l}_{0}=0 \mathrm{~mA}$		1.4	1.7	mA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			2.1	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{Alv}^{2}=+1$		0.45		V/ $\mu \mathrm{s}$
Settling Time to 0.1\%	ts_{5}	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$ step, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{v}}=-1$		7		$\mu \mathrm{s}$
Unity-Gain Crossover	UGC	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{V}=+1$		4		MHz
Phase Margin	$Ф_{\text {M }}$	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{v}=+1$		57		Degrees
Gain Bandwidth Product	GBP	$V_{\mathbb{N}}=10 \mathrm{mV}$ p-p, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{V}=+100$		3		MHz

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
-3 dB Closed-Loop Bandwidth Overload Recovery Time	$\mathrm{f}_{\text {-3dв }}$	$\begin{aligned} & V_{I N}=10 \mathrm{mV} \mathrm{p}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, A_{v}=+1 \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, A_{v}=-10 \end{aligned}$		$\begin{aligned} & 6.2 \\ & 50 \end{aligned}$		MHz $\mu \mathrm{s}$
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Current Noise Density	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} p-p \\ & i_{n} \end{aligned}$	$\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \mathrm{~A}_{v}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{v}}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{v}}=+100, \mathrm{~V}_{\mathrm{cm}}=2.0 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{v}}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{v}}=+100 \\ & \hline \end{aligned}$		$\begin{aligned} & 97 \\ & 5.6 \\ & 5.5 \\ & 10 \\ & 0.7 \end{aligned}$		nV p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ pA p-p $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

ELECTRICAL CHARACTERISTICS—5 V OPERATION

$\mathrm{V}_{\mathrm{SY}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$		0.3	2.5 4	$\mu \mathrm{V}$ $\mu \mathrm{V}$
Offset Voltage Drift	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{os}} / \Delta \mathrm{T} \\ & \mathrm{I}_{\mathrm{B}} \end{aligned}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.015	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current						
ADA4528-1				90	200	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			300	pA
ADA4528-2				125	250	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			350	pA
Input Offset Current	los					
ADA4528-1				180	400	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			500	pA
ADA4528-2				250	500	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			600	pA
Input Voltage Range			0		5	V
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	137	160		dB
			122			dB
Open-Loop Gain	Avo	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{o}}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { to } 4.9 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	127	139		dB
			125			dB
			121	131		dB
			120			dB
Input Resistance						
Differential Mode	Rindm			190		$k \Omega$
Common Mode	Rincm			1		$\mathrm{G} \Omega$
Input Capacitance						
Differential Mode	$\mathrm{C}_{\mathrm{INDM}}$			16.5		pF
Common Mode	Cincm			33		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V_{OH}		4.99			V
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	4.98			V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}}$	4.96			V
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	4.94	4.98		V
Output Voltage Low	V OL			5	10	mV
					20	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
				20	40	
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			60	mV
Short-Circuit Current	ISC			± 40		mA
Closed-Loop Output Impedance	$\mathrm{Z}_{\text {OUT }}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=+10$		0.1		Ω

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier	PSRR I_{sY}	$\begin{aligned} & \mathrm{V}_{\mathrm{SY}}=2.2 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 150 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.2 \end{aligned}$	dB dB mA mA
DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.1\% Unity-Gain Crossover Phase Margin Gain Bandwidth Product -3 dB Closed-Loop Bandwidth Overload Recovery Time	SR ts UGC Φ_{M} GBP $\mathrm{f}_{- \text {зав }}$			$\begin{aligned} & 0.5 \\ & 10 \\ & 4 \\ & 57 \\ & 3.4 \\ & 6.5 \\ & 50 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ MHz Degrees MHz MHz $\mu \mathrm{s}$
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Current Noise Density	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} p-p \\ & i_{n} \end{aligned}$	$\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, A_{v}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, A_{v}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, A_{v}=+100, V_{c m}=4.5 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, A_{v}=+100 \\ & \mathrm{f}=1 \mathrm{kHz}, A_{v}=+100 \end{aligned}$		$\begin{aligned} & 99 \\ & 5.9 \\ & 5.3 \\ & 10 \\ & 0.5 \end{aligned}$		nV p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ pA p-p $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$\pm \mathrm{V}_{\mathrm{SY}} \pm 0.3 \mathrm{~V}$
Input Current ${ }^{1}$	$\pm 10 \mathrm{~mA}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{SY}}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ The input pins have clamp diodes to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V .

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages using a 4-layer JEDEC board. The exposed pad of the LFCSP package is soldered to the board.

Table 5. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\boldsymbol{J A}}$	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
8-Lead MSOP (RM-8)	142	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead LFCSP (CP-8-11)	83.5	48.5^{1}	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{c}}$ is measured on the top surface of the package.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADA4528-1 Pin Configuration, 8-Lead MSOP

NOTES

1. NIC = NO INTERNAL CONNECTION.

CONNECT THE EXPOSED PAD TO
V- OR LEAVE IT UNCONNECTED.
Figure 5. ADA4528-1 Pin Configuration, 8-Lead LFCSP

Table 6. ADA4528-1 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,5,8$	NIC	No Internal Connection.
2	- IN	Inverting Input.
3	+ IN	Noninverting Input.
4	V-	Negative Supply Voltage.
6	OUT	Output.
7	V+	Positive Supply Voltage.
	EPAD	Exposed Pad (LFCSP Only). Connect the exposed pad to V- or leave it unconnected.

Figure 6. ADA4528-2 Pin Configuration, 8-Lead MSOP

NOTES

1. CONNECT THE EXPOSED PAD TO V- OR LEAVE IT UNCONNECTED.
Figure 7. ADA4528-2 Pin Configuration, 8-Lead LFCSP

Table 7. ADA4528-2 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	OUTA	Output, Channel A.
2	- IN A	Inverting Input, Channel A.
3	IN A	Noninverting Input, Channel A.
4	V-	Negative Supply Voltage.
5	+ IN B	Noninverting Input, Channel B.
6	- IN B	Inverting Input, Channel B.
7	OUT B	Output, Channel B.
8	V+	Positive Supply Voltage.
	EPAD	Connect the exposed pad to V- or leave it unconnected.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 8. Input Offset Voltage Distribution

Figure 9. Input Offset Voltage Drift Distribution

Figure 10. Input Offset Voltage vs. Common-Mode Voltage

Figure 11. Input Offset Voltage Distribution

Figure 12. Input Offset Voltage Drift Distribution

Figure 13. Input Offset Voltage vs. Common-Mode Voltage

Figure 14. Input Bias Current vs. Temperature

Figure 15. Input Bias Current vs. Common-Mode Voltage

Figure 16. Output Voltage (Vol) to Supply Rail vs. Load Current

Figure 17. Input Bias Current vs. Temperature

Figure 18. Input Bias Current vs. Common-Mode Voltage

Figure 19. Output Voltage (Vol) to Supply Rail vs. Load Current

Figure 20. Output Voltage ($\mathrm{VOH}_{\mathrm{OH}}$) to Supply Rail vs. Load Current

Figure 21. Output Voltage (Vol) to Supply Rail vs. Temperature

Figure 22. Output Voltage $\left(V_{O H}\right)$ to Supply Rail vs. Temperature

Figure 23. Output Voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ to Supply Rail vs. Load Current

Figure 24. Output Voltage (Vol) to Supply Rail vs. Temperature

Figure 25. Output Voltage $\left(V_{\text {он }}\right)$ to Supply Rail vs. Temperature

Figure 26. Supply Current vs. Supply Voltage

Figure 27. Open-Loop Gain and Phase vs. Frequency

Figure 28. Closed-Loop Gain vs. Frequency

Figure 29. Supply Current vs. Temperature

Figure 30. Open-Loop Gain and Phase vs. Frequency

Figure 31. Closed-Loop Gain vs. Frequency

Figure 32. CMRR vs. Frequency

Figure 33. PSRR vs. Frequency

Figure 34. Closed-Loop Output Impedance vs. Frequency

Figure 35. CMRR vs. Frequency

Figure 36. PSRR vs. Frequency

Figure 37. Closed-Loop Output Impedance vs. Frequency

Figure 38. Large Signal Transient Response

Figure 39. Small Signal Transient Response

Figure 40. Small Signal Overshoot vs. Load Capacitance

Figure 41. Large Signal Transient Response

Figure 42. Small Signal Transient Response

Figure 43. Small Signal Overshoot vs. Load Capacitance

Figure 44. Positive Overload Recovery

Figure 45. Negative Overload Recovery

Figure 46. Positive Settling Time to 0.1\%

Figure 47. Positive Overload Recovery

Figure 48. Negative Overload Recovery

Figure 49. Positive Settling Time to 0.1\%

Figure 50. Negative Settling Time to 0.1\%

Figure 51. Voltage Noise Density vs. Frequency

Figure 52. Current Noise Density vs. Frequency

Figure 53. Negative Settling Time to 0.1%

Figure 54. Voltage Noise Density vs. Frequency

Figure 55. Current Noise Density vs. Frequency

Figure 56. 0.1 Hz to 10 Hz Noise

Figure 57. THD + N vs. Amplitude

Figure 58. THD + N vs. Frequency

Figure 59. 0.1 Hz to 10 Hz Noise

Figure 60. THD $+N$ vs. Amplitude

Figure 61. $T H D+N$ vs. Frequency

Figure 62. Channel Separation vs. Frequency

Figure 63.Channel Separation vs. Frequency

APPLICATIONS INFORMATION

The ADA4528-1/ADA4528-2 are precision, ultralow noise, zero-drift operational amplifiers that feature a patented chopping technique. This chopping technique offers ultralow input offset voltage of $0.3 \mu \mathrm{~V}$ typical and input offset voltage drift of $0.002 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical.

Offset voltage errors due to common-mode voltage swings and power supply variations are also corrected by the chopping technique, resulting in a typical CMRR figure of 158 dB and a PSRR figure of 150 dB at 2.5 V supply voltage. The ADA4528-1/ ADA4528-2 have low broadband noise of $5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ (at $\mathrm{f}=$ $1 \mathrm{kHz}, \mathrm{A}_{V}=+100$, and $\mathrm{V}_{\mathrm{SY}}=2.5 \mathrm{~V}$) with no $1 / \mathrm{f}$ noise component. These features are ideal for amplification of low level signals in dc or subhertz high precision applications.

For more information about the chopper architecture of the ADA4528-1/ADA4528-2, see the AN-1114 Application Note, Lowest Noise Zero-Drift Amplifier Has $5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Voltage Noise Density.

INPUT PROTECTION

The ADA4528-1/ADA4528-2 have internal ESD protection diodes that are connected between the inputs and each supply rail. These diodes protect the input transistors in the event of electrostatic discharge and are reverse biased during normal operation. This protection scheme allows voltages as high as approximately 300 mV beyond the rails to be applied at the input of either terminal without causing permanent damage (see Table 4 in the Absolute Maximum Ratings section).

When either input exceeds one of the supply rails by more than 300 mV , the ESD diodes become forward biased and large amounts of current begin to flow through them. Without current limiting, this excessive fault current causes permanent damage to the device.

If the inputs are subjected to overvoltage conditions, insert a resistor in series with each input to limit the input current to 10 mA maximum. However, consider the resistor thermal noise effect on the entire circuit.

For example, at a 5 V supply voltage, the broadband voltage noise of the ADA4528-1/ADA4528-2 is approximately $6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ (at unity gain). A $1 \mathrm{k} \Omega$ resistor has thermal noise of $4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. Adding a $1 \mathrm{k} \Omega$ resistor at the noninverting input pin increases the total noise by 30% root sum square (rss).

RAIL-TO-RAIL INPUT AND OUTPUT

The ADA4528-1/ADA4528-2 feature rail-to-rail input and output with a supply voltage from 2.2 V to 5.5 V . Figure 64 shows the input and output waveforms of the ADA4528-1/ADA4528-2 configured as a unity-gain buffer with a supply voltage of $\pm 2.5 \mathrm{~V}$ and a resistive load of $10 \mathrm{k} \Omega$. With an input voltage of $\pm 2.5 \mathrm{~V}$, the ADA4528-1/ADA4528-2 allow the output to swing very close to both rails. Additionally, the devices do not exhibit phase reversal.

Figure 64. Rail-to-Rail Input and Output

NOISE CONSIDERATIONS

For more information about the noise characteristics of the ADA4528-1/ADA4528-2, see the AN-1114 Application Note, Lowest Noise Zero-Drift Amplifier Has $5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Voltage Noise Density.

1/f Noise

1/f noise, also known as pink noise or flicker noise, is inherent in semiconductor devices and increases as frequency decreases. At low frequency, $1 / \mathrm{f}$ noise is a major noise contributor and causes a significant output voltage offset when amplified by the noise gain of the circuit. However, the ADA4528-1/ADA4528-2 eliminate the $1 / \mathrm{f}$ noise internally, thus making these devices an excellent choice for dc or subhertz high precision applications. The 0.1 Hz to 10 Hz amplifier voltage noise is only 97 nV p-p $\left(\mathrm{A}_{\mathrm{v}}=+100\right)$ at a supply voltage of 2.5 V .
The low frequency $1 / \mathrm{f}$ noise, which appears as a slow varying offset to the ADA4528-1/ADA4528-2, is greatly reduced by the chopping technique. This reduction in $1 / \mathrm{f}$ noise allows the ADA4528-1/ADA4528-2 to have much lower noise at dc and low frequency compared to standard low noise amplifiers that are susceptible to $1 / \mathrm{f}$ noise. Figure 51 and Figure 54 show the voltage noise density of the amplifier with no $1 / \mathrm{f}$ noise.

Source Resistance

With $5.6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ of broadband noise at $1 \mathrm{kHz}\left(\mathrm{V}_{\mathrm{SY}}=2.5 \mathrm{~V}\right.$ and $\mathrm{A}_{\mathrm{V}}=+100$), the ADA4528-1/ADA4528-2 are among the lowest noise zero-drift amplifiers currently available in the industry. Therefore, it is important to carefully select the input source resistance to maintain a total low noise.
The total input referred broadband noise (e_{n} total) from any amplifier is primarily a function of three types of noise: input voltage noise, input current noise, and thermal (Johnson) noise from the external resistors.
These uncorrelated noise sources can be summed up in a root sum squared (rss) manner using the following equation:

$$
e_{n} \text { total }=\left[e_{n}^{2}+4 k T R s+\left(i_{n} \times R s\right)^{2}\right]^{1 / 2}
$$

where:
e_{n} is the input voltage noise of the amplifier $(\mathrm{V} / \sqrt{ } \mathrm{Hz})$.
k is the Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$.
T is the temperature in Kelvin (K).
R_{s} is the total input source resistance (Ω).
i_{n} is the input current noise of the amplifier $(\mathrm{A} / \sqrt{ } \mathrm{Hz})$.
The total equivalent rms noise over a specific bandwidth is expressed as

$$
e_{n, r m s}=e_{n} \text { total } \times \sqrt{ } B W
$$

where $B W$ is the bandwidth in hertz.
This analysis is valid for broadband noise calculation. If the bandwidth of concern includes the chopping frequency, more complicated calculations must be made to include the effect of the noise energy spectrum at the chopping frequency (see the Residual Voltage Ripple section).

With a low source resistance of $\mathrm{R}_{\mathrm{s}}<1 \mathrm{k} \Omega$, the voltage noise of the amplifier dominates. As source resistance increases, the thermal noise of R_{s} dominates. As the source resistance increases further, where $\mathrm{R}_{\mathrm{S}}>100 \mathrm{k} \Omega$, the current noise becomes the main contributor to the total input noise. A good selection table for low noise op amps can be found in the AN-940 Application Note, Low Noise Amplifier Selection Guide for Optimal Noise Performance.

Voltage Noise Density with Different Gain Configurations

Figure 65 shows the voltage noise density vs. closed-loop gain of a zero-drift amplifier from a leading competitor. The voltage noise density of the amplifier increases from $11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ to $21 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ as the closed-loop gain decreases from 1000 to 1.

Figure 65. Competitor A: Voltage Noise Density vs. Closed-Loop Gain
Figure 66 shows the voltage noise density vs. frequency of the ADA4528-1/ADA4528-2 for three different gain configurations. The ADA4528-1/ADA4528-2 offer a constant input voltage noise density of $6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ to $7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, regardless of the gain configuration.

Figure 66. Voltage Noise Density vs. Frequency with Different Gain Configurations

Residual Voltage Ripple

Although autocorrection feedback (ACFB) suppresses the chopping related voltage ripple, higher noise spectrum exists at the chopping frequency and its harmonics due to the remaining ripple. Figure 67 shows the voltage noise density of the ADA4528-1/ ADA4528-2 configured in unity gain. A noise energy spectrum of $50 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ can be seen at the chopping frequency of 200 kHz . This noise energy spectrum is significant when the op amp has a closed-loop frequency that is higher than the chopping frequency.

Figure 67. Voltage Noise Density vs. Frequency
To further suppress the noise at the chopping frequency, it is recommended that a post filter be placed at the output of the amplifier. For more information about residual voltage ripple, see the AN-1114 Application Note, Lowest Noise Zero-Drift Amplifier Has $5.6 n V / \sqrt{ } H z$ Voltage Noise Density.

COMPARATOR OPERATION

Figure 68 shows the ADA4528-2 configured as a voltage follower with an input voltage that is always kept at midpoint of the power supplies. The same configuration is applied to the unused channel. A1 and A2 indicate the placement of ammeters to measure supply current. As shown in Figure 69, as expected, in normal operating condition, $\mathrm{I}_{\text {SY }}+=\mathrm{I}_{\text {SY }}=3 \mathrm{~mA}$ for the dual ADA4528-2 at 5 V of supplies.

Figure 68. Voltage Follower

Figure 69. Supply Current vs. Supply Voltage (Voltage Follower)
Figure 70 and Figure 71 show the ADA4528-2 configured as comparators, with $1 \mathrm{k} \Omega$ resistors in series with the input pins. Figure 72 shows the supply currents for both configurations. Supply currents increase slightly to 3.2 mA per dual amplifier at 5 V of supplies.

Figure 70. Comparator A

Figure 71. Comparator B

Figure 72. Supply Current vs. Supply Voltage (Comparator A and Comparator B)

For more details on op amps as comparators, refer to the AN-849 Application Note, Using Op Amps as Comparators.

PRINTED CIRCUIT BOARD LAYOUT

The ADA4528-1/ADA4528-2 are high precision devices with ultralow offset voltage and noise. Therefore, care must be taken in the design of the printed circuit board (PCB) layout to achieve the optimum performance of the ADA4528-1/ADA4528-2 at board level.

To avoid leakage currents, keep the surface of the board clean and free of moisture. Coating the board surface creates a barrier to moisture accumulation and reduces parasitic resistance on the board.

To minimize power supply disturbances caused by output current variation, properly bypass the power supplies and keep the supply traces short. Connect bypass capacitors as close as possible to the device supply pins.

Stray capacitances are a concern at the outputs and the inputs of the amplifier. It is recommended that signal traces be kept at a distance of at least 5 mm from supply lines to minimize coupling.
A potential source of offset error is the Seebeck voltage on the circuit board. The Seebeck voltage occurs at the junction of two
dissimilar metals and is a function of the temperature of the junction. The most common metallic junctions on a circuit board are solder-to-board trace and solder-to-component lead.

Figure 73 shows a cross section of a surface-mount component soldered to a PCB. A variation in temperature across the board (where $\mathrm{T}_{\mathrm{A} 1} \neq \mathrm{T}_{\mathrm{A} 2}$) causes a mismatch in the Seebeck voltages at the solder joints, thereby resulting in thermal voltage errors that degrade the ultralow offset voltage performance of the ADA4528-1/ADA4528-2.

Figure 73. Mismatch in Seebeck Voltages Causes Seebeck Voltage Error
To minimize these thermocouple effects, orient resistors so that heat sources warm both ends equally. Where possible, the input signal paths must contain matching numbers and types of components to match the number and type of thermocouple junctions. For example, dummy components, such as zero value resistors, can be used to match the thermoelectric error source (real resistors in the opposite input path). Place matching components in close proximity and orient them in the same manner to ensure equal Seebeck voltages, thus canceling thermal errors. Additionally, use leads of equal length to keep thermal conduction in equilibrium. Keep heat sources on the PCB as far away from the amplifier input circuitry as practical.

It is highly recommended that a ground plane be used. A ground plane helps to distribute heat throughout the board, maintains a constant temperature across the board, and reduces EMI noise pickup.

OUTLINE DIMENSIONS

Figure 74. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

Figure 75. 8-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-8-11)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option	Branding
ADA4528-1ARMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2R
ADA4528-1ARMZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2R
ADA4528-1ARMZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2R
ADA4528-1ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-11	A2R
ADA4528-1ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-11	A2R
ADA4528-1ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-11	A2R
ADA4528-2ARMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A32
ADA4528-2ARMZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A32
ADA4528-2ARMZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	A32
ADA4528-2ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-11	A32
ADA4528-2ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-11	A32

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
OPA4187IRUMT OPA202IDGKT 514327X 561681F 647876R 5962-9080901MCA* MAX410CPA MAX44241AUK+T LT6230IS6\#TR OP227GN\#PBF LT6020IDD-1\#PBF LT6023IDD\#PBF LT6013AIDD\#PBF LT6237IMS8\#PBF LT1124CS8\#TR LT1215CS8\#TRPBF ADA4622-1ARZ-R7 NCS21871SQ3T2G NCS21871SN2T1G NCV21871SQ3T2G NCV21871SN2T1G AD8538WAUJZ-R7 NCS21912DMR2G MCP6V82-EMS MCP6V92-EMS TLC27L7CP TLE2022MD TLV2473CDR MCP6V34-E/ST MCP6V84-EST MCP6V94-EST LT1014DDWR 5962-89641012A 5962-8859301M2A 5962-89801012A 5962-9452101M2A LMC6064IN LT1013DDR TL034ACDR TLC2201AMDG4 TLC274MDRG4 TLE2021QDRG4Q1 TLE2024BMDWG4 AD8691WAUJZ-R7 AD8629TRZ-EP-R7 AD8604ARQZ TS507IYLT MAX4239ATT+T MAX4238AUT+T MAX4168EPD

[^0]: ${ }^{1}$ See www.analog.com for the latest selection of zero-drift operational amplifiers.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

