$0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Offset Drift, 105 MHz Low Power,

FEATURES

Low input offset voltage: $\mathbf{1 2 5 ~ \mu V}$ (maximum)
Low input offset voltage drift
$0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typical)
$2.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (maximum)
Ultralow supply current: $\mathbf{5 0 0} \boldsymbol{\mu \mathrm { A }}$ per amplifier
Fully specified at $V_{s}=3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$
High speed performance
-3 dB bandwidth: 105 MHz
Slew rate: $160 \mathrm{~V} / \mu \mathrm{s}$
Settling time to 0.1\%: 35 ns
Rail-to-rail outputs
Input common-mode range: - $\mathrm{V}_{\mathrm{s}}-\mathbf{0 . 1} \mathrm{V}$ to $+\mathrm{V}_{\mathrm{s}}-1 \mathrm{~V}$
Low noise: $\mathbf{5 . 9} \mathbf{~ n V} / \sqrt{ } \mathrm{Hz}$ at $\mathbf{1 0 0} \mathbf{~ k H z} ; \mathbf{0 . 6} \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ at 100 kHz
Low distortion: - $\mathbf{1 0 2} \mathbf{~ d B c / - 1 2 6 ~ d B c ~ H D 2 / H D 3 ~ a t ~} 100$ kHz
Low input bias current: 470 nA (typical)
Small packaging
8-lead MSOP

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Extended industrial temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available upon request

APPLICATIONS

High resolution, high precision analog-to-digital converter (ADC) drivers
Battery-powered instrumentation
Micropower active filters
Portable point of sales terminals
Active radio frequency identification (RFID) readers
Photomultipliers
ADC reference buffers

GENERAL DESCRIPTION

The ADA4805-2-EP is a high speed voltage feedback, rail-to-rail output amplifier with an exceptionally low quiescent current of $500 \mu \mathrm{~A}$, making it ideal for low power, high resolution data conversion systems. Despite being low power, this amplifier provides excellent overall performance. It offers a high bandwidth of 105 MHz at a gain of +1 , a high slew rate of $160 \mathrm{~V} / \mu \mathrm{s}$, and a low input offset voltage of $125 \mu \mathrm{~V}$ (maximum).

Figure 1. Driving the AD7980 with the ADA4805-2-EP
The Analog Devices, Inc., proprietary extra fast complementary bipolar (XFCB) process allows both low voltage and low current noise ($5.9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}, 0.6 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$). The ADA4805-2-EP operates over a wide range of supply voltages from $\pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$, as well as single 3 V and 5 V supplies, making it ideal for high speed, low power instruments.

The ADA4805-2-EP is available in an 8-lead MSOP package and is rated to work over the extended industrial temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Additional application and technical information can be found in the ADA4805-1/ADA4805-2 data sheet.

Figure 2. FFT Plot for the Circuit Configuration in Figure 1
Table 1. Complementary ADCs to the ADA4805-2-EP

Product	ADC Power (mW)	Throughput (MSPS)	Resolution (Bits)	SNR (dB)
AD7982	7.0	1	18	98
AD7984	10.5	1.33	18	98.5
AD7980	4.0	1	16	91
AD7685	10	0.25	16	88

[^0]
TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications. 1
General Description 1
Typical Applications Circuit 1
Revision History 2
Specifications 3
± 5 V Supply 3
5 V Supply 4
3 V Supply 5
Absolute Maximum Ratings 6
Thermal Resistance 6
Maximum Power Dissipation 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Outline Dimensions 9
Ordering Guide 9

REVISION HISTORY

4/16—Revision 0: Initial Version

SPECIFICATIONS
 ± 5 V SUPPLY

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0 \Omega$ for $\mathrm{G}=+1$; otherwise, $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground; unless otherwise noted. All specifications are per amplifier.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V} \text { out }=4 \mathrm{~V} \text { step } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \text { step } \end{aligned}$		$\begin{aligned} & 120 \\ & 40 \\ & 18 \\ & 190 \\ & 250 \\ & 35 \\ & 78 \end{aligned}$		MHz MHz MHz $V / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ ns ns
NOISE/DISTORTION PERFORMANCE Harmonic Distortion, HD2/HD3 ${ }^{1}$ Input Voltage Noise Input Voltage Noise 1/f Corner Frequency 0.1 Hz to 10 Hz Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}, V_{\text {out }}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}, V_{\text {out }}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+1 \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, V_{\text {out }}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+1 \\ & \mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}, V_{\text {out }}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, V_{\text {out }}=4 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$ $\mathrm{f}=100 \mathrm{kHz}$		$\begin{aligned} & -114 /-140 \\ & -102 /-128 \\ & -109 /-143 \\ & -93 /-130 \\ & -113 /-142 \\ & -96 /-130 \\ & 5.2 \\ & 8 \\ & 44 \\ & 0.7 \\ & \hline \end{aligned}$		dBC dBc dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Hz nV rms $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift ${ }^{2}$ Input Bias Current Input Offset Current Open-Loop Gain	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\text {out }}=-4.0 \mathrm{~V} \text { to }+4.0 \mathrm{~V}$	107	$\begin{aligned} & 13 \\ & 0.4 \\ & 550 \\ & 2.1 \\ & 111 \end{aligned}$	$\begin{aligned} & 125 \\ & 2.7 \\ & 800 \\ & 25 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA dB
INPUT CHARACTERISTICS Input Resistance Common Mode Differential Mode Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{V}_{\text {İ, }, \text { cm }}=-4.0 \mathrm{~V}$ to +4.0 V	$\begin{aligned} & -5.1 \\ & 103 \end{aligned}$	$\begin{aligned} & 50 \\ & 260 \\ & 1 \\ & 130 \end{aligned}$	+4	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time (Rising/Falling Edge) Output Voltage Swing Short-Circuit Current Linear Output Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=+6 \mathrm{~V} \text { to }-6 \mathrm{~V}, \mathrm{G}=+2 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Sinking/sourcing $<1 \%$ THD at 100 kHz , $\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ p-p 30\% overshoot	-4.98	$\begin{aligned} & 95 / 100 \\ & \\ & 85 / 73 \\ & \pm 58 \\ & 15 \end{aligned}$	+4.98	ns V mA mA pF
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio Positive Negative	$\begin{aligned} & +\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V} \text { to } 5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-5 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-3 \mathrm{~V} \text { to }-5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 570 \\ & \\ & 119 \\ & 122 \end{aligned}$		V $\mu \mathrm{A}$ dB dB

${ }^{1} \mathrm{f}_{\mathrm{C}}$ is the fundamental frequency.
${ }^{2}$ Guaranteed, but not tested.

ADA4805-2-EP

5 V SUPPLY

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0 \Omega$ for $\mathrm{G}=+1$; otherwise, $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to midsupply; unless otherwise noted. All specifications are per amplifier.

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V} \text { out }=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V} \text { out }=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \text { step } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \text { step } \end{aligned}$		$\begin{aligned} & 105 \\ & 35 \\ & 20 \\ & 160 \\ & 220 \\ & 35 \\ & 82 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ V/us ns ns
NOISE/DISTORTION PERFORMANCE Harmonic Distortion, HD2/HD3 ${ }^{1}$ Input Voltage Noise Input Voltage Noise 1/f Corner 0.1 Hz to 10 Hz Voltage Noise Input Current Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}, \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \text { p-p } \\ & \mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=4 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -114 /-135 \\ & -102 /-126 \\ & -107 /-143 \\ & -90 /-130 \\ & 5.9 \\ & 8 \\ & 54 \\ & 0.6 \end{aligned}$		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Hz nV rms $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift ${ }^{2}$ Input Bias Current Input Offset Current Open-Loop Gain	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $V_{\text {out }}=1.25 \mathrm{~V} \text { to } 3.75 \mathrm{~V}$	105	$\begin{aligned} & 9 \\ & 0.4 \\ & 470 \\ & 0.4 \\ & 109 \end{aligned}$	$\begin{aligned} & 125 \\ & 2.7 \\ & 720 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA dB
INPUT CHARACTERISTICS Input Resistance Common Mode Differential Mode Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}, \mathrm{CM}}=1.25 \mathrm{~V}$ to 3.75 V	$\begin{gathered} -0.1 \\ 103 \end{gathered}$	$\begin{aligned} & 50 \\ & 260 \\ & 1 \\ & 133 \end{aligned}$	+4	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Overdrive Recovery Time (Rising/Falling Edge) Output Voltage Swing Short-Circuit Current Linear Output Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=-1 \mathrm{~V} \text { to }+6 \mathrm{~V}, \mathrm{G}=+2 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Sinking/sourcing $<1 \%$ THD at 100 kHz , Vout $=2 \mathrm{~V}$ p-p 30\% overshoot	0.02	$\begin{aligned} & 130 / 145 \\ & \\ & 73 / 63 \\ & \pm 47 \\ & 15 \end{aligned}$	4.98	ns V mA mA pF
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio Positive Negative	$\begin{aligned} & +\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-2.5 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1.5 \mathrm{~V} \text { to }-3.5 \mathrm{~V} \end{aligned}$	2.7 $\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 120 \\ & 126 \end{aligned}$	$\begin{aligned} & 10 \\ & 520 \end{aligned}$	V $\mu \mathrm{A}$ dB dB

[^1]
3 V SUPPLY

$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0 \Omega$ for $\mathrm{G}=+1$; otherwise, $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to midsupply; unless otherwise noted. All specifications are per amplifier.

Table 4.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
DYNAMIC PERFORMANCE \\
-3 dB Bandwidth \\
Bandwidth for 0.1 dB Flatness \\
Slew Rate \\
Settling Time to 0.1\%
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{G}=+1, \mathrm{~V} \text { out }=0.02 \mathrm{~V} \text { p-p } \\
\& \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp-p},+\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1 \mathrm{~V} \\
\& \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\
\& \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=1 \mathrm{~V} \text { step, }+\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1 \mathrm{~V} \\
\& \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=1 \mathrm{~V} \text { step }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 95 \\
\& 30 \\
\& 35 \\
\& 85 \\
\& 41
\end{aligned}
\] \& \& \begin{tabular}{l}
MHz \\
MHz \\
MHz \\
V/ \(\mu \mathrm{s}\) \\
ns
\end{tabular} \\
\hline NOISE/DISTORTION PERFORMANCE Harmonic Distortion, HD2/HD3¹ Input Voltage Noise Input Voltage Noise 1/f Corner 0.1 Hz to 10 Hz Voltage Noise Input Current Noise \& \[
\begin{aligned}
\& \mathrm{f}_{\mathrm{C}}=20 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p},+\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1 \mathrm{~V} \\
\& \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p},+\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1 \mathrm{~V} \\
\& \mathrm{f}=100 \mathrm{kHz} \\
\& \mathrm{f}=100 \mathrm{kHz}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& -123 /-143 \\
\& -107 /-133 \\
\& 6.3 \\
\& 8 \\
\& 55 \\
\& 0.8
\end{aligned}
\] \& \& \begin{tabular}{l}
dBc \\
dBc \(\mathrm{nV} / \sqrt{ } \mathrm{Hz}\) Hz nV rms \(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\)
\end{tabular} \\
\hline DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift \({ }^{2}\) Input Bias Current Input Offset Current Open-Loop Gain \& \(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\)
\[
\mathrm{V}_{\text {out }}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V}
\] \& 100 \& \[
\begin{aligned}
\& 7 \\
\& 0.4 \\
\& 440 \\
\& 0.5 \\
\& 107
\end{aligned}
\] \& \[
\begin{aligned}
\& 125 \\
\& 2.7 \\
\& 690
\end{aligned}
\] \& \(\mu \mathrm{V}\) \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) nA nA dB \\
\hline \begin{tabular}{l}
INPUT CHARACTERISTICS \\
Input Resistance \\
Common Mode \\
Differential Mode \\
Input Capacitance \\
Input Common-Mode Voltage Range \\
Common-Mode Rejection Ratio
\end{tabular} \& \(\mathrm{V} \mathrm{IN}, \mathrm{cm}=0.5 \mathrm{~V}\) to 2 V \& \& \[
\begin{aligned}
\& 50 \\
\& 260 \\
\& 1 \\
\& \\
\& 117
\end{aligned}
\] \& +2 \& \begin{tabular}{l}
\(\mathrm{M} \Omega\) \\
k \(\Omega\) \\
pF \\
V \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
OUTPUT CHARACTERISTICS \\
Output Overdrive Recovery Time (Rising/Falling Edge) \\
Output Voltage Swing \\
Short-Circuit Current \\
Linear Output Current \\
Capacitive Load Drive
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathbb{N}}=-1 \mathrm{~V} \text { to }+4 \mathrm{~V}, \mathrm{G}=+2 \\
\& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\
\& \text { Sinking/sourcing } \\
\& <1 \% \text { THD at } 100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{~V} \text { p-p } \\
\& 30 \% \text { overshoot }
\end{aligned}
\] \& 0.02 \& \[
\begin{aligned}
\& 135 / 175 \\
\& \\
\& 65 / 47 \\
\& \pm 40 \\
\& 15 \\
\& \hline
\end{aligned}
\] \& 2.98 \& \begin{tabular}{l}
ns \\
V \\
mA \\
mA \\
pF
\end{tabular} \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
Operating Range \\
Quiescent Current per Amplifier Power Supply Rejection Ratio Positive Negative
\end{tabular} \& \[
\begin{aligned}
\& +\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1.5 \mathrm{~V} \\
\& +\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-1.5 \mathrm{~V} \text { to }-3.5 \mathrm{~V}
\end{aligned}
\] \& 2.7

96

96 \& | 470 |
| :--- |
| 119 125 | \& \[

$$
\begin{aligned}
& 10 \\
& 495
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mu \mathrm{~A} \\
& \mathrm{~dB} \\
& \mathrm{~dB}
\end{aligned}
$$
\]

\hline
\end{tabular}

[^2]
ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	11 V
Power Dissipation	See Figure 3
Common-Mode Input Voltage	$-\mathrm{V}_{\mathrm{s}}-0.7 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{s}}+0.7 \mathrm{~V}$
Differential Input Voltage	$\pm 1 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst case conditions, that is, θ_{JA} is specified for a device soldered in a circuit board for surface-mount packages. Table 6 lists the θ_{JA} for the ADA4805-2-EP.

Table 6. Thermal Resistance

Package Type	θ_{JA}	Unit
8-Lead MSOP	123.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4805-2-EP is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the properties of the plastic change. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4805-2-EP. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period of time can result in changes in silicon devices, potentially causing degradation or loss of functionality.
The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the die due to the ADA4805-2-EP output load drive.

The quiescent power dissipation is the voltage between the supply pins (V_{s}) multiplied by the quiescent current (I_{s}).

$$
P_{D}=\text { Quiescent Power }+(\text { Total Drive Power }- \text { Load Power })
$$

$$
P_{D}=\left(V_{S} \times I_{S}\right)+\left(\frac{V_{S}}{2} \times \frac{V_{O U T}}{R_{L}}\right)-\frac{V_{O U T}^{2}}{R_{L}}
$$

RMS output voltages must be considered. If R_{L} is referenced to $-\mathrm{V}_{\mathrm{s}}$, as in single-supply operation, the total drive power is $\mathrm{V}_{\mathrm{s}} \times$ Iout. If the rms signal levels are indeterminate, consider the worst case, when $V_{\text {out }}=V_{S} / 4$ for R_{L} to midsupply.

$$
P_{D}=\left(V_{S} \times I_{S}\right)+\frac{\left(V_{S} / 4\right)^{2}}{R_{L}}
$$

In single-supply operation with R_{L} referenced to $-\mathrm{V}_{\mathrm{S}}$, worst case is $V_{\text {out }}=\mathrm{V}_{\mathrm{s}} / 2$.
Airflow increases heat dissipation, effectively reducing $\theta_{\mathrm{J} A}$. Also, more metal directly in contact with the package leads and exposed pad from metal traces, through holes, ground, and power planes reduces $\theta_{J A}$.

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature on a JEDEC standard, 4 -layer board. $\theta_{J A}$ values are approximations.

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Enhanced Product

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. 8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	Vout1	Output 1.
2	- IN1	Inverting Input 1.
3	+ IN1	Noninverting Input 1.
4	- Vs $_{\text {s }}$	Negative Supply.
5	+ IN2	Noninverting Input 2.
6	- IN2	Inverting Input 2.
7	VouT2	Output 2.
8	$+V_{s}$	Positive Supply.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted. When $\mathrm{G}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$.

Figure 5. Small Signal Frequency Response for Various Temperatures

Figure 6. Quiescent Supply Current vs. Temperature for Various Supplies

Figure 7. Input Offset Voltage Drift Distribution

Figure 8. Large Signal Frequency Response for Various Temperatures

Figure 9. Input Bias Current vs. Temperature for Various Supplies

Figure 10. Input Offset Voltage vs. Temperature

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 11. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADA4805-2TRMZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y5W
ADA4805-2TRMZ-EPR7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package $[M S O P]$	RM-8	Y5W

[^3]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NJU7047RB1-TE2 LTC6226IS8\#PBF LTC6226HS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LTC6253CMS8\#PBF LT1813CDD\#PBF ADA4851-4YRUZ-RL LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LTC6401IUD-26\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF OP27EN8\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LTC6253IMS8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-
REEL7 AD8010ANZ AD8014ARTZ-REEL7

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved.
 www.analog.com

[^1]: ${ }^{1} \mathrm{f}_{\mathrm{c}}$ is the fundamental frequency.
 ${ }^{2}$ Guaranteed, but not tested.

[^2]: ${ }^{1} \mathrm{f}_{\mathrm{c}}$ is the fundamental frequency.
 ${ }^{2}$ Guaranteed, but not tested.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

