Data Sheet

FEATURES

Total composite power: 73.3 dBmV
High power gain: $\mathbf{2 5 . 0} \mathbf{d B}$ at $1218 \mathbf{~ M H z}$
Excellent linearity
Very low distortion
Composite triple beat: -80 dBc typical
Composite second-order: - $\mathbf{7 8} \mathbf{d B c}$ typical
Carrier to intermodulation noise: $\mathbf{5 8} \mathbf{d B}$ typical
Low noise figure: $\mathbf{3 d B}$ at 45 MHz and 4 dB at 1218 MHz
Unconditionally stable
Transient and surge protection
Configurable current: $\mathbf{2 5 0}$ mA to $\mathbf{4 9 0} \mathbf{~ m A}$ at 24 V

APPLICATIONS

GENERAL DESCRIPTION

The Analog Devices, Inc., ADCA3952 is a power doubler hybrid module packaged in the industry-standard SOT-115J package. The device achieves high RF output, up to 73.3 dBmV total composite power with 9 dB tilt, by using advanced circuit design techniques, such as gallium arsenide (GaAs), pseudomorphic high electron transistor (pHEMT), and gallium nitride (GaN) HEMT technologies. The dc current can be adjusted externally for optimum distortion performance vs. power consumption over a range of output levels. The ADCA3952 provides high gain, simplifying the design and manufacturing of DOCSIS 3.1^{m} infrastructure equipment.

Figure 1.

ADCA3952

TABLE OF CONTENTS

Features .. 1
Applications ... 1
General Description... 1
Functional Block Diagram ... 1
Revision History .. 2
Specifications .. 3
General Performance.. 3
Distortion Data (40 MHz to 550 MHz), Error Rates, and
Total Composite Power .. 4

Absolute Maximum Ratings .. 5

ESD Caution ... 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics .. 7
S-Parameters ... 7
9 dB Tilt Performance .. 8
Theory of Operation ... 9
Applications Information ... 10
Outline Dimensions ... 12
Ordering Guide .. 12

REVISION HISTORY

11/2020—Revision 0: Initial Version

SPECIFICATIONS

GENERAL PERFORMANCE

Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)=24 \mathrm{~V}$, flange temperature $\left(\mathrm{T}_{\text {FLANGE }}\right)=35^{\circ} \mathrm{C}$, source impedance $\left(\mathrm{Z}_{\mathrm{s}}\right)=$ load impedance $\left(\mathrm{Z}_{\mathrm{L}}\right)=75 \Omega$, and IADJ (Pin 4) floating, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
POWER GAIN	S21		$\begin{aligned} & \hline 23.5 \\ & 25.0 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \mathrm{dB} \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \text { Frequency }=45 \mathrm{MHz} \\ & \text { Frequency }=1218 \mathrm{MHz} \end{aligned}$
SLOPE STRAIGHT LINE ${ }^{1}$			1.0		dB	Frequency $=45 \mathrm{MHz}$ to 1218 MHz
FLATNESS OF FREQUENCY RESPONSE ${ }^{2}$			0.6		dB	Frequency $=45 \mathrm{MHz}$ to 1218 MHz
REVERSE ISOLATION	S12		-28		dB	Frequency $=45 \mathrm{MHz}$ to 1218 MHz
RETURN LOSS Input Output	S11 $\mathrm{S} 22$		$\begin{aligned} & -20 \\ & -18 \\ & -18 \\ & -18 \\ & -16 \\ & -20 \\ & -20 \\ & -20 \\ & -20 \\ & -18 \\ & \hline \end{aligned}$		dB dB	See Figure 3 and Figure 6 Frequency $=45 \mathrm{MHz}$ to 320 MHz Frequency $=320 \mathrm{MHz}$ to 640 MHz Frequency $=640 \mathrm{MHz}$ to 870 MHz Frequency $=870 \mathrm{MHz}$ to 1000 MHz Frequency $=1000 \mathrm{MHz}$ to 1218 MHz Frequency $=45 \mathrm{MHz}$ to 320 MHz Frequency $=320 \mathrm{MHz}$ to 640 MHz Frequency $=640 \mathrm{MHz}$ to 870 MHz Frequency $=870 \mathrm{MHz}$ to 1000 MHz Frequency $=1000 \mathrm{MHz}$ to 1218 MHz
NOISE FIGURE			$\begin{aligned} & 3 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { Frequency }=45 \mathrm{MHz} \\ & \text { Frequency }=1218 \mathrm{MHz} \end{aligned}$
SUPPLY Maximum Operating Voltage DC Current (Total)	$V_{\text {cc }}$ Icc (total)	250	$\begin{aligned} & 24 \\ & 470 \end{aligned}$	$\begin{aligned} & 26 \\ & 490 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	See the Applications Information section for adjusting the bias current and impact on performance

${ }^{1}$ Slope straight line is defined as the delta between the gain at the start frequency and the gain at the stop frequency.
${ }^{2}$ Flatness of frequency response is defined as the delta between the gain at any frequency between the start and stop frequencies and a straight line reference drawn between the gain at the start frequency and the gain at the stop frequency.

ADCA3952

DISTORTION DATA (40 MHz TO 550 MHz), ERROR RATES, AND TOTAL COMPOSITE POWER

$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{FLANGE}}=35^{\circ} \mathrm{C}, \mathrm{Zs}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, and IADJ (Pin 4) floating, unless otherwise noted.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DISTORTION						Total composite power $=72.4 \mathrm{dBmV}$, 9 dB extrapolated tilt, 79 continuous wave channels plus 111 digital channels, National Television System Committee (NTSC) frequency raster $=55.25 \mathrm{MHz}$ to $547.25 \mathrm{MHz},-6 \mathrm{~dB}$ offset
Composite Triple Beat	CTB		-80		dBc	Defined by the National Cable and Telecommunications Association (NCTA)
Composite Second-Order	CSO		-78		dBc	Defined by NCTA
Carrier to Intermodulation Noise			58		dB	Defined by American National Standard/Society of Cable Telecommunications Engineers (ANSI/SCTE) 17 (test procedure for carrier to noise)
ERROR RATES						Total composite power $=72.4 \mathrm{dBmV}, 9 \mathrm{~dB}$ extrapolated tilt, 190 digital (256 QAMs) channels
Bit Error Ratio	BER		$<1 \times 10^{-9}$			PreViterbi
TOTAL COMPOSITE POWER	TCP		73.3		dBmV	9 dB tilt, see Figure 9 and Figure 10

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
$\mathrm{V}_{\text {CC }}$	
\quad DC Supply over Voltage (5 Minute)	28 V
RF Input Voltage (RF INPUT), Single Tone	75 dBmV
IADJ Voltage (VIADJ)	-1 V to +26 V
Operating Temperature Range	
T_{A}	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {FLANGE }}$	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precaution should be taken to avoid performance degradation or loss of functionality.

ADCA3952

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	INPUT	RF Input
2,3	GND	Ground
4	IADJ	Bias Control Pin
5	VCC	Positive Supply Voltage, 24 V Typical
7,8	GND	Ground
9	OUTPUT	RF Output

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{FLANGE}}=35^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, and IADJ (Pin 4) floating, unless otherwise noted.

S-PARAMETERS

Figure 3. S11 vs. Frequency at Various Temperatures

Figure 4. S21 vs. Frequency at Various Temperatures

Figure 5. S12 vs. Frequency at Various Temperatures

Figure 6. S22 vs. Frequency at Various Temperatures

ADCA3952

9 dB TILT PERFORMANCE

9 dB extrapolated tilt, and 190 digital channels (QAM256, ITU-T J.83, Annex B).

Figure 7. Modulation Error Ratio RMS vs. Total Composite Power at Various Frequencies, $35^{\circ} \mathrm{C}, 9 \mathrm{~dB}$ Tilt

Figure 8. Modulation Error Ratio RMS vs. Total Composite Power at Various Temperatures, $57 \mathrm{MHz}, 9 \mathrm{~dB}$ Tilt

Figure 9. PreViterbi BER vs. Total Composite Power at Various Frequencies, $35^{\circ} \mathrm{C}, 9 \mathrm{~dB}$ Tilt

Figure 10. PreViterbi BER vs. Total Composite Power at Various Temperatures, $57 \mathrm{MHz}, 9 \mathrm{~dB}$ Tilt

ADCA3952

THEORY OF OPERATION

The ADCA3952 is a 75Ω input and output matched module designed for CATV applications. The ADCA3952 uses cascode field effect transistor (FET) feedback amplifiers in a Class A, push pull configuration. The bottom half of the cascode stages are implemented in a single die, linear FET process that minimizes parasitics, thereby enabling higher gain. The top devices in the cascodes are implemented using a linear GaN process able to swing high RF voltages. The frequency of operation is from 45 MHz to 1218 MHz .

Internally, the ADCA3952 module uses a balun to convert the input signal to a balanced signal that feeds the active stages. An output impedance transformer and balun combination converts the balanced GaN signals to an unbalanced 75Ω output. The output transformer also feeds the dc to the active stages and cancels second-order distortion products coming from the active devices.

The module has a bias control pin (IADJ) that can set the dc current consumption from low bias to the full bias of the device by connecting a resistor from the IADJ pin to ground or by the use of a positive voltage.

The ADCA3952 is unconditionally stable and includes transient and surge protection circuits for robust operation in systems targeting DOCSIS 3.1 and legacy DOCSIS standards.

Figure 11. Simplified Schematic

APPLICATIONS INFORMATION

Basic connections for operating the ADCA3952 are shown in Figure 14. Both the INPUT pin (Pin 1) and the OUTPUT pin (Pin 9) of the ADCA3952 are matched to 75Ω. The VCC pin (Pin 5) requires 24 V for typical operation. It is recommended to leave the IADJ pin (Pin 4) open for full bias operation. For bias control on the ADCA3952 supply current, apply an external control voltage between -0.6 V and +1 V at the IADJ pin.
Figure 12 illustrates the typical supply current over the control voltages at the IADJ pin of the ADCA3992.

In systems that require the bias current to be lower than the default but it is not critical, a resistor can be placed between the IADJ pin (Pin 4) and ground to set the current (see Figure 15). Figure 13 illustrates the typical supply current of the ADCA3952 in this configuration for a range of resistor values between 100Ω and $40 \mathrm{k} \Omega$.

Figure 13. Supply Current vs. RIADJ Resistor Value

Figure 12. Supply Current vs. VIADJ at the IADJ Pin

Figure 15. IADJ Bias Control Connections

The ADCA3952 employs a versatile circuit design, allowing system designers to configure the supply voltage at the VCC connection (Pin 5) and the bias control voltage at the IADJ connection (Pin 4) to optimize the power dissipation in any given application. Figure 16 illustrates the modulation error ratio performance trade-off for different bias current configurations.

Figure 16. Modulation Error Ratio RMS vs. Current Setpoint for Various Frequencies, Bias $=24 \mathrm{~V}, 35^{\circ} \mathrm{C}, 9 \mathrm{~dB}$ Tilt, Total Composite Power $=72.0 \mathrm{dBmV}$

ADCA3952

OUTLINE DIMENSIONS

Figure 17. 8-Pin SOT-115J Module Package [MODULE]
(ML-8-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADCA3952AMLZ	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	8 -Pin SOT-115J Module Package [MODULE], Box with 25 Pieces	ML-8-1

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC
Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G 74HCT126T14-13 NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT LE87286NQCT

