## Data Sheet

## FEATURES

Divide-by-2 prescaler<br>High frequency operation: 4 GHz to 18 GHz<br>Integrated RF decoupling capacitors<br>Low power consumption<br>Active mode: $\mathbf{3 0} \mathbf{~ m A}$<br>Power-down mode: 17 mA<br>Low phase noise: -147 dBc/Hz<br>Single dc supply: 3.3 V compatible with ADF4xxx PLLs<br>Temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$<br>Small package: $\mathbf{3} \mathbf{~ m m} \times 3 \mathrm{~mm}$ LFCSP

## APPLICATIONS

PLL frequency range extender
Point-to-point radios
VSAT radios
Communications test equipment

## GENERAL DESCRIPTION

The ADF5000 prescaler is a low noise, low power, fixed RF divider block that can be used to divide down frequencies as high as 18 GHz to a lower frequency suitable for input to a PLL IC, such as the ADF4156 or the ADF4106. The ADF5000 provides a divide-by-2 function. The ADF5000 operates from a 3.3 V supply and has differential $100 \Omega \mathrm{RF}$ outputs to allow direct interface to the differential RF inputs of PLLs such as the ADF4156 and ADF4106.


Figure 1.

## TABLE OF CONTENTS



1/11-Revision 0: Initial Version

## REVISION HISTORY

## 9/13-Rev. 0 to Rev. A

Updated Outine Dimensions9

## /11-Revision 0 Initial Version

Pin Configuration and Function Descriptions. ..... 5
Typical Performance Characteristics .....  6
Evaluation Board PCB .....  7
PCB Material Stack-Up .....  7
Bill of Materials .....  7
Application Circuit .....  8
Outline Dimensions .....  9
Ordering Guide .....  9

ADF5000

## SPECIFICATIONS

$\mathrm{VDD} 1=\mathrm{VDD} 2=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V} ; \mathrm{dBm}$ referred to $50 \Omega ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. The operating temperature range is $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Table 1.

| Parameter | Min | Typ | Max | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RF CHARACTERISTICS |  |  |  |  |  |
| Input Frequency | 4 |  | 18 | GHz |  |
| RF Input Sensitivity | -10 |  | +10 | dBm | 4 GHz to 18 GHz |
| Output Power | -10 | -5 |  | dBm | Single-ended output connected into $50 \Omega$ load |
|  | -7 | -2 |  | dBm | Differential outputs connected into $100 \Omega$ differential load |
| Output Voltage Swing | 200 | 330 |  | mV p-p | Peak-to-peak voltage swing on each single-ended output, connected into $50 \Omega$ load |
|  | 400 | 660 |  | mV p-p | Peak-to-peak voltage swing on differential output, connected into $100 \Omega$ differential load |
|  |  | 1000 |  | mVp-p | Peak-to-peak voltage swing on each single-ended output, no load condition |
| Phase Noise | -147 |  |  | $\mathrm{dBc} / \mathrm{Hz}$ | Input frequency ( $\left(\mathrm{fiN}^{\prime}\right)=12 \mathrm{GHz}$, offset $=100 \mathrm{kHz}$ |
| Reverse Leakage | -60 |  |  | dBm | RF input power $\left(\mathrm{P}_{\text {IN }}\right)=0 \mathrm{dBm}$, RFout $=4 \mathrm{GHz}$ |
| Second Harmonic Content | -28 |  |  | dBC |  |
| Third Harmonic Content | -12 |  |  | dBc |  |
| Fourth Harmonic Content | -37 |  |  | dBc |  |
| Fifth Harmonic Content | -19 |  |  | dBc |  |
| CE INPUT |  |  |  |  |  |
| Input High Voltage, $V_{I H}$ <br> Input Low Voltage, $\mathrm{V}_{\mathrm{IL}}$ | 2.2 | 0.3 |  | V |  |
|  |  |  |  | V |  |
| POWER SUPPLIES |  |  |  |  |  |
| Voltage Supply | 3.0 | 3.3 | 3.6 | V | $C E$ is high$C E$ is low |
| IDD ( $\mathrm{IDD} 1^{+}$IDD2) |  |  |  |  |  |
| Active |  | 30 | 60 | mA |  |
| Power-Down |  | 17 | 30 | mA |  |

ABSOLUTE MAXIMUM RATINGS
Table 2.

| Parameter | Rating |
| :--- | :--- |
| VDDx to GND | -0.3 V to +3.9 V |
| RFIN | 10 dBm |
| Operating Temperature Range |  |
| $\quad$ Industrial (B Version) | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature | $150^{\circ} \mathrm{C}$ |
| LFCSP $\theta_{\mathrm{JA}}$ Thermal Impedance | $27.3^{\circ} \mathrm{C} / \mathrm{W}$ |
| Peak Temperature | $260^{\circ} \mathrm{C}$ |
| Time at Peak Temperature | 40 sec |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device is a high performance RF integrated circuit with an ESD rating of 2 kV , human body model (HBM) and is ESD sensitive. Implement proper precautions for handling and assembly.

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 3. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & 1,3,4,5,8,9 \\ & 12,13,16 \end{aligned}$ | GND | RF Ground. Tie all ground pins together. |
| 2 | RFIN | Single-Ended $50 \Omega$ Input to the RF Prescaler. This pin is ac-coupled internally via a 3 pF capacitor. |
| 6 | NC | No Connect. Do not connect to this pin. |
| 7 | CE | Chip Enable. This pin is active high. When CE is brought low, the part enters power-down mode. If this functionality is not required, the pin can be left unconnected because it is pulled up internally through a weak pull-up resistor. |
| 10 | RFOUT | Divided-Down Output of the Prescaler. This pin has an internal $100 \Omega$ load resistor tied to VDD2 and an ac coupling capacitor of 1 pF . |
| 11 | $\overline{\text { RFOUT }}$ | Complementary Divided Down Output of the Prescaler. This pin has an internal $100 \Omega$ load resistor tied to VDD2 and an ac coupling capacitor of 1 pF . |
| 14 | VDD2 | Voltage Supply for the Output Stage. Decouple this pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a 10 pF capacitor. VDD2 can be tied directly to VDD1. |
| 15 | VDD1 | Voltage Supply for the Input Stage and Divider Block. Decouple this pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a 10 pF capacitor. |
|  | EPAD | The LFCSP has an exposed paddle that must be connected to GND. |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. RF Input Sensitivity


Figure 4. $I_{D D 1}$ and $I_{D D 2} v s . V D D x, f_{I N}=10 G H z, P_{I N}=0 d B m$



Figure 6. RF Output Harmonic Content vs. VDDx


Figure 7. RF Output Power vs. RF Input Frequency, $f_{I N}=10 \mathrm{GHz}, V_{D D}=3.3 \mathrm{~V}$

Figure 5. RF Output Power (Single-Ended) vs. VDDx, $f_{I_{N}}=10 \mathrm{GHz}, P_{I_{N}}=0 \mathrm{dBm}$

## EVALUATION BOARD PCB

The evaluation board has four connectors as shown in Figure 8. The RF input connector (J4) is a high frequency precision SMA connector from Emerson. This connector is mechanically compatible with SMA, 3.5 mm , and 2.92 mm cables.


Figure 8. Evaluation Board Silkscreen-Top View
The evaluation board is powered from a single 3.0 V to 3.6 V supply, which should be connected to the J1 SMA connector. The power supply can also be connected using the T3 (VDDx) and T2 (GND) test points.

The differential RF outputs are brought out on the J2 and J3 SMA connectors. If only one of the outputs is being used, the unused output should be correctly terminated using a $50 \Omega$ SMA termination.

The chip enable (CE) pin can be controlled using the T1 test point. If this function is not required, the test point can be left unconnected.

## PCB MATERIAL STACK-UP

The evaluation board is built using Rogers RO4003C material ( 0.008 inch). RF track widths are 0.015 inch to achieve a controlled $50 \Omega$ characteristic impedance. The complete printed circuit board (PCB) stack-up is shown in Figure 9.


$0.062 " \pm 0.003 "$ COPPER TO COPPER


Figure 9. Evaluation Board PCB Layer Stack-Up

## BILL OF MATERIALS

Table 4.

| Qty. | Reference Designator | Description | Supplier | Part Number |
| :--- | :--- | :--- | :--- | :--- |
| 1 | C1 | $0.1 \mu F, 0603$ capacitor | Murata | GRM188R71H104KA93D |
| 1 | C2 | $10 \mathrm{pF}, 0402$ capacitor | Murata | GRM1555C1H100JZ01D |
| 3 | J1, J2, J3 | SMA RF connector | Emerson | $142-0701-851$ |
| 1 | J 4 | SMA RF connector | Emerson | $142-0761-801$ |
| 3 | T1, T2, T3 | Test points | Vero | $20-2137$ |
| 1 | U1 | ADF5000 RF prescaler | Analog Devices, Inc. | ADF5000BCPZ |

## APPLICATION CIRCUIT

The ADF5000 can be connected either single-ended or differentially to any of the Analog Devices PLL family of ICs. It is recommended that a differential connection be used for best performance and to achieve maximum power transfer. The application circuit shown in Figure 10 shows the ADF5000 used as the RF prescaler in a microwave 12 GHz PLL loop. The ADF5000 divides the 12 GHz RF signal down to 6 GHz , which is input differentially into the ADF4156 PLL. An active filter topology, using the OP184 op amp, is used to provide the wide tuning ranges typically required by microwave VCOs.

The positive input pin of the OP184 is biased at half the ADF4156 charge pump supply ( $\mathrm{V}_{\mathrm{P}}$ ). This can be easily achieved using a simple resistor divider, ensuring sufficient decoupling close to the + IN A pin of the OP184. This configuration, in turn, allows the use of a single positive supply for the op amp. Alternatively, to optimize performance by ensuring a clean bias voltage, a low noise regulator such as the ADP150 can be used to power the resistor divider network or the + IN A pin directly.


Figure 10. ADF5000 Used as the RF Prescaler in a Microwave 12 GHz PLL Loop

## OUTLINE DIMENSIONS



08-16-2010-B
Figure 11. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-18)
Dimensions shown in millimeters

ORDERING GUIDE

| Model $^{1}$ | Temperature <br> Range | Package Description | Package <br> Option | Branding |
| :--- | :--- | :--- | :--- | :--- |
| ADF5000BCPZ | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] | CP-16-18 | Q1T |
| ADF5000BCPZ-RL7 | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7"Tape and Reel <br> Evaluation Board | CP-16-18 | Q1T |
| EVAL-ADF5000EB2Z |  | Eval |  |  |

[^0]NOTES
$\square$
Data Sheet ADF5000

NOTES

## NOTES

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Prescaler category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
UXD20P UXN14M9P MX1DS10P UXD20K ADF5000BCPZ-RL7 MC12093MNR4G NB7N017MMNG HMC705LP4ETR HMC363S8GETR HMC394LP4ETR HMC433ETR HMC432ETR HMC862ALP3ETR UXM15P MC12026ADG MC12093DG MC12093DR2G MC12026ADR2G


[^0]:    ${ }^{1} Z=$ RoHS Compliant Part.

