Data Sheet

FEATURES

2.4 pF typical off switch source capacitance, dual supply $<1 \mathrm{pC}$ charge injection
 Low leakage: 0.6 nA maximum at $85^{\circ} \mathrm{C}$
 120Ω typical on resistance at $25^{\circ} \mathrm{C}$, dual supply
 Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}$
 No V L supply required
 3 V logic-compatible inputs
 $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}$ minimum
 $\mathrm{V}_{\text {INL }}=0.8 \mathrm{~V}$ maximum
 Rail-to-rail operation
 6-lead SOT-23 package
 APPLICATIONS

Automatic test equipment

Data acquisition systems

Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing

Communication systems

GENERAL DESCRIPTION
The ADG1201 is a monolithic complementary metal-oxide semiconductor (CMOS) device containing a single-pole, single-throw (SPST) switch designed in an $i \mathrm{CMOS}^{\star}$ process. i CMOS is a modular manufacturing process combining a high voltage CMOS and bipolar technologies. i CMOS enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth also makes the device suitable for video signal switching.

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FORA LOGIC 1 INPUT
Figure 1.
iCMOS construction ensures ultra low power dissipation, making the device ideally suited for portable and batterypowered instruments.
The ADG1201 contains a SPST switch. Figure 1 shows that with a logic input of 1 , the switch of the ADG1201 is closed. The switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

PRODUCT HIGHLIGHTS

1. Ultralow capacitance.
2. $<1 \mathrm{pC}$ charge injection.
3. Ultralow leakage.
4. 3 V logic-compatible digital inputs:
$\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}$ minimum, $\mathrm{V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ maximum.
5. No logic voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ power supply required.
6. SOT-23 package.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
1/2019—Rev. 0 to Rev. A
Deleted ADG1202Universal
Changes to Features Section and Product Highlights Section ... 1
Changes to Table 13
Changes to Absolute Maximum Ratings Section and Table 3 6
Added Thermal Resistance Section 6
Added Table 4; Renumbered Sequentially 6
Changes to Figure 3 Caption to Figure 8 Caption 8
Changes to Figure 9 Caption, Figure 10 Caption, and Figure 11 Caption 9
Changes to Figure 15 Caption and Figure 19 Caption 10
Changes to Figure 26 and Figure 27 12
Changes to Ordering Guide 14
Absolute Maximum Ratings6
Thermal Resistance 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Test Circuits 11
Terminology 13
Outline Dimensions 14
Ordering Guide 14

2/2008—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG1201

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments	
POWER REQUIREMENTS	0.001				$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$	
Positive Supply Current (ldo)			1.0	$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	
			$\mu \mathrm{A}$ max			
IDD	60				$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			95	$\mu \mathrm{A}$ max		
Negative Supply Current (lss)	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or V_{DD}	
			1.0	$\mu \mathrm{A}$ max		
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			± 5 to ± 16.5	V min/max	$\mathrm{GND}=0 \mathrm{~V}$	

${ }^{1}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Rflaton)	$\begin{aligned} & 300 \\ & 475 \\ & 60 \\ & \hline \end{aligned}$	567	0 V to V_{DD} 625	V Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {, see Figure } 20 \\ & \mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V}, 6 \mathrm{~V} \text {, and } 9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & \pm 0.006 \\ & \pm 0.1 \\ & \pm 0.006 \\ & \pm 0.1 \\ & \pm 0.04 \\ & \pm 0.15 \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 0.6 \\ & \pm 0.6 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{S}=1 \mathrm{~V} \text { or } 10 \mathrm{~V}, V_{D}=10 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {, see Figure } 21 \\ & V_{S}=1 \mathrm{~V} \text { or } 10 \mathrm{~V}, V_{D}=10 \mathrm{~V} \text { or } 1 \mathrm{~V} \text {, see Figure } 21 \\ & V_{S}=V_{D}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {, see Figure } 22 \end{aligned}$
DIGITAL INPUTS $\mathrm{V}_{\mathrm{INH}}$ $\mathrm{V}_{\text {INL }}$ linc or $l_{\text {Inh }}$ Cin	$\begin{aligned} & 0.001 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection Off Isolation -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 190 \\ & 250 \\ & 120 \\ & 155 \\ & 0.8 \\ & 80 \\ & 520 \\ & 2.7 \\ & 3.3 \\ & 3.1 \\ & 3.6 \\ & 5.3 \\ & 6.3 \\ & \hline \end{aligned}$	295 190	340 210	ns typ ns max ns typ ns max pC typ dB typ MHz typ pF typ pF max pF typ pF max pF typ pF max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{~V}_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF} \text {, frequency }=1 \mathrm{MHz} \text {, } \\ & \text { see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF} \text {, see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \mathrm{~V}_{S}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \mathrm{~V}_{S}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \mathrm{~V}_{S}=6 \mathrm{~V} \text {, frequency }=1 \mathrm{MHz} \\ & \hline \end{aligned}$

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments	
POWER REQUIREMENTS	0.001		1.0		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$	
IDD			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}		
			$\mu \mathrm{A}$ max			
IDD	60			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$	
				95	$\mu \mathrm{A}$ max	
$V_{D D}$				5 to 16.5	\checkmark min/max	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {D }}$ to GND	-0.3 V to +25 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current per Channel, S or D	30 mA
Temperature	
Industrial Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak, PbFree	$260^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.
$\theta_{J A}$ is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
RJ-6 ${ }^{1}$	229.6	91.99	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance values measured on a JEDEC 1S2P thermal test board. See JEDEC JESD-51.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD avoid performance degradation or loss of functionality

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VD	Most Positive Power Supply Potential.
2	GND	Ground (OV) Reference.
3	VSS	Most Negative Power Supply Potential.
4	S	Source Terminal. This pin can be an input or output.
5	D	Drain Terminal. This pin can be an input or output.
6	IN	Logic Control Input.

Table 6. ADG1201 Truth Table

IN	Switch Condition
1	On
0	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. Source or Drain Voltage, Dual Supply

Figure 4. On Resistance vs. Source or Drain Voltage, Dual Supply

Figure 5. On Resistance vs. Source or Drain Voltage, Single Supply

Figure 6. On Resistance vs. Source or Drain Voltage, Different Temperatures, Dual Supply

Figure 7. On Resistance vs. Source or Drain Voltage, Different Temperatures, Single Supply

Figure 8. Leakage Current vs. Temperature, Dual Supply

Figure 9. Leakage Currents vs. Temperature, Dual Supply

Figure 10. Leakage Currents vs. Temperature, Single Supply

Figure 11. IDD vs. Logic Level, IN

Figure 12. Charge Injection vs. Source Voltage

Figure 13. $t_{o n} / t_{\text {off }}$ Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. Insertion Loss vs. Frequency

Figure 16. $T H D+N$ vs. Frequency

Figure 17. Capacitance vs. Input Voltage, Dual Supply

Figure 18. Capacitance vs. Input Voltage, Single Supply

Figure 19. AC Power Supply Rejection Ratio (AC PSRR) vs. Frequency

TEST CIRCUITS

Figure 21. Off Leakage

Figure 23. Off Isolation

Figure 24. Bandwidth

Figure 25. $T H D+N$

Figure 26. Switching Times

Figure 27. Charge Injection

TERMINOLOGY

$I_{D D}$
The positive supply current.
Iss
The negative supply current.
$V_{D}\left(V_{s}\right)$
The analog voltage on Terminal D and Terminal S.
Ron
The ohmic resistance between D and S .
$\mathbf{R}_{\text {FLAT(ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
I_{s} (Off)
The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
The channel leakage current with the switch on.
VINL
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
Cs (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
The on switch capacitance, measured with reference to ground.

C_{IN}

The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 26.
$t_{\text {off }}$
The delay between applying the digital control input and the output switching off. See Figure 26.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)
AC PSRR measures the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the AC PSRR.

OUTLINE DIMENSIONS

Figure 28. 6-Lead Small Outline Transistor Package [SOT-23]
(RJ-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADG1201BRJZ-R2 $^{\text {AD }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S25
ADG1201BRJZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S25

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

