FEATURES

```
33 V supply range
130\Omega on resistance
Fully specified at }\pm15\textrm{V}/+12\textrm{V
3 V logic compatible inputs
Rail-to-rail operation
Break-before-make switching action
20-lead SSOP
```


APPLICATIONS

Audio and video routing

Battery-powered systems

Signal routing

GENERAL DESCRIPTION

The ADG1334 is a monolithic CMOS device comprising four independently selectable SPDT switches designed on a CMOS process.

When the switches are on, each switch conducts equally well in both directions and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs.

Fast switching speed coupled with high signal bandwidth makes the part suitable for video signal switching. CMOS construction ensures ultra ow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. 3 V logic compatible digital input $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
2. No V_{L} logic power supply required.
3. Low power consumption.
4. 20-lead SSOP.

Rev. 0

ADG1334

TABLE OF CONTENTS

Features .. 1
Applications.. 1
Functional Block Diagram ... 1
General Description ... 1
Product Highlights .. 1
Revision History .. 2
Specifications.. 3
Dual Supply ... 3
Single Supply .. 4

REVISION HISTORY
1/06-Revision 0: Initial Version
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Terminology 7
Typical Performance Characteristics. 8
Test Circuits 10
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

${ }^{1}$ Temperature range is B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ADG1334

SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	B Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +105^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH				
Analog Signal Range		0 to V ${ }_{\text {D }}$	V	
On Resistance (Ron)	325	520	Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 11
	500		Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On Resistance Match Between Channels (Δ Ros)	10		Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	20		Ω max	
On Resistance Flatness (Rflation)	65		Ω typ	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS				$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
Source Off Leakage I_{5} (Off)	± 10		nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 12
Drain Off Leakage lo (Off)	± 10		nA typ	$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 12
Channel On Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{IS}^{\text {(On }}$)	± 10		nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 10 V , see Figure 13
DIGITAL INPUTS				
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$		0.8	\checkmark max	
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$	± 0.005		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
		± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{CIN}_{\text {IN }}$	3		pF typ	$\mathrm{f}=1 \mathrm{MHz}$
DYNAMIC CHARACTERISTICS²				
Ton	135		ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	170	200	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 14
Toff	95		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	115	140	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 14
$\mathrm{T}_{\text {ввм }}$	50		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
		10	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 15
Charge Injection	2		pC typ	$\mathrm{V}_{s}=6 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 16
Off Isolation	80		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 17
Channel-to-Channel Crosstalk	85		dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 19
-3 dB Bandwidth	500		MHz typ	$\mathrm{R}_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 18
C_{5} (Off)	5		pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$
C_{D} (Off)	5		pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	10		pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{5}=6 \mathrm{~V}$
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
Ido	0.002		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
		1	$\mu \mathrm{A}$ max	
ldo	260		$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
		420	$\mu \mathrm{A}$ max	

[^0]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
VDD to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog, Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, S or D	24 mA
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle max)	100 mA
Operating Temperature Range	
Industrial Temperature Range (B Version)	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SSOP Package	
θ_{jA}, Thermal Impedance	$83.2{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb -free	$260^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at $\mathrm{A}, \mathrm{EN}, \mathrm{S}$, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG1334

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 20-Lead SSOP Pin Configuration

Table 4. 20-Lead SSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,10,11,20$	IN1, IN2, IN3, IN4	Logic Control Input.
$2,4,7,9,12,14,17,19$	S1A, S1B, S2B, S2A, S3A, S3B, S4B, S4A	Source Terminal. Can be an input or output.
$3,8,13,18$	D1, D2, D3, D4	Drain Terminal. Can be an input or output.
5	VSS	Most Negative Power Supply Potential in Dual Supplies. In
6		single-supply applications, it can be connected to ground.
6	GND	Ground (OV) Reference.
15	NC	No Connect.
16	VDD	Most Positive Power Supply Potential.

Table 5. ADG1334 Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

TERMINOLOGY

Ron
Ohmic resistance between D and S.
Δ Ron
Difference between the Ron of any two channels.
I_{s} (Off)
Source leakage current when switch is off.

I_{D} (Off)

Drain leakage current when switch is off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$

Channel leakage current when switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminal D, Terminal S.
Cs (OFF)
Channel input capacitance for off condition.

C_{D} (Off)

Channel output capacitance for off condition.

$\mathrm{C}_{\mathrm{p}}, \mathrm{Cs}$ (On)

On switch capacitance.

Cin

Digital input capacitance.

ton

The delay between applying the digital control input and the output switching on (see Figure 14).
$\mathbf{t}_{\text {Off }}$
The delay between applying the digital control input and the output switching off (see Figure 14).
$\mathbf{t}_{\text {ввм }}$
Off time measured between the 80% point of both switches when switching from one address state to another.

Vinl
Maximum input voltage for Logic 0 .
Vinh
Minimum input voltage for Logic 1.
InL $\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
$I_{\text {DD }}$
Positive supply current.

Iss
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.

ADG1334

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 7. Charge Injection vs. Source Voltage

Figure 8. $T_{\text {on }} / T_{\text {off }}$ Time vs. Temperature

Figure 9. Off Isolation vs. Frequency

Figure 10. Crosstalk vs. Frequency

ADG1334

TEST CIRCUITS

Figure 16. Charge Injection

Figure 17. Off Isolation

Figure 18. Bandwidth

ADG1334

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
ADG1334BRSZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 -Lead Shrink Small Outline Package (SSOP)	RS-20
ADG1334BRSZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 -Lead Shrink Small Outline Package (SSOP)	RS-20

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

[^0]: ${ }^{1}$ Temperature range is B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

