Serially Controlled, $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}, 8$-Channel/ 4-Channel, iCMOS Multiplexers/Matrix Switches

Data Sheet

FEATURES

Serial interface up to 50 MHz
SDO daisy-chaining option
9.5Ω on resistance at $25^{\circ} \mathrm{C}$
1.6Ω on-resistance flatness
Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$
3 V logic-compatible inputs
Rail-to-rail operation
20-lead TSSOP and 20 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Relay replacement

Audio and video routing
Automatic test equipment
Data acquisition systems
Temperature measurement systems

Avionics

Battery-powered systems
Communication systems
Medical equipment

GENERAL DESCRIPTION

The ADG1438 and ADG1439 are CMOS analog matrix switches with a serially controlled 3-wire interface. The ADG1438 is an 8 -channel matrix switch, and the ADG1439 is a dual 4-channel matrix switch.

The ADG1438/ADG1439 use a versatile 3-wire serial interface that operates at clock rates of up to 50 MHz and is compatible with standard SPI, QSPI ${ }^{\mathrm{mw}}$, MICROWIRE ${ }^{\mathrm{mw}}$, and DSP interface standards. The output of the shift register, SDO, enables a number of the ADG1438/ADG1439 devices to be daisy-chained. On power-up, the internal shift register contains all zeros, and all switches are in the off state.

Each switch conducts equally well in both directions when on, making these devices suitable for both multiplexing and demultiplexing applications. Because each switch is turned on or off by a separate bit, these devices can also be configured as a type of switch array, where any, all, or none of the eight switches can be closed at any time. The input signal range extends to the supply rails. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. $i \mathrm{CMOS}^{\star}$ construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

Rev. B

Document Feedback

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

PRODUCT HIGHLIGHTS

1. 50 MHz serial interface.
2. 9.5Ω on resistance.
3. 1.6Ω on-resistance flatness.
4. 3 V logic-compatible digital input, $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.

Table 1. Related Devices

Device No.	Description
ADG1408/ADG1409	Low on resistance, parallel interface, 4-/8-channel $\pm 15 \mathrm{~V}$ multiplexers

TABLE OF CONTENTS

Features
Applications 1
General Description 1
Functional Block Diagrams. 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
12 V Single Supply 5
± 5 V Dual Supply 7
Continuous Current per Channel 8
Timing Characteristics 9
Timing Diagrams 9
Absolute Maximum Ratings 10

REVISION HISTORY

3/16-Rev. A to Rev. B
Changed CP-20-4 to CP-20-10 Throughout
Changes to Figure 5, Figure 6, and Table 10 11
Changes to Figure 7, Figure 8, and Table 11 12
Changes to Figure 29 16
Updated Outline Dimensions 20
Changes to Ordering Guide 20
5/10—Rev. 0 to Rev. A
Changes to Channel On Leakage, ID, IS (On) $+25^{\circ} \mathrm{C}$
Parameter, Table 2 31
10/09—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflation)	9.5 11.5 0.55 1 1.6 1.9	14 1.5 2.15	$V_{s s}$ to $V_{D D}$ 16 1.7 2.3	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 27 . \end{aligned}$ $\begin{aligned} & V_{D D}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} . \\ & \mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} . \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) ADG1438 ADG1439 Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.05 \\ & \pm 0.15 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 3 \\ & \pm 1.5 \\ & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 12 \\ & \pm 6 \\ & \pm 12 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 28 . \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 28 . \\ & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 29 . \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current Digital Input Capacitance, C_{IN}	$\begin{aligned} & \pm 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{L}.
LOGIC OUTPUTS (SDO) Output Low Voltage, VoL ${ }^{1}$ High Impedance Leakage Current High Impedance Output Capacitance ${ }^{1}$	0.001 4		$\begin{gathered} 0.4 \\ 0.6 \\ \\ \pm 1 \end{gathered}$	\checkmark max V max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{IIINK}}=3 \mathrm{~mA} . \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} . \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Break-Before-Make Time Delay, tввм Transition Time, $\mathrm{t}_{\text {transition }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N)	$\begin{aligned} & 55 \\ & \\ & 80 \\ & 100 \\ & 4 \\ & -70 \\ & -70 \\ & 0.057 \end{aligned}$	120	30 130	$\begin{aligned} & \text { ns typ } \\ & \text { ns min } \\ & \text { ns typ } \\ & \text { ns max } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { dB typ } \\ & \% \text { typ } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} . \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V} \text {; see Figure } 31 . \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} . \\ & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \text {; see Figure } 30 . \\ & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 32 . \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 33 . \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 34 . \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 15 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; } \\ & \text { see Figure } 36 . \end{aligned}$

ADG1438/ADG1439

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments	
-3 dB Bandwidth	82			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 35.	
ADG1438						
ADG1439	130			MHz typ		
Insertion Loss	0.7			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35.	
Cs_{5} (Off)	9			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.	
$C_{\text {d }}$ (Off)	58					
ADG1438				pF typ	$\mathrm{f}=1 \mathrm{MHz}$.	
ADG1439	28			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.	
$C_{\text {d, }} \mathrm{C}_{\text {S }}(\mathrm{On})$						
ADG1438	286			pF typ pF typ	$\mathrm{f}=1 \mathrm{MHz}$.	
ADG1439	139				$\mathrm{f}=1 \mathrm{MHz}$.	
POWER REQUIREMENTS ldo	0.001				$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$.	
			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}.		
			1	$\mu \mathrm{A} \max$		
IL Inactive	0.3				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}.
			1	$\mu \mathrm{A}$ max		
IL Active - 30 MHz	0.26			mA typ mA max	Digital inputs toggle between 0 V and V .	
		0.3	0.35			
IL Active - 50 MHz	0.42			mA typ mA max	Digital inputs toggle between 0 V and V .	
		0.5	0.55			
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V L.	
			1	$\mu \mathrm{A}$ max		
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	\checkmark min/V max		

${ }^{1}$ Guaranteed by design, not subject to production test.

ADG1438/ADG1439

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflat(on))	$\begin{aligned} & 18 \\ & 21.5 \\ & 0.55 \\ & 1.2 \\ & 5 \\ & 6 \end{aligned}$	26 1.6 6.9	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 28.5 \\ & 1.8 \\ & 7.3 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V},$ $\mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 27$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}= \\ & -10 \mathrm{~mA} . \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}= \\ & -10 \mathrm{~mA} . \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) ADG1438 ADG1439 Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.02 \\ & \pm 0.15 \\ & \pm 0.02 \\ & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 3 \\ & \pm 1.5 \\ & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 12 \\ & \pm 6 \\ & \pm 12 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}$. $V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 28. $V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 28. $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 10 V ; see Figure 29.
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, Vint Input Current Digital Input Capacitance, $\mathrm{Clin}^{\mathrm{I}}$	$\begin{aligned} & \pm 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$V_{\text {min }}$ \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{L}.
LOGIC OUTPUTS (SDO) Output Low Voltage, VoL ${ }^{1}$ High Impedance Leakage Current High Impedance Output Capacitance ${ }^{1}$	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 0.4 \\ 0.6 \\ \\ \pm 1 \end{gathered}$	\checkmark max V max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=3 \mathrm{~mA} . \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} . \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Break-Before-Make Time Delay, tввм Transition Time, ttransition Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG1438 ADG1439	$\begin{aligned} & 115 \\ & 155 \\ & 195 \\ & 7 \\ & -70 \\ & -70 \\ & 58 \\ & 105 \end{aligned}$	235	60 260	ns typ ns min ns typ ns max pC typ dB typ dB typ MHz typ MHz typ	

ADG1438/ADG1439

Parameter	+ $25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
Insertion Loss	1.3			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35.
C_{5} (Off)	14			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.
$C_{\text {D }}$ (Off)					
ADG1438	86			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.
ADG1439	42			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.
$C_{\text {d, }} \mathrm{C}_{5}(\mathrm{On})$					
ADG1438	295			pF typ	$\mathrm{f}=1 \mathrm{MHz}$.
ADG1439				pF typ	$\mathrm{f}=1 \mathrm{MHz}$.
POWER REQUIREMENTS Id	0.001				$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$.
				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}.
			1	$\mu \mathrm{A} \max$	
IL Inactive	0.3			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}.
			1	$\mu \mathrm{A}$ max	
IL Active - 30 MHz	0.26			mA typ	Digital inputs toggle between 0 V and V_{L}.
		0.3	0.35	mA max	
IL Active - 50 MHz	0.42			mA typ	Digital inputs toggle between 0 V and V_{L}.
		0.5	0.55	mA max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}.
			1	$\mu \mathrm{A}$ max	
VDD			5/16.5	\checkmark min/V max	

[^0]
± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, G \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflat(on))	$\begin{aligned} & 21 \\ & 25 \\ & 0.6 \\ & 1.3 \\ & 5.2 \\ & 6.4 \end{aligned}$	29 1.7 7.3	V_{SS} to V_{DD} 32 1.9 7.6		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 27 . \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} . \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} . \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) ADG1438 ADG1439 Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.02 \\ & \pm 0.15 \\ & \pm 0.02 \\ & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 3 \\ & \pm 1.5 \\ & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 12 \\ & \pm 6 \\ & \pm 12 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 28 . \\ & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 28 . \\ & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 29 . \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current Digital Input Capacitance, C_{IN}	$\begin{aligned} & \pm 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {Gnd }}$ or V_{L}.
LOGIC OUTPUTS (SDO) Output Low Voltage, VoL ${ }^{1}$ High Impedance Leakage Current High Impedance Output Capacitance ${ }^{1}$	$\begin{aligned} & 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 0.4 \\ 0.6 \\ \pm 1 \end{gathered}$	V max V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{IINK}}=3 \mathrm{~mA} . \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} . \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Break-Before-Make Time Delay, tввм Transition Time, ttransition Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) -3 dB Bandwidth ADG1438 ADG1439 Insertion Loss C_{s} (Off)	$\begin{aligned} & 150 \\ & 200 \\ & 230 \\ & 5 \\ & -70 \\ & -70 \\ & 0.14 \\ & \\ & 62 \\ & 116 \\ & 1.2 \\ & 12 \\ & \hline \end{aligned}$	315	80 350	ns typ ns min ns typ ns max pC typ dB typ dB typ \% typ MHz typ MHz typ dB typ pF typ	

${ }^{1}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL

Table 5. ADG1438, One Channel On

Parameter	$25^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL¹					
15 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
$20-L e a d ~ T S S O P ~(~(~ J J A ~=~ 112.6 ~ \% ~ \% ~ W ~) ~$	169	97	48	mA max	
	295	139	55	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
$20-L e a d ~ T S S O P ~(~(~ J ~ j ~=~ 112.6 ~ \% ~ \% ~ W ~) ~$	161	93	47	mA max	
$20-L e a d$ LFCSP $\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	281	135	54	mA max	
5 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
20 -Lead TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	122	76	43	mA max	
20-Lead LFCSP ($\left.\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	214	114	51	mA max	

${ }^{1}$ Guaranteed by design, not subject to production test.
Table 6. ADG1439, One Channel On Per Multiplexer

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL ${ }^{1}$					
15 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
20-Lead TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	125	77	43	mA max	
$20-L e a d$ LFCSP $\left(\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	220	116	52	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
20-Lead TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	119	74	42	mA max	
	210	112	51	mA max	
5 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-4.5 \mathrm{~V}$
20-Lead TSSOP ($\left.\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	159	93	47	mA max	
	90	59	37	mA max	

[^1]
TIMING CHARACTERISTICS

All input signals are specified with $t_{R}=t_{F}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$ (see Figure 3). $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ to $0 \mathrm{~V} ; \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); $\mathrm{GND}=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1}$

Table 7.

Parameter	Limit at TMin, $\mathbf{T}_{\text {max }}$	Unit	Test Conditions/Comments
$\mathrm{t}_{1}{ }^{2}$	20	ns min	SCLK cycle time
t_{2}	9	ns min	SCLK high time
t_{3}	9	ns min	SCLK low time
t_{4}	5	ns min	$\overline{\text { SYNC }}$ to SCLK active edge setup time
t_{5}	5	ns min	Data setup time
t_{6}	5	ns min	Data hold time
t_{7}	5	ns min	SCLK active edge to $\overline{\text { SYNC }}$ rising edge
t_{8}	15	$n \mathrm{~ns}$ min	Minimum $\overline{\text { SYNC }}$ high time
t_{9}	5	ns min	$\overline{\text { SYNC }}$ rising edge to next SCLK active edge ignored
t_{10}	5	ns min	SCLK active edge to $\overline{\text { SYNC }}$ falling edge ignored
$\mathrm{t}_{11}{ }^{3}$	40	ns max	SCLK rising edge to SDO valid
t_{12}	15	ns min	Minimum $\overline{\text { RESET }}$ pulse width

[^2]
TIMING DIAGRAM

Figure 3. Serial Write Operation

Figure 4. Daisy-Chain Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 8.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
V ${ }_{\text {to }}$ GND	-0.3 V to +7 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, Sx or Dx Pins	Table 5 and Table 6 specifications + 15\%
Peak Current, Sx or Dx Pins (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max)	
TSSOP	300 mA
LFCSP	400 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature (Pb-Free)	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Table 9. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Unit
20 Lead TSSOP (4-Layer Board)	112.6	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead LFCSP (4-Layer Board and	30.4	$\mathrm{~N} / \mathrm{A}^{1}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
\quad Exposed Paddle Soldered to $\left.\mathrm{V}_{\text {SS }}\right)$			

${ }^{1} \mathrm{~N} /$ A means not applicable.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

${ }^{1}$ Overvoltages at the analog and digital inputs are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NIC $=$ NO INTERNAL CONNECTION
Figure 5. ADG1438 Pin Configuration (TSSOP)

NOTES

1. NIC = NO INTERNAL CONNECTION.
2. THE EXPOSED PAD IS TIED TO THE SUBSTRATE, v_{SS}. $\stackrel{\stackrel{\circ}{\mathrm{o}}}{\circ}$

Figure 6. ADG1438 Pin Configuration (LFCSP)

Table 10. ADG1438 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	19	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz .
2	20	$V_{D D}$	Most Positive Power Supply Potential.
3	1	DIN	Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
4	2	GND	Ground (0 V) Reference.
5,11	7,9	NIC	No Internal Connection.
6	3	S1	Source Terminal 1. Can be an input or an output.
7	4	S2	Source Terminal 2. Can be an input or an output.
8	5	S3	Source Terminal 3. Can be an input or an output.
9	6	S4	Source Terminal 4. Can be an input or an output.
10	8	D	Drain Terminal. Can be an input or an output.
12	10	S8	Source Terminal 8. Can be an input or an output.
13	11	S7	Source Terminal 7. Can be an input or an output.
14	12	S6	Source Terminal 6. Can be an input or an output.
15	13	S5	Source Terminal 5. Can be an input or an output.
16	14	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
17	15	$\overline{\text { RESET }}$	Active Low Logic Input. When this pin is low, all switches are open, and the appropriate registers are cleared to 0 .
18	16	SDO	Serial Data Output. Can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. This is an open-drain output that should be pulled to the V_{L} supply with an external $1 \mathrm{k} \Omega$ resistor.
19	17	V_{L}	Logic Power Supply Input. Operates from 2.7 V to 5.5 V.
20	18	$\overline{\text { SYNC }}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking $\overline{\text { SYNC }}$ high updates the switch condition.
N/A ${ }^{1}$	0	EPAD	The exposed pad is tied to the substrate, $\mathrm{V}_{\text {Ss }}$.

Figure 7. ADG1439 Pin Configuration (TSSOP)

NOTES

1. NIC = NO INTERNAL CONNECTION.
2. THE EXPOSED PAD IS TIED TO THE SUBSTRATE, $\mathrm{V}_{\text {Ss. }} \stackrel{\stackrel{\circ}{\circ}}{\circ}$

Figure 8. ADG1439 Pin Configuration (LFCSP)

Table 11. ADG1439 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	19	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz .
2	20	$V_{\text {DD }}$	Most Positive Power Supply Potential.
3	1	DIN	Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
4	2	GND	Ground (0 V) Reference.
5	8	NIC	No Internal Connection.
6	3	S1A	Source Terminal 1A. Can be an input or an output.
7	4	S2A	Source Terminal 2A. Can be an input or an output.
8	5	S3A	Source Terminal 3A. Can be an input or an output.
9	6	S4A	Source Terminal 4A. Can be an input or an output.
10	7	DA	Drain Terminal A. Can be an input or an output.
11	9	DB	Drain Terminal B. Can be an input or an output.
12	10	S4B	Source Terminal 4B. Can be an input or an output.
13	11	S3B	Source Terminal 3B. Can be an input or an output.
14	12	S2B	Source Terminal 2B. Can be an input or an output.
15	13	S1B	Source Terminal 1B. Can be an input or an output.
16	14	Vss	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
17	15	$\overline{\text { RESET }}$	Active Low Logic Input. When this pin is low, all switches are open, and appropriate registers are cleared to 0 .
18	16	SDO	Serial Data Output. Can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. This is an open-drain output that should be pulled to the V_{L} supply with an external $1 \mathrm{k} \Omega$ resistor.
19	17	V ${ }_{\text {L }}$	Logic Power Supply Input. Operates from 2.7 V to 5.5 V.
20	18	$\overline{\text { SYNC }}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC goes low, }}$ it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking $\overline{\text { SYNC }}$ high updates the switch condition.
N / A^{1}	0	EPAD	The exposed pad is tied to the substrate, $\mathrm{V}_{\text {ss }}$.

[^3]TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 10. On Resistance as a Function of $V_{D}(V s)$, Dual Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Single Supply

Figure 12. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 15 V Dual Supply

Figure 13. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 5 V Dual Supply

Figure 14. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 12 V Single Supply

Figure 15. Leakage Current as a Function of Temperature,
15 V Dual Supply

Figure 16. Leakage Current as a Function of Temperature,
5 V Dual Supply

Figure 17. Leakage Current as a Function of Temperature,
12 V Single Supply

Figure 18. I IDD vs. Logic Level

Figure 19. Charge Injection vs. Source Voltage

Figure 20. Transition Time vs. Temperature

Figure 21. Off Isolation vs. Frequency

Figure 22. ADG1438 Crosstalk vs. Frequency

Figure 23. ADG1439 Crosstalk vs. Frequency

Figure 24. ADG1438 On Response vs. Frequency

Figure 25. THD $+N$ vs. Frequency

Figure 26. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 27. On Resistance

Figure 28. Off Leakage

Figure 30. Switching Times, ton $_{\text {Ioff }}$

Figure 31. Break-Before-Make Delay, $t_{B B M}$

Figure 32. Charge Injection

Figure 33. Off Isolation

Figure 34. Channel-to-Channel Crosstalk

Figure 35. Insertion Loss

Figure 36. THD + Noise

TERMINOLOGY

Ron
Ohmic resistance between Terminal D and Terminal S.

Δ Ron

Difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat(on) }}$
Flatness that is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
Channel leakage current when the switch is on.
V_{D} (Vs)
Analog voltage on Terminal D (drain terminal) and Terminal S (source terminals, S1 to S8).

Cs (Off)
Channel input capacitance for off condition.
C_{D} (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and the switch on condition.
$t_{\text {off }}$ (EN)
Delay time between the 50% and 90% points of the digital input and the switch off condition.

$t_{\text {transition }}$

Delay time between the 50% and 90% points of the digital input and the switch on condition when switching from one address state to another.
$\mathbf{t}_{\text {Bbм }}$
Off time measured between the 80% point of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
IINL $\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
I_{DD}
Positive supply current.
Iss
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.
Total Harmonic Distortion (THD + N)
Ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

The loss due to the on resistance of the switch.

THEORY OF OPERATION

The ADG1438 and ADG1439 are serially controlled, 8-channel and dual 4-channel matrix switches, respectively. While providing the normal multiplexing and demultiplexing functions, these devices also provide the user with more flexibility as to where a signal can be routed. Each of the eight bits of the 8 -bit write corresponds to one switch of the device. Logic 1 in a particular bit position turns the switch on, whereas Logic 0 turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all, or none of the switches on. This feature may be particularly useful in the demultiplexing application where the user may wish to direct one signal from the drain to a number of outputs (sources). Care must be taken, however, in the multiplexing situation where a number of inputs may be shorted together (separated only by the small on resistance of the switch).

SERIAL INTERFACE

The ADG1438/ADG1439 has a 3-wire serial interface ($\overline{\mathrm{SYNC}}$, SCLK, and DIN pins) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs (see Figure 3 for a timing diagram of a typical write sequence).
The write sequence begins by bringing the $\overline{\text { SYNC }}$ line low. This enables the input shift register. Data from the DIN line is clocked into the 8 -bit input shift register on the falling edge of SCLK. The serial clock frequency can be as high as 50 MHz , making the ADG1438/ADG1439 compatible with high speed DSPs.
Data can be written to the shift register in more or fewer than eight bits. In each case, the shift register retains the last eight bits that are written. When all eight bits are written into the shift register, the $\overline{\text { SYNC }}$ line is brought high again. The switches are updated with the new configuration, and the input shift register is disabled. With $\overline{\text { SYNC }}$ held high, the input shift register is disabled so that further data or noise on the DIN line has no effect on the shift register.
Data appears on the SDO pin on the rising edge of SCLK, suitable for daisy-chaining or readback, delayed by eight bits.

INPUT SHIFT REGISTER

The input shift register is eight bits wide, as shown in Table 12 and Table 13. Each bit controls one switch. These data bits are transferred to the switch register on the rising edge of $\overline{\text { SYNC. }}$

Table 12. ADG1438 Input Shift Register Bit Map ${ }^{1}$
MSB

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
S8	S7	S6	S5	S4	S3	S2	S1

${ }^{1}$ Logic $0=$ switch off, and Logic $1=$ switch on.
Table 13. ADG1439 Input Shift Register Bit Map ${ }^{1}$

MSB							
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
S4B	S3B	S2B	S1B	S4A	S3A	S2A	S1A

${ }^{1}$ Logic $0=$ switch off, and Logic $1=$ switch on.

POWER-ON RESET

The ADG1438/ADG1439 contain a power-on reset circuit. On power-up of the device, all switches are off, and the internal shift register is filled with zeros and remains so until a valid write takes place.
The device also has a $\overline{\text { RESET }}$ pin. When the $\overline{\text { RESET }}$ pin is low, all switches are off, and the appropriate registers are cleared to 0 .

DAISY-CHAINING

For systems that contain several switches, the SDO pin can be used to daisy-chain several devices together. The SDO pin can also be used for diagnostic purposes and to provide serial readback where the user wants to read back the switch contents.
The SDO pin is an open-drain output that should be pulled to the V_{L} supply with an external resistor.

The SCLK is continuously applied to the input shift register when SYNC is low. If more than eight clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the DIN input on the next switch in the chain, a multiswitch interface is constructed. Each switch in the system requires eight clock pulses; therefore, the total number of clock cycles must equal 8 N , where N is the total number of devices in the chain.
When the serial transfer to all devices is complete, $\overline{\text { SYNC }}$ is taken high. This prevents any further data from being clocked into the input shift register.

The serial clock can be a continuous or a gated clock. A continuous SCLK source can be used only if SYNC can be held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and SYNC must be taken high after the final clock to latch the data. Gated clock mode reduces power consumption by reducing the active clock time.

OUTLINE DIMENSIONS

Figure 37. 20-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-20$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.
Figure 38. 20-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-20-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1438BRUZ $_{\text {ADG1438BRUZ-REEL7 }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]
20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20		
ADG1438BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-10
ADG1439BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1439BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1439BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-10

[^4]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW.112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design and characterization, not production tested.
 ${ }^{2}$ Maximum SCLK frequency is 50 MHz at $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16.5 V ; $\mathrm{V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ to $0 \mathrm{~V} ; \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); $\mathrm{GND}=0 \mathrm{~V}$.
 ${ }^{3}$ Measured with the $1 \mathrm{k} \Omega$ pull-up resistor to V_{L} and 20 pF load. t_{11} determines the maximum SCLK frequency in daisy-chain mode.

[^3]: ${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

[^4]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

