FEATURES

225 ps Propagation Delay through the Switch
4.5Ω Switch Connection between Ports

Data Rate 1.244 Gbps

2.5 V/3.3 V Supply Operation

Selectable Level Shifting/Translation
Small Signal Bandwidth 610 MHz
Level Translation
3.3 V to 2.5 V
3.3 V to 1.8 V
2.5 V to 1.8 V

38-Lead TSSOP Package

APPLICATIONS

3.3 V to 1.8 V Voltage Translation
3.3 V to 2.5 V Voltage Translation
2.5 V to 1.8 V Voltage Translation

Bus Switching
Bus Isolation
Hot Plug
Hot Swap
Analog Switching Applications

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. 3.3 V or 2.5 V supply operation
2. Extremely low propagation delay through switch
3. 4.5Ω switches connect inputs to outputs
4. Level/voltage translation
5. 38-lead TSSOP package

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2003-2019 Analog Devices, Inc. All rights reserved. Technical Support
www.analog.com

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& Min \& \[
\begin{aligned}
\& \text { B Version } \\
\& \text { Typ }^{2}
\end{aligned}
\] \& Max \& Unit \\
\hline \begin{tabular}{l}
DC ELECTRICAL CHARACTERISTICS \\
Input High Voltage \\
Input Low Voltage \\
Input Leakage Current \\
OFF State Leakage Current \\
ON State Leakage Current \\
Maximum Pass Voltage
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\text {INH }}\) \\
\(\mathrm{V}_{\mathrm{INH}}\) \\
\(\mathrm{V}_{\text {INL }}\) \\
\(\mathrm{V}_{\mathrm{INL}}\) \\
\(\mathrm{I}_{\mathrm{I}}\) \\
\(\mathrm{I}_{\mathrm{OZ}}\) \\
\(\mathrm{I}_{\mathrm{OL}}\) \\
\(V_{P}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\
\& 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\
\& 0 \leq \mathrm{A}, \mathrm{~B} \leq \mathrm{V}_{\mathrm{CC}} \\
\& \mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \overline{\mathrm{SEL}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A} \\
\& \mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}=\overline{\mathrm{SEL}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A} \\
\& \mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \overline{\mathrm{SEL}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A}
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.0 \\
\& 1.7 \\
\& \\
\& \\
\& \\
\& 2.0 \\
\& 1.5 \\
\& 1.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.01 \\
\& \pm 0.01 \\
\& \pm 0.01 \\
\& 2.5 \\
\& 1.8 \\
\& 1.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.8 \\
\& 0.7 \\
\& \pm 1 \\
\& \pm 1 \\
\& \pm 1 \\
\& 2.9 \\
\& 2.1 \\
\& 2.1
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mu \mathrm{~A} \\
\& \mu \mathrm{~A} \\
\& \mu \mathrm{~A} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
CAPACITANCE \({ }^{3}\) \\
A Port Off Capacitance B Port Off Capacitance A, B Port On Capacitance Control Input Capacitance
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{C}_{\mathrm{A}} \mathrm{OFF} \\
\& \mathrm{C}_{\mathrm{B}} \mathrm{OFF} \\
\& \mathrm{C}_{A}, \mathrm{C}_{\mathrm{B}} \mathrm{ON} \\
\& \mathrm{C}_{\mathrm{IN}}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{f}=1 \mathrm{MHz} \\
\& \mathrm{f}=1 \mathrm{MHz} \\
\& \mathrm{f}=1 \mathrm{MHz} \\
\& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 5 \\
\& 5 \\
\& 10 \\
\& 6
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{pF} \\
\& \mathrm{pF} \\
\& \mathrm{pF} \\
\& \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SWITCHING CHARACTERISTICS \({ }^{3}\) \\
Propagation Delay A to B or B to A, \(\mathrm{t}_{\mathrm{PD}}{ }^{4}\) Propagation Delay Matching \({ }^{5}\) Bus Enable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Bus Disable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Bus Enable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Bus Disable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Bus Enable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Bus Disable Time \(\overline{\mathrm{BEx}}\) to A or \(\mathrm{B}^{6}\) Maximum Data Rate Channel Jitter Operating Frequency-Bus Enable
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}\) \\
\(\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}\) \\
\(\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}\) \\
\(\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}\) \\
\(\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\text {PLZ }}\) \\
\(\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PZL }}\) \\
\(\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PLZ}}\) \\
\(\mathrm{f}_{\overline{\mathrm{BEx}}}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{CC}}=\overline{\mathrm{SEL}}=3 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}} \\
\& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \overline{\overline{S E L}}=\mathrm{V}_{\mathrm{CC}} \\
\& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \overline{\mathrm{SEL}}=0 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \overline{\mathrm{SEL}}=0 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} ; \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}} \\
\& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} ; \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}} \\
\& \mathrm{~V}_{\mathrm{CC}}=\overline{\mathrm{SEL}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=2 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{CC}}=\overline{\mathrm{SEL}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=2 \mathrm{~V}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 0.5 \\
\& 0.5 \\
\& 0.5 \\
\& 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 3.2 \\
\& 3.2 \\
\& 2.2 \\
\& 1.7 \\
\& 2.2 \\
\& 1.75 \\
\& 1.244 \\
\& 50
\end{aligned}
\] \& 0.225
22.5
4.8
4.8
3.3
2.9
3
2.6

10 \& | ns |
| :--- |
| ps |
| ns |
| Gbps |
| ps p-p |
| MHz |

\hline | DIGITAL SWITCH |
| :--- |
| On Resistance |
| On Resistance Matching | \& | R_{ON} |
| :--- |
| $\Delta \mathrm{R}_{\mathrm{ON}}$ | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{A}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{BA}}=8 \mathrm{~mA}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 4.5 \\
& 15 \\
& 5 \\
& 11 \\
& 5 \\
& 14 \\
& 0.45 \\
& 0.65
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 28 \\
& 9 \\
& 18 \\
& 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
$$
\]

\hline | POWER REQUIREMENTS |
| :--- |
| V_{CC} |
| Quiescent Power Supply Current |
| Increase in I_{CC} per Input ${ }^{7}$ | \& | I_{CC} |
| :--- |
| I_{CC} |
| $\Delta \mathrm{I}_{\mathrm{CC}}$ | \& \[

$$
\begin{aligned}
& \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}} \\
& \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{SEL}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \overline{\mathrm{BE}}_{1}=3.0 \mathrm{~V} ; \\
& \mathrm{BE}_{2}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}
\end{aligned}
$$

\] \& 2.3 \& \[

$$
\begin{aligned}
& 0.001 \\
& 0.65
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.6 \\
& 1 \\
& 1.2 \\
& 85
\end{aligned}
$$

\] \& | V |
| :--- |
| $\mu \mathrm{A}$ |
| mA |
| $\mu \mathrm{A}$ |

\hline
\end{tabular}

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Typical values are at $25^{\circ} \mathrm{C}$, unless otherwise stated.
${ }^{3}$ Guaranteed by design, not subject to production test.
${ }^{4}$ The digital switch contributes no propagation delay other than the RC delay of the typical R_{ON} of the switch and the load capacitance when driven by an ideal voltage source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
${ }^{5}$ Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF .
${ }^{6}$ See Timing Measurement Information section.
${ }^{7}$ This current applies to the control pins ($\overline{\mathrm{BEx}}$) only. The A and B ports contribute no significant ac or dc currents as they transition.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)
V_{CC} to GND . -0.5 V to +4.6 V
Digital Inputs to GND -0.5 V to +4.6 V
DC Input Voltage . -0.5 V to +4.6 V
DC Output Current 25 mA per channel
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $150^{\circ} \mathrm{C}$

TSSOP Package

θ_{JA} Thermal Impedance . $98^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 seconds) $235^{\circ} \mathrm{C}$
*Stresses at or above those listed under Absolute Maximum Ratings may cause
 section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG3247BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	38-Lead Thin Shrink Small Outline Package [TSSOP]	RU-38
ADG3247BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	38-Lead Thin Shrink Small Outline Package [TSSOP]	RU-38
Z $=$ RoHS Compliant Part.			

Table I. Pin Description

Mnemonic	Description
$\overline{\overline{\mathrm{BEx}}}$	Bus Enable (Active Low)
$\overline{\text { SEL }}$	Level Translation Select
Ax	Port A, Inputs or Outputs
Bx	Port B, Inputs or Outputs

Table II. Truth Table

$\overline{\overline{\mathrm{BEx}}}$	$\overline{\text { SEL }}^{*}$	Function		
L	L	$\mathrm{A}=\mathrm{B}, 3.3 \mathrm{~V}$ to 1.8 V Level Shifting		
L	H	$\mathrm{A}=\mathrm{B}, 3.3 \mathrm{~V}$ to $2.5 \mathrm{~V} / 2.5 \mathrm{~V}$ to 1.8 V Level Shifting		
H	X	Disconnect		
$\overline{\mathrm{SEL}}$				0 only when $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$

PIN CONFIGURATION

38-Lead TSSOP

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG3247 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

$\mathrm{V}_{\text {CC }}$	Positive Power Supply Voltage.
GND	Ground (0 V) Reference.
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic 1.
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic 0 .
I_{I}	Input Leakage Current at the Control Inputs.
I_{OZ}	OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.
$\mathrm{I}_{\text {OL }}$	ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.
V_{P}	Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when the switch input voltage is equal to the supply voltage.
R_{ON}	Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified amount of current through the switch.
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Match between Any Two Channels, i.e., $\mathrm{R}_{\mathrm{ON}} \mathrm{Max}-\mathrm{R}_{\mathrm{ON}} \mathrm{Min}$.
$\mathrm{C}_{\mathrm{X}} \mathrm{OFF}$	OFF Switch Capacitance.
$\mathrm{C}_{\mathrm{X}} \mathrm{ON}$	ON Switch Capacitance.
$\mathrm{C}_{\text {IN }}$	Control Input Capacitance. This consists of $\overline{\text { BEx }}$ and $\overline{\text { SEL }}$.
I_{CC}	Quiescent Power Supply Current. It is measured when all control inputs are at a logic HIGH or LOW level and the switches are OFF.
$\Delta \mathrm{I}_{\mathrm{CC}}$	Extra power supply current component per each $\overline{\mathrm{BEx}}$ control input when the Input is not driven at the supplies.
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant $\mathrm{R}_{\mathrm{ON}} \times \mathrm{C}_{\mathrm{L}}$, where C_{L} is the load capacitance.
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Bus Enable Times. These are the times taken to cross the V_{T} voltage at the switch output when the switch turns on in response to the control signal, $\overline{\mathrm{BEx}}$.
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Bus Disable Times. These are the times taken to place the switch in the high impedance OFF state in response to the control signal. They are measured as the time taken for the output voltage to change by V_{Δ} from the original quiescent level, with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and disable times.)
Max Data Rate	Maximum Rate at which Data Can Be Passed through the Switch.
Channel Jitter	Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.
$\underline{\mathrm{f}_{\overline{\text { BEx }}}}$	Operating Frequency of Bus Enable. This is the maximum frequency at which bus enable ($\overline{\mathbf{B E x}})$ can be toggled.

Typical Performance Characteristics-ADG3247

TPC 1. On Resistance vs. Input Voltage

TPC 4. On Resistance vs. Input Voltage for Different Temperatures

TPC 7. Pass Voltage vs. $V_{c c}$

TPC 2. On Resistance vs. Input Voltage

TPC 5. On Resistance vs. Input Voltage for Different Temperatures

TPC 8. Pass Voltage vs. Vcc

TPC 3. On Resistance vs. Input Voltage

TPC 6. Pass Voltage vs. $V_{c c}$

TPC 9. Icc vs. Enable Frequency

TPC 10. Output Low Characteristic

TPC 13. Bandwidth vs. Frequency

TPC 16. Enable/Disable Time vs. Temperature

TPC 11. Output High Characteristic

TPC 14. Crosstalk vs. Frequency

TPC 17. Enable/Disable Time vs. Temperature

TPC 12. Charge Injection vs. Source Voltage

TPC 15. Off Isolation vs. Frequency

TPC 18. Jitter vs. Data Rate; PRBS 31

TPC 19. Eye Width vs. Data Rate; PRBS 31

TPC 22. Jitter @ 1.244 Gbps, PRBS 31

TPC 20. Eye Pattern; 1.244
Gbps, $V_{C C}=3.3$ V, PRBS 31

TPC 21. Eye Pattern; 1 Gbps, $V_{C C}=2.5 \mathrm{~V}$, PRBS 31

TIMING MEASUREMENT INFORMATION

For the following load circuit and waveforms, the notation that is used is $V_{I N}$ and $V_{\text {OUT }}$ where

$$
V_{I N}=V_{A} \text { and } V_{\text {OUT }}=V_{B} \text { or } V_{I N}=V_{B} \text { and } V_{O U T}=V_{A}
$$

Figure 2. Propagation Delay

notes

PULSE GENERATOR FOR ALL PULSES: $\mathrm{t}_{\mathrm{R}} \leq \mathbf{2 . 5 n s}, \mathrm{t}_{\mathrm{F}} \leq \mathbf{2 . 5 n s}$,
FREQUENCY $\leq 10 \mathrm{MHz}$.
C_{L} INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES
R_{T} IS THE TERMINATION RESISTOR, SHOULD BE EQUAL TO $Z_{\text {OUT }}$
of THE PULSE GENERATOR
Figure 1. Load Circuit

Test Conditions

Symbol	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}\left(\overline{\mathbf{S E L}}=\mathbf{V}_{\mathbf{C C}}\right)$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{V}\left(\overline{\mathbf{S E L}}=\mathbf{V}_{\mathbf{C C}}\right)$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}(\overline{\mathbf{S E L}}=\mathbf{0} \mathbf{V})$	$\mathbf{U n i t}$
R_{L}	500	500	500	Ω
$\mathrm{~V}_{\Delta}$	300	150	150	mV
C_{L}	50	30	30	pF
V_{T}	1.5	0.9	0.9	V

Table III. Switch Position

TEST	$\mathbf{S} 1$
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\mathrm{PZH}}$	GND

Figure 3. Enable and Disable Times

BUS SWITCH APPLICATIONS

Mixed Voltage Operation, Level Translation

Bus switches can be used to provide an ideal solution for interfacing between mixed voltage systems. The ADG3247 is suitable for applications where voltage translation from 3.3 V technology to a lower voltage technology is needed. This device can translate from 3.3 V to 1.8 V , from 2.5 V to 1.8 V , or from 3.3 V directly to 2.5 V .
Figure 4 shows a block diagram of a typical application in which a user needs to interface between a 3.3 V ADC and a 2.5 V microprocessor. The microprocessor may not have 3.3 V tolerant inputs; therefore placing the ADG3247 between the two devices allows the devices to communicate easily. The bus switch directly connects the two blocks, thus introducing minimal propagation delay, timing skew, or noise.

Figure 4. Level Translation between a 3.3V ADC and a 2.5 V Microprocessor

3.3 V to 2.5 V Translation

When V_{CC} is $3.3 \mathrm{~V}\left(\overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}\right)$ and the input signal range is 0 V to V_{CC}, the maximum output signal will be clamped to within a voltage threshold below the V_{CC} supply.

Figure 5. 3.3 V to 2.5 V Voltage Translation, $\overline{S E L}=V_{C C}$ In this case, the output will be limited to 2.5 V , as shown in Figure 6.

Figure 6. 3.3 V to 2.5 V Voltage Translation, $\overline{S E L}=V_{C C}$
This device can be used for translation from 2.5 V to 3.3 V devices and also between two 3.3 V devices.

2.5 V to 1.8 V Translation

When V_{CC} is $2.5 \mathrm{~V}\left(\overline{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}\right)$ and the input signal range is 0 V to V_{CC}, the maximum output signal will, as before, be clamped to within a voltage threshold below the V_{CC} supply.

Figure 7. 2.5 V to 1.8 V Voltage Translation, $\overline{S E L}=V_{C C}$
In this case, the output will be limited to approximately 1.8 V , as shown in Figure 7.

Figure 8. 2.5 V to 1.8 V Voltage Translation, $\overline{S E L}=V_{C C}$

3.3 V to 1.8 V Translation

The ADG3247 offers the option of interfacing between a 3.3 V device and a 1.8 V device. This is possible through use of the $\overline{\text { SEL }}$ pin.
$\overline{\text { SEL }}$ pin: An active low control pin. $\overline{\text { SEL }}$ activates internal circuitry in the ADG3247 that allows voltage translation between 3.3 V devices and 1.8 V devices.

Figure 9. 3.3 V to 1.8 V Voltage Trans/ation, $\overline{S E L}=0 \mathrm{~V}$
When V_{CC} is 3.3 V and the input signal range is 0 V to V_{CC}, the maximum output signal will be clamped to 1.8 V , as shown in Figure 9. To do this, the $\overline{\text { SEL }}$ pin must be tied to Logic 0 . If $\overline{\mathrm{SEL}}$ is unused, it should be tied directly to V_{CC}.

Figure 10. 3.3 V to 1.8 V Voltage Translation, $\overline{\mathrm{SEL}}=0 \mathrm{~V}$

Bus Isolation

A common requirement of bus architectures is low capacitance loading of the bus. Such systems require bus bridge devices that extend the number of loads on the bus without exceeding the specifications. Because the ADG3247 is designed specifically for applications that do not need drive yet require simple logic functions, it solves this requirement. The device isolates access to the bus, thus minimizing capacitance loading.

Figure 11. Location of Bus Switched in a Bus Isolation Application

Hot Plug and Hot Swap Isolation

The ADG3247 is suitable for hot swap and hot plug applications. The output signal of the ADG3247 is limited to a voltage that is below the V_{CC} supply, as shown in Figures 6, 8, and 10. Therefore the switch acts like a buffer to take the impact from hot insertion, protecting vital and expensive chipsets from damage.
In hot-plug applications, the system cannot be shutdown when new hardware is being added. To overcome this, a bus switch can be positioned on the backplane between the bus devices and the hot plug connectors. The bus switch is turned off during hot plug. Figure 12 shows a typical example of this type of application.

Figure 12. ADG3247 in a Hot Plug Application
There are many systems that require the ability to handle hot swapping, such as docking stations, PCI boards for servers, and line cards for telecommunications switches. If the bus can be isolated prior to insertion or removal, then there is more control over the hot swap event. This isolation can be achieved using a bus switch. The bus switches are positioned on the hot swap card between the connector and the devices. During hot swap, the ground pin of the hot swap card must connect to the ground pin of the back plane before any other signal or power pins.

Analog Switching

Bus switches can be used in many analog switching applications; for example, video graphics. Bus switches can have lower on resistance, smaller ON and OFF channel capacitance and thus improved frequency performance than their analog counterparts. The bus switch channel itself consisting solely of an NMOS switch limits the operating voltage (see TPC 1 for a typical plot), but in many cases, this does not present an issue.

High Impedance during Power-Up/Power-Down

To ensure the high impedance state during power-up or powerdown, BEx should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the currentsinking capability of the driver.

PACKAGE AND PINOUT

The ADG3247 is packaged in a small 38 -lead TSSOP. The area of the TSSOP option is $62.7 \mathrm{~mm}^{2}$.

The ADG3247 in the TSSOP package offers a flowthrough pinout. The term flowthrough signifies that all the inputs are on opposite sides from the outputs. A flowthrough pinout simplifies the PCB layout.

OUTLINE DIMENSIONS

REVISION HISTORY

6/2019—Rev. A to Rev. B
Deleted 40-Lead LFCSP Universal
Changes to Ordering Guide . 3
5/2017—Rev. 0 to Rev. A
Change to Mixed Voltage Operation, Level Translation Section. 9
Updated Outline Dimensions 11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG
NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G
74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG
CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ-500RL7

