FEATURES

44 V supply maximum ratings $V_{s S}$ to $V_{D D}$ analog signal range Low on resistance (45Ω max) Low $\Delta R_{\text {on }}$ (5Ω max)
Low Ron match (4Ω max)
Low power dissipation
Fast switching times
ton < 175 ns
toff < 145 ns
Low leakage currents (5 nA max)
Low charge injection (10 pC max)
Break-before-make switching action

APPLICATIONS

Audio and video switching
Battery-powered systems

Test equipment

Communication systems

GENERAL DESCRIPTION

The ADG333A is a monolithic complementary metal-oxide semiconductor (CMOS) device comprising four independently selectable single-pole, double-throw (SPDT) switches. It is designed on a linear compatible CMOS (L^{2} MOS) process, which provides low power dissipation yet achieves a high switching speed and a low on resistance.

The on-resistance profile is very flat over the full analog input range, ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the device suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the device ideally suited for portable, battery-powered instruments.

When they are on, each switch conducts equally well in both directions and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Low charge inject is inherent in the design.

Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Extended signal range. The ADG333A is fabricated on an enhanced LC ${ }^{2}$ MOS process, giving an increased signal range which extends to the supply rails.
2. Low power dissipation.
3. Low Ron.
4. Single-supply operation. For applications in which the analog signal is unipolar, the ADG333A can be operated from a single rail power supply. The device is fully specified with a single 12 V supply.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1995-2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

\qquadApplications1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Specifications 3
Dual Supply 3
Single Supply. 4
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
6/2016-Rev. A to Rev. B
Changes to VDD Parameter, Table 2 4
Updated Outline Dimensions 12
Changes to Ordering Guide 13
3/2005—Rev. 0 to Rev. A
\qquad .Universal
Changes to Specifications Section 3
Updated Outline Dimensions 12
Changes to Ordering Guide 12
10/1995—Revision 0: Initial Version
Terminology 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Test Circuits 10
Applications Information 11
ADG333A Supply Voltages 11
Power Supply Sequencing 11
Outline Dimensions 12
Ordering Guide 13

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Δ Ron Ron Match	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{S S} \text { to } \mathrm{VDD} \\ & 45 \\ & 5 \\ & 4 \end{aligned}$	V Ω typ Ω max Ω max Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Channel On Leakage $\mathrm{I}_{\mathrm{D},} \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	± 3 ± 5	nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & V_{D}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+15.5 \mathrm{~V} \end{aligned}$ Figure 15 $V_{S}=V_{D}= \pm 15.5 \mathrm{~V}$ Figure 16
DIGITAL INPUTS Input High Voltage, ViNH Input Low Voltage, VINL Input Current linl or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Delay, topen Charge Injection Off Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{5}(\mathrm{ON})$	$\begin{aligned} & 90 \\ & 80 \\ & 10 \\ & 2 \\ & 10 \\ & 10 \\ & 72 \\ & 85 \\ & 7 \\ & 26 \end{aligned}$	$\begin{aligned} & 175 \\ & 145 \end{aligned}$	ns typ ns max ns typ ns max ns min pC typ pC max dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Figure } 18 \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{RD}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} ; \\ & \text { Figure } 19 \\ & \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V} \mathrm{rms} ; \text { Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V} \mathrm{rms} ; \text { Figure } 21 \end{aligned}$
POWER REQUIREMENTS IDD Iss $V_{D D} / V_{S S}$	$\begin{aligned} & 0.05 \\ & 0.25 \\ & 0.01 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 5 \\ & \pm 3 / \pm 20 \end{aligned}$	mA typ mA max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	Digital inputs $=0 \mathrm{~V}$ or 5 V $\left\|\mathrm{V}_{\mathrm{DD}}\right\|=\left\|\mathrm{V}_{S S}\right\|$

[^0]
SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$

Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron	35	0 V to V_{DD} 75	$\Omega \text { typ }$ $\Omega \text { max }$	$\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{Is}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage IS (OFF) Channel On Leakage Io, Is (ON)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} \end{aligned}$ Figure 15 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}$ Figure 16
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current lind or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \\ & \hline \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Delay, topen Charge Injection Off Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & 110 \\ & 100 \\ & 10 \\ & 5 \\ & 72 \\ & 85 \\ & 12 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	ns typ ns max ns typ ns max ns min pC typ dB typ dB typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} \text {; Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {; Figure } 18 \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \mathrm{~W}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \text {; Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{~V} \mathrm{rms} ; \text { Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{~V} \mathrm{rms} ; \text { Figure } 21 \end{aligned}$
POWER REQUIREMENTS IDD $V_{D D}$	$\begin{aligned} & 0.05 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 3 / 30 \end{aligned}$	mA typ mA max V min/V max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=13.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3.

Parameter	Min
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	+44V
$V_{\text {DD }}$ to GND	-0.3 V to +30 V
$V_{\text {ss }}$ to GND	+0.3 V to -30 V
Analog, Digital Inputs ${ }^{1}$	$V_{S S}-2 V \text { to } V_{D D}+2 V \text { or } 20 \mathrm{~mA},$ whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	40 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
θ_{jA}, Thermal Impedance	
PDIP Package	$103^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$74^{\circ} \mathrm{C} / \mathrm{W}$
SSOP Package	$130^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
10 sec	$260^{\circ} \mathrm{C}$
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 4. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.	
Therefore, proper ESD precautions should be taken to	
avoid performance degradation or loss of functionality.	

TERMINOLOGY

$\mathbf{R}_{\text {ON }}$
Ohmic resistance between D and S.
$\Delta R_{\text {on }}$
Ron variation due to a change in the analog input voltage with a constant load current.

Ron Match

Difference between the R R_{ON} of any two channels.

Is (OFF)

Source leakage current with the switch off.

I_{D} (OFF)

Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$

Channel leakage current with the switch on.

$V_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$

Analog voltage on Terminal D and Terminal S.
Cs (OFF)
Off switch source capacitance.
C_{D} (OFF)
Off switch drain capacitance.
$C_{d}, C_{s}(\mathbf{O N})$
On switch capacitance.
$t_{\text {ON }}$
Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.
topen
Break-before-make delay when switches are configured as a multiplexer.
$V_{\text {INL }}$
Maximum input voltage for Logic 0.
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. PDIP Pin Configuration

Figure 3. SOIC Pin Configuration

Figure 4. SSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,10,11,20$	IN1, IN2, IN3, IN4	Logic Control Input.
$2,4,7,9,12,14$,	S1A, S1B, S2B, S2A,	Source Terminal. Can be an input or an output.
17,19	S3A, S3B, S4B, S4A	
$3,8,13,18$	D1, D2, D3, D4	Drain Terminal. Can be an input or an output.
5	VSS	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
6		Ground (0 V) Reference.
15	GND	No Connect.
16	NC	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$,
Dual Supply

Figure 6. Ros as a Function of $V_{D}\left(V_{S}\right)$, Single Supply

Figure 7. Ron as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Dual Supply

Figure 8. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 9. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{s}\right)$, Single Supply

Figure 11. Charge Injection as a Function of V_{S}

Figure 12. Switching Time as a Function of V_{D}

Figure 13. IDD as a Function of Switching Frequency

ADG333A

TEST CIRCUITS

Figure 15. Off Leakage
Figure 14. On Resistance

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Break-Before-Make Delay, topen

Figure 19. Charge Injection

Figure 20. Off Isolation

Figure 21. Channel-to-Channel Crosstalk

APPLICATIONS INFORMATION

ADG333A SUPPLY VOLTAGES

The ADG333A can operate from a dual or signal supply. Vss should be connected to GND when operating with a single supply. When using a dual supply, the ADG333A can also operate with unbalanced supplies; for example $V_{D D}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$. The only restrictions are that $V_{D D}$ to GND must not exceed 30 V , Vss to GND must not drop below -30 V , and $\mathrm{V}_{\text {DD }}$ to V_{ss} must not exceed +44 V . It is important to remember that the ADG333A supply voltage directly affects the input signal range, the switch on resistance and the switching times of the device. The effects of the power supplies on these characteristics can be clearly seen from the Typical Performance Characteristics curves.

POWER SUPPLY SEQUENCING

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those listed in the Absolute Maximum Ratings. This is also true for the ADG333A. Always turn on $V_{D D}$ first, followed by V_{ss} and the logic signals. An external signal within the maximum specified ratings can then be safely presented to the source or drain of the switch.

OUTLINE DIMENSIONS

Figure 22. 20-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body (N-20)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-013-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 23. 20-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-20)
Dimensions shown in millimeters and (inches)

Figure 24. 20-Lead Shrink Small Outline Package [SSOP] (RS-20)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG333ABNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-20$
ADG333ABR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20-$ Lead Standard Small Outline Package [SOIC_W]	RW-20
ADG333ABR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Standard Small Outline Package [SOIC_W]	RW-20
ADG333ABRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Standard Small Outline Package [SOIC_W]	RW-20
ADG333ABRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20-$ Lead Standard Small Outline Package [SOIC_W]	RW-20
ADG333ABRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Shrink Small Outline Package [SSOP]	RS-20
ADG333ABRS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Shrink Small Outline Package [SSOP]	RS-20
ADG333ABRSZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Shrink Small Outline Package [SSOP]	RS-20
ADG333ABRSZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Shrink Small Outline Package [SSOP]	RS-20

[^3]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

[^0]: ${ }^{1}$ Temperature range is as follows: B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Overvoltage at IN, S, or D is clamped by internal diodes. Current should be limited to the maximum ratings given.

[^3]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

