

LC²MOS Precision Quad SPST Switches ADG411/ADG412/ADG413

FEATURES

44 V supply maximum ratings ±15 V analog signal range Low on resistance (< 35 Ω) Ultralow power dissipation (35 μW) Fast switching times tor < 175 ns tor < 145 ns TTL-/CMOS-compatible Plug-in replacement for DG411/DG412/DG413

APPLICATIONS

Audio and video switching Automatic test equipment Precision data acquisition Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG411, ADG412, and ADG413 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments. The ADG411, ADG412, and ADG413 contain four independent SPST switches. The ADG411 and ADG412 differ only in that the digital control logic is inverted. The ADG411 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG412. The ADG413 has two switches with digital control logic similar to that of the ADG411 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on, and each has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Extended signal range

The ADG411, ADG412, and ADG413 are fabricated on an enhanced LC²MOS, giving an increased signal range which extends fully to the supply rails.

- 2. Ultralow power dissipation
- 3. Low R_{ON}
- Break-before-make switching This prevents channel shorting when the switches are configured as a multiplexer.
- 5. Single-supply operation

For applications where the analog signal is unipolar, the ADG411, ADG412, and ADG413 can be operated from a single-rail power supply. The parts are fully specified with a single 12 V power supply and remain functional with single supplies as low as 5 V.

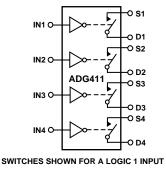
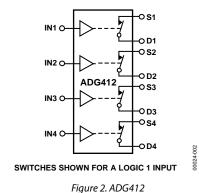
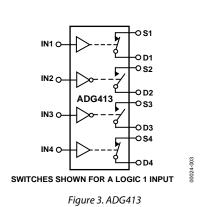




Figure 1. ADG411

FUNCTIONAL BLOCK DIAGRAMS

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2010 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Product Highlights	1
Functional Block Diagrams	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	

REVISION HISTORY

6/10—Rev. C to Rev. D	
Updated Outline Dimensions	
Changes to Ordering Guide	
11/04—Rev. B to Rev. C	
Format Updated	Universal
Change to Package Drawing (Figure 23)	
Changes to Ordering Guide	
7/04—Rev. A to Rev. B	
Changes to ORDERING GUIDE	5
Updated OUTLINE DIMENSIONS	

Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Terminology	9
Applications	10
Test Circuits	11
Outline Dimensions	13
Ordering Guide	15

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 1.

	В	Version	Т	Version		
Parameter	+25°C	–40°C to +85°C	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	+25 C	703 C	+25 C	+125 C	Unit	Test conditions/comments
Analog Signal Range		V _{DD} to V _{ss}		V _{DD} to V _{SS}	v	
Ron	25		25	VDD CO VSS	ν Ω typ	$V_D = \pm 8.5 \text{ V}, \text{ Is} = -10 \text{ mA};$
NON	35	45	35	45	Ω max	$V_{DD} = \pm 13.5 \text{ V}, \text{ Ns} = \pm 10 \text{ mA},$ $V_{DD} = \pm 13.5 \text{ V}, \text{ Vss} = -13.5 \text{ V}$
LEAKAGE CURRENTS	55	чJ	55	чJ	3211107	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
Source OFF Leakage Is (OFF)	±0.1		±0.1		nA typ	$V_{D} = +15.5 \text{ V}/-15.5 \text{ V},$
Source of Leakage is (of f)	±0.1		±0.1		плтур	$V_{\rm S} = -15.5 \text{ V/} + 15.5 \text{ V;}$
	±0.25	±0.25	±0.25	±20	nA max	Figure 15
Drain OFF Leakage I _D (OFF)	±0.1		±0.1		nA typ	$V_{\rm D} = +15.5 \text{ V/}-15.5 \text{ V},$
5						$V_s = -15.5 V/+15.5 V;$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Channel ON Leakage I _D , Is (ON)	±0.1		±0.1		nA typ	$V_D = V_S = +15.5 \text{ V/}-15.5 \text{ V};$
	±0.4	±10	±0.4	± 40	nA max	Figure 16
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0.005		0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
ton	110		110		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		175		175	ns max	$V_s = \pm 10 V$; Figure 17
toff	100		100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		145		145	ns max	$V_s = \pm 10 V$; Figure 17
Break-Before-Make Time Delay, t _D (ADG413 Only)	25		25		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = 10 V$; Figure 18
Charge Injection	5		5		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 10 nF$; Figure 19
OFF Isolation	68		68		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
C _s (OFF)	9		9		pF typ	f = 1 MHz
C _D (OFF)	9		9		pF typ	f = 1 MHz
C _D , C _s (ON)	35		35		pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}; Digital inputs = 0 \text{ V or } 5 \text{ V}$
ldd	0.0001		0.0001		μA typ	
	1	5	1	5	µA max	
lss	0.0001		0.0001		μA typ	
	1	5	1	5	µA max	
lL	0.0001		0.0001		μA typ	
	1	5	1	5	µA max	

¹ Temperature ranges are as follows: B versions: -40°C to +85°C; T versions: -55°C to +125°C. ² Guaranteed by design; not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 2.

		B Version	3 Version T Version			
Parameter	+25°C	–40°C to + 85°C	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SIGNAL RANGE		0 V to V _{DD}		0 V to V _{DD}	V	
R _{on}	40		40		Ωtyp	$0 < V_D = 8.5 V$, $I_S = -10 mA$;
	80	100	80	100	Ωmax	$V_{DD} = 10.8 V$
LEAKAGE CURRENTS						$V_{DD} = 13.2 V$
Source OFF Leakage Is (OFF)	±0.1		±0.1		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/12.2 \text{ V};$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Drain OFF Leakage I _D (OFF)	±0.1		±0.1		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/12.2 \text{ V};$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Channel ON Leakage I _D , I _S (ON)	±0.1		±0.1		nA typ	$V_D = V_S = 12.2 \text{ V}/1 \text{ V};$
	±0.4	±10	±0.4	±40	nA max	Figure 16
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, VINL		0.8		0.8	V max	
Input Current						
linl or linh	0.005		0.005		μA typ	$V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
ton	175		175		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		250		250	ns max	V _s = 8 V; Figure 17
toff	95		95		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		125		125	ns max	V _s = 8 V; Figure 17
Break-Before-Make Time Delay, t _D (ADG413 Only)	25		25		ns typ	$\begin{array}{l} R_L = 300 \; \Omega, C_L = 35 \; pF; \\ V_{51} = V_{52} = +10 \; V; Figure \; 18 \end{array}$
Charge Injection	25		25		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 10 nF$; Figure 19
OFF Isolation	68		68		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
C _s (OFF)	9		9		pF typ	f = 1 MHz
C _D (OFF)	9		9		pF typ	f = 1 MHz
C _D , C _S (ON)	35		35		pF typ	f = 1 MHz
POWER REQUIREMENTS						V _{DD} = 13.2 V; Digital inputs = 0 V or 5 V
ldd	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	
IL .	0.0001		0.0001		μA typ	
	1	5	1	5	µA max	$V_L = 5.25 V$

 1 Temperature ranges are as follows: B versions:–40°C to +85°C; T versions: –55°C to +125°C. 2 Guaranteed by design; not subject to production test.

Table 4. Truth Table (ADG413) Table 3. Truth Table (ADG411/ADG412) Switch 1, 4 Logic Switch 2, 3 ADG412 In ADG411 In **Switch Condition** 0 OFF ON ON 0 1 ON OFF 1 1 0 OFF

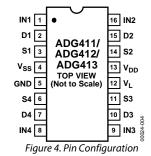
ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 5.

Parameters	Ratings	
V _{DD} to V _{SS}	44 V	
V _{DD} to GND	–0.3 V to +25 V	
V _{ss} to GND	+0.3 V to -25 V	
V_L to GND	-0.3 V to V _{DD} + 0.3 V	
Analog, Digital Inputs ¹	V _{SS} – 2 V to V _{DD} + 2 V or 30 mA, whichever occurs first	
Continuous Current, S or D	30 mA	
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max)	100 mA	
Operating Temperature Range		
Industrial (B Version)	-40°C to +85°C	
Extended (T Version)	–55°C to +125°C	
Storage Temperature Range	–65°C to +150°C	
Junction Temperature	150°C	
PDIP, Power Dissipation	470 mW	
θ_{JA} Thermal Impedance	117°C/W	
Lead Temperature, Soldering (10 s)	260°C	
SOIC Package, Power Dissipation	600 mW	
θ_{JA} Thermal Impedance	77°C/W	
TSSOP Package, Power Dissipation	450 mW	
θ_{JA} Thermal Impedance	115°C/W	
θ_{JC} Thermal Impedance	35°C/W	
Lead Temperature, Soldering		
Vapor Phase (60 s)	215°C	
Infrared (15 s)	220°C	

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description			
1, 8, 9, 16	IN1-IN4	Logic Control Input.			
2, 7, 10, 15	D1-D4	Drain Terminal. Can be an input or output.			
3, 6, 11, 14	S1–S4	Source Terminal. Can be an input or output.			
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single supply applications, it may be connected to GND.			
5	GND	Ground (0 V) Reference.			
12	VL	Logic Power Supply (5 V).			
13	V _{DD}	Most Positive Power Supply Potential.			

TYPICAL PERFORMANCE CHARACTERISTICS

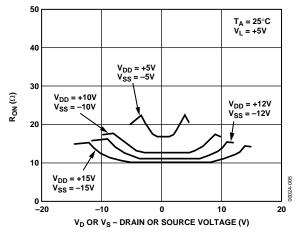


Figure 5. On Resistance as a Function of V_D (V_S) Dual Supplies

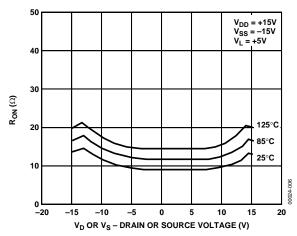


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures

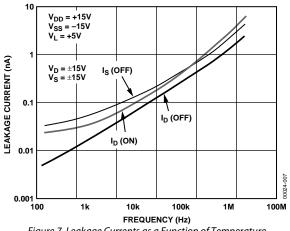


Figure 7. Leakage Currents as a Function of Temperature

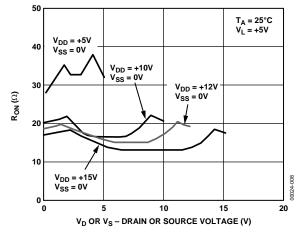
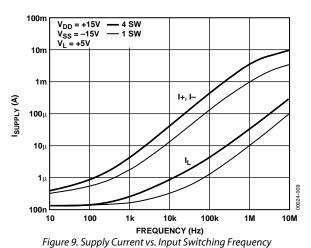
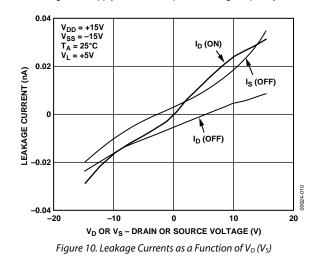
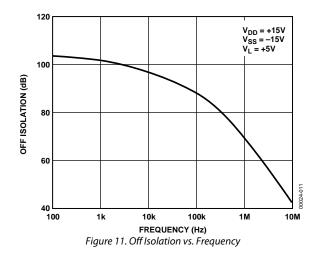
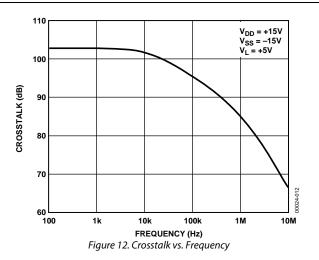






Figure 8. On Resistance as a Function of V_D (V_s) Single Supply

TERMINOLOGY

Ron Ohmic resistance between D and S. Is (OFF) Source leakage current with the switch OFF. I_D (OFF) Drain leakage current with the switch OFF. ID, Is (ON) Channel leakage current with the switch ON. $V_D(V_s)$ Analog voltage on terminals D, S. Cs (OFF) OFF switch source capacitance. C_D (OFF) OFF switch drain capacitance. $C_D, C_S(ON)$ ON switch capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

t_D

OFF time or ON time measured between the 90% points of both switches, when switching from one address state to another.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

APPLICATIONS

Figure 13 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output $V_{\rm OUT}$ follows the input signal $V_{\rm IN}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor $C_{\rm H}$.

Due to switch and capacitor leakage, the voltage on the hold capacitor decreases with time. The ADG411/ADG412/ADG413 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically $30 \mu V/\mu s$.

A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches are at the same potential, they have a differential effect on the op amp AD711, which minimizes charge injection effects. Pedestal error is also reduced by the compensation network R_c and C_c . This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

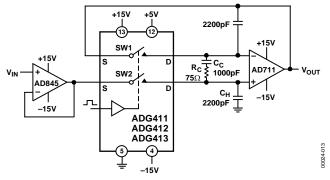
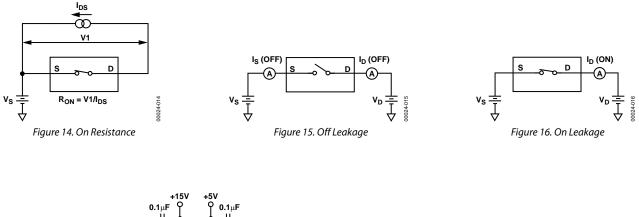



Figure 13. Fast, Accurate Sample-and-Hold

TEST CIRCUITS

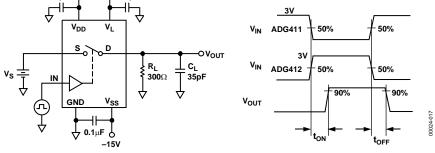


Figure 17. Switching Times

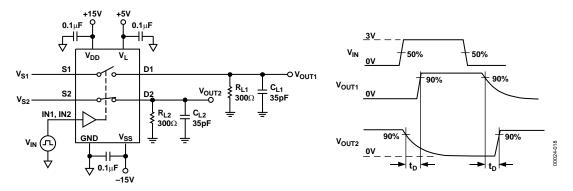


Figure 18. Break-Before-Make Time Delay

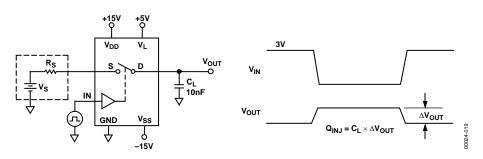


Figure 19. Charge Injection

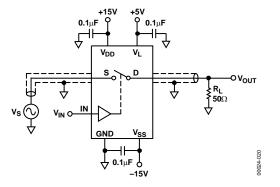


Figure 20. Off Isolation

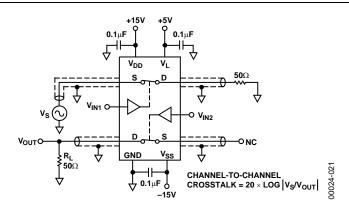
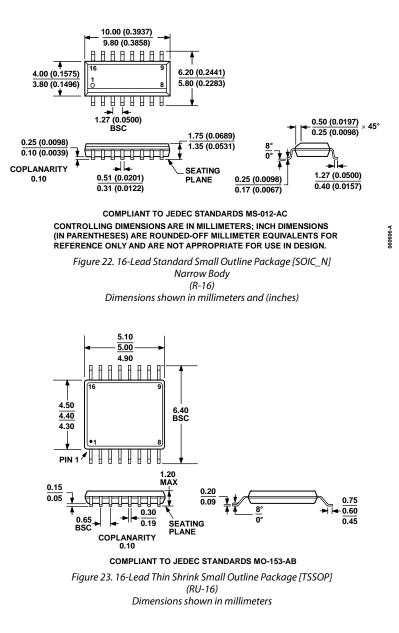
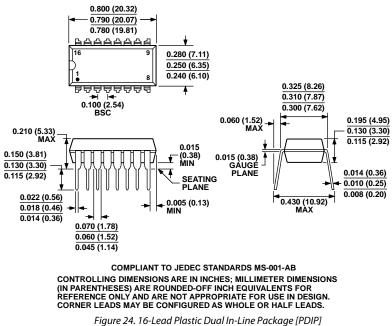




Figure 21. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

(N-16) Dimensions shown in inches and (millimeters) 073106-B

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG411BN	-40°C to +85°C	16-Lead P-DIP	N-16
ADG411BNZ	-40°C to +85°C	16-Lead P-DIP	N-16
ADG411BR	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BR-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BR-REEL7	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ-REEL7	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRU	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRU-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRU-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BCHIPS		DIE	
ADG412BN	-40°C to +85°C	16-Lead P-DIP	N-16
ADG412BNZ	-40°C to +85°C	16-Lead P-DIP	N-16
ADG412BR	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BR-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BR-REEL7	–40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ-REEL7	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRU	–40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRU-REEL	–40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRU-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ-REEL	–40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ-REEL7	–40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BN	–40°C to +85°C	16-Lead P-DIP	N-16
ADG413BNZ	-40°C to +85°C	16-Lead P-DIP	N-16
ADG413BR	–40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BR-REEL	–40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRZ	–40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRZ-REEL	–40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRUZ	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-500RL7	–40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-REEL7	–40°C to +85°C	16-Lead TSSOP	RU-16

 1 Z = RoHS Compliant Part.

NOTES

@2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00024-0-6/10(D)

www.analog.com

Rev. D | Page 16 of 16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB DG403DY 099044FB MAX4762ETB+ NLAS3799BMNR2G NLAS5123MNR2G ISL84684IR PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE DG333ALDW-T1-E3 ISL43113IB ISL43140IB ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR ISL43L410IR ISL43L420IR ISL43L710IR ISL43L711IR ISL43L712IR ISL84053IA ISL84514IB ISL84516IB ISL84684IUZ-T LNLASB3157DFT2G NLAS324US NLASTV4599DFT2G TPW4053-SR WAS4642Q-24/TR ADG842YKSZ-REEL7 WAS4766C-9/TR WAS7227Q-10/TR WAS4646C-36/TR WAS4735Q-16/TR BL1532TQFN RS2233YS16 CH483M TMUX646ZECR TMUX1248DCKR TMUX7236RUMR