

LC²MOS Precision Mini-DIP Analog Switch

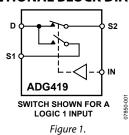
ADG419

FEATURES

44 V supply maximum ratings V_{SS} to V_{DD} analog signal range Low on resistance: <35 Ω Ultralow power dissipation: < 35 μ W Fast transition time: 160 ns maximum Break-before-make switching action Plug-in replacement for DG419

APPLICATIONS

Precision test equipment Precision instrumentation Battery-powered systems Sample hold systems


GENERAL DESCRIPTION

The ADG419 is a monolithic CMOS SPDT switch. This switch is designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The on resistance profile of the ADG419 is very flat over the full analog input range, ensuring excellent linearity and low distortion. The part also exhibits high switching speed and high signal bandwidth. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

Each switch of the ADG419 conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. The ADG419 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- Extended Signal Range.
 The ADG419 is fabricated on an enhanced LC²MOS process, giving an increased signal range that extends to the supply rails.
- 2. Ultralow Power Dissipation.
- 3. Low Ron.
 - Single-Supply Operation.

 For applications where the analog signal is unipolar, the ADG419 can be operated from a single rail power supply. The part is fully specified with a single 12 V power supply and remains functional with single supplies as low as 5 V.

TABLE OF CONTENTS

Features	I
Applications	1
Functional Block Diagram	
General Description	
Product Highlights	
Revision History	
Specifications	
Dual Supply	3
Single Supply	4

Absolute Maximum Ratings	
ESD Caution	
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	
Test Circuits	
Terminology	1
Outline Dimensions	12
Ordering Guide	1:

REVISION HISTORY

8/09—Rev. B to Rev. C

Updated Format	Universal
Changes to Table 1	3
Changes to Table 2	4
Updated Outline Dimensions	12
Changes to Ordering Guide	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

		B Version)	T Version				
		−40°C to	−40°C to	−55°C to				
Parameter ¹	+25°C	+85°C	+125°C	+25°C	+125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH								
Analog Signal Range			$V_{\text{SS}}toV_{\text{DD}}$		$V_{\text{SS}} to V_{\text{DD}}$			
R _{ON}	25			25		Ωtyp	$V_D = \pm 12.5 \text{ V, } I_S = -10 \text{ mA}$	
	35	45	45	35	45	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$	
LEAKAGE CURRENTS							$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
Source Off Leakage, Is (Off)	±0.1			±0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$ see Figure 12	
	±0.25	±5	±15	±0.25	±15	nA max		
Drain Off Leakage, I _D (Off)	±0.1			±0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$ see Figure 12	
	±0.75	±5	±30	±0.75	±30	nA max		
Channel On Leakage, ID, Is (On)	±0.4			±0.4		nA typ	$V_S = V_D = \pm 15.5 \text{ V}$; see Figure 13	
	±0.75	±5	±30	±0.75	±30	nA max		
DIGITAL INPUTS								
Input High Voltage, V _{INH}		2.4	2.4		2.4	V min		
Input Low Voltage, V _{INL}		0.8	8.0		0.8	V max		
Input Current								
l _{INL} or l _{INH}		±0.005	±0.005		±0.005	μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.5	±0.5		±0.5	μA max		
DYNAMIC CHARACTERISTICS ²								
t transition	160	200	200	145	200	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = \pm 10 V$,	
							$V_{S2} = \mp 10 \text{ V}$; see Figure 14	
Break-Before-Make Time Delay, t _D	30			30		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = \pm 10 V$; see Figure 15	
	5			5		ns min		
Off Isolation	80			80		dB typ	$R_L = 50 \Omega$, $f = 1 MHz$; see Figure 16	
Channel-to-Channel Crosstalk	90			70		dB typ	$R_L = 50 \Omega$, $f = 1 MHz$; see Figure 17	
C _s (Off)	6			6		pF typ	f = 1 MHz	
C _D , C _S (On)	55			55		pF typ	f = 1 MHz	
POWER REQUIREMENTS							$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
I_{DD}	0.0001			0.0001		μA typ	$V_{IN} = 0 V \text{ or } 5 V$	
	1	2.5	2.5	1	2.5	μA max		
Iss	0.0001			0.0001		μA typ		
	1	2.5	2.5	1	2.5	μA max		
l _L	0.0001			0.0001		μA typ	$V_L = 5.5 \text{ V}$	
	1	2.5	2.5	1	2.5	μA max		

 $^{^1}$ Temperature ranges are as follows: B Version: -40°C to $+125^\circ\text{C}$; T Version: -55°C to $+125^\circ\text{C}$. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, V_L = 5 V \pm 10%, GND = 0 V, unless otherwise noted.

		B Version	1	T Version			
Parameter ¹	+25°C	–40°C to +85°C	–40°C to +125°C	+25°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	+25 C	+65 C	+125 C	+25 C	+125 C	Oilit	rest conditions/comments
Analog Signal Range			0 to V _{DD}		0 to V _{DD}	V	
Ron	40			40	0 (0 ())	Ωtyp	$V_D = 3 \text{ V}, 8.5 \text{ V}, I_S = -10 \text{ mA}$
HON	10	60	70	10	70	Ω max	$V_{DD} = 10.8 \text{ V}$
LEAKAGE CURRENT						22111071	$V_{DD} = 13.2 \text{ V}$
Source OFF Leakage, I _s (Off)	±0.1			±0.1		nA typ	$V_D = 12.2 \text{ V/1 V, V}_S = 1 \text{ V/12.2 V;}$ see Figure 12
	±0.25	±5	±15	±0.25	±15	nA max	_
Drain OFF Leakage, I _D (Off)	±0.1			±0.1		nA typ	$V_D = 12.2 \text{ V/1 V, V}_S = 1 \text{ V/12.2 V;}$ see Figure 12
	±0.75	±5	±30	±0.75	±30	nA max	
Channel ON Leakage, ID, IS (On)	±0.4			±0.4		nA typ	$V_S = V_D = 12.2 \text{ V/1 V}$; see Figure 13
	±0.75	±5	±30	±0.75	±30	nA max	
DIGITAL INPUTS							
Input High Voltage, V _{INH}		2.4	2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8	0.8		0.8	V max	
Input Current							
I _{INL} or I _{INH}		±0.005	±0.005		±0.005	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5	±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²							
transition	180	250	250	170	250	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$; $V_{51} = 0 \text{V}/8 \text{V}$, $V_{52} = 8 \text{V}/0 \text{V}$; see Figure 14
Break-Before-Make Time Delay, t _D	60			60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = 8 V$; see Figure 15
Off Isolation	80			80		dB typ	$R_L = 50 \Omega$, f = 1 MHz; see Figure 16
Channel-to-Channel Crosstalk	90			70		dB typ	$R_L = 50 \Omega$, f = 1 MHz; see Figure 17
C _s (Off)	13			13		pF typ	f = 1 MHz
C_D , C_S (On)	65			65		pF typ	f = 1 MHz
POWER REQUIREMENTS							$V_{DD} = 13.2 \text{ V}$
I_{DD}	0.0001			0.0001		μA typ	$V_{IN} = 0 V \text{ or } 5 V$
	1	2.5	2.5	1	2.5	μA max	
lι	0.0001			0.0001		μA typ	$V_{L} = 5.5 \text{ V}$
	1	2.5	2.5	1	2.5	μA max	

 $^{^1}$ Temperature ranges are as follows: B Version: -40°C to $+125^\circ\text{C}$; T Version: -55°C to $+125^\circ\text{C}$. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 T_A = 25°C unless otherwise noted.

Table 3.

Table 5.		
Parameter	Rating	
V _{DD} to V _{SS}	44 V	
V _{DD} to GND	-0.3 V to +25 V	
V _{ss} to GND	+0.3 V to -25 V	
V_L to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$	
Analog, Digital Inputs ¹	V _{SS} – 2 V to V _{DD} + 2 V or 30 mA, whichever occurs first	
Continuous Current, S or D	30 mA	
Peak Current, S or D (Pulsed at 1 ms, 10% Duty-Cycle Maximum)	100 mA	
Operating Temperature Range		
Industrial (B Version)	−40°C to +125°C	
Extended (T Version)	−55°C to +125°C	
Storage Temperature Range	−65°C to +150°C	
Junction Temperature	150°C	
CERDIP Package, Power Dissipation	600 mW	
θ_{JA} , Thermal Impedance	110°C/W	
Lead Temperature, Soldering (10 sec)	300°C	
PDIP Package, Power Dissipation	400 mW	
θ_{JA} , Thermal Impedance	100°C/W	
Lead Temperature, Soldering (10 sec)	260°C	
SOIC Package, Power Dissipation	400 mW	
θ_{JA} , Thermal Impedance	155°C/W	
MSOP Package, Power Dissipation	315 mW	
θ_{JA} , Thermal Impedance	205°C/W	
Lead Temperature, Soldering		
Vapor Phase (60 sec)	215°C	
Infrared (15 sec)	220°C	

¹Overvoltages at IN, S or D is clamped by internal diodes. Limit current to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

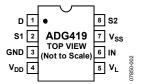


Figure 2. Pin Configuration

Table 4. Pin Function Description

Pin No.	Mnemonic	Description
1	D	Drain terminal. May be an input or an output.
2	S1	Source terminal. May be an input or an output.
3	GND	Ground (0 V) reference.
4	V_{DD}	Most positive power supply potential.
5	V_L	Logic power supply (5 V).
6	IN	Logic control input.
7	Vss	Most negative power supply potential in dual-supply applications. In single-supply applications, it may be connected to GND.
8	S2	Source terminal. May be an input or an output.

Table 5. Truth Table

Logic	Switch 1	Switch 2
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

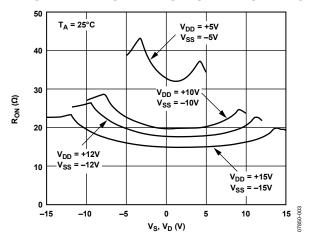


Figure 3. R_{ON} as a Function of V_D (V_S), Dual-Supply Voltage

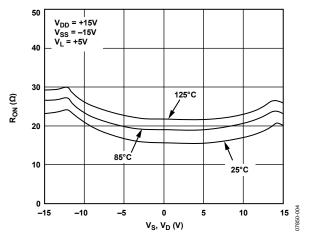


Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures

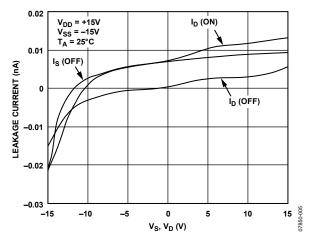


Figure 5. Leakage Currents as a Function of $V_S(V_D)$

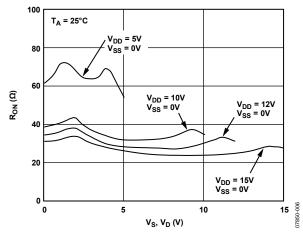


Figure 6. R_{ON} as a Function of V_D (V_S), Single-Supply Voltage

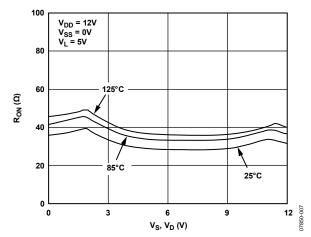


Figure 7. R_{ON} as a Function of V_D (V_S) for Different Temperatures

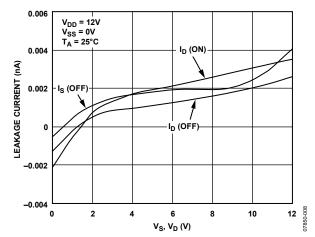


Figure 8. Leakage Currents as a Function of $V_S(V_D)$

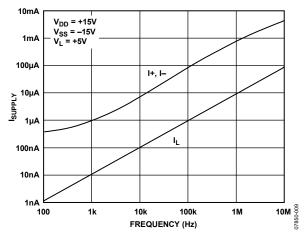


Figure 9. Supply Current (ISUPPLY) vs. Input Switching Frequency

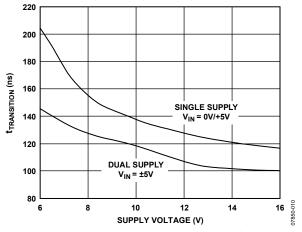


Figure 10. Transition Time (ttransition) vs. Power Supply Voltage

TEST CIRCUITS

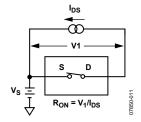


Figure 11. On Resistance

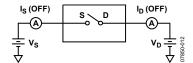


Figure 12. Off Leakage

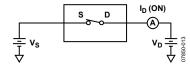


Figure 13. On Leakage

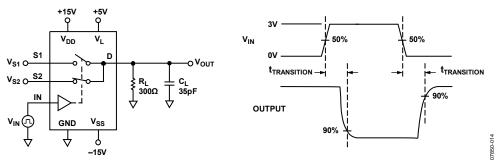


Figure 14. Transition Time, ttransition

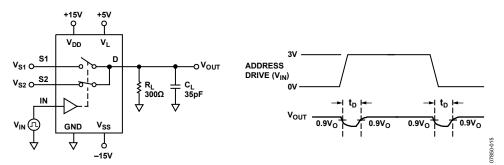


Figure 15. Break-Before-Make Time Delay, t_D

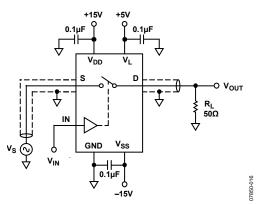


Figure 16. Off Isolation

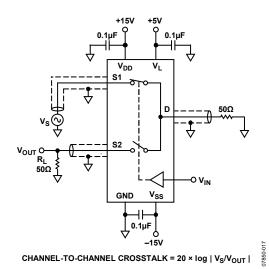


Figure 17. Crosstalk

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

 \mathbf{V}_{ss}

Most negative power supply potential in dual-supply applications. In single-supply applications, it may be connected to GND.

 $V_{\rm L}$

Logic power supply (5 V).

GND

Ground (0 V) reference.

S

Source terminal. May be an input or an output.

D

Drain terminal. May be an input or an output.

IN

Logic control input.

RON

Ohmic resistance between D and S.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 $V_D(V_S)$

Analog voltage on terminals D, S.

Cs (Off)

Off switch source capacitance.

 C_D , C_S (On)

On switch capacitance.

ttransition

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

 \mathbf{t}_{D}

Off time or on time measured between the 90% points of both switches when switching from one address state to the other.

 V_{INL}

Maximum input voltage for Logic 0.

 $m V_{INH}$

Minimum input voltage for Logic 1.

In (Inu)

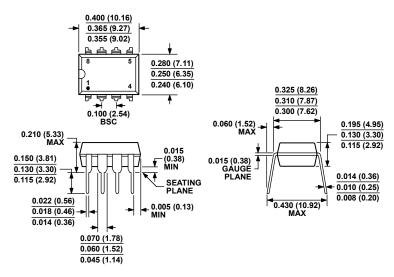
Input current of the digital input.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off channel.

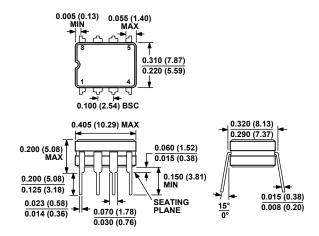

 $I_{\rm DD}$

Positive supply current.

Iss

Negative supply current.

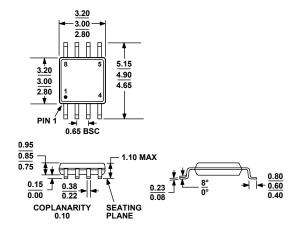
OUTLINE DIMENSIONS



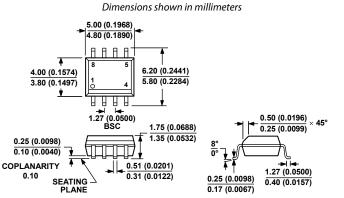
COMPLIANT TO JEDEC STANDARDS MS-001

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 18. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8)


Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.


Figure 19. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 20. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 21. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG419BN	−40°C to +125°C	8-Lead Plastic Dual In-Line Package [PDIP]	N-8	
ADG419BNZ ¹	-40°C to +125°C	8-Lead Plastic Dual In-Line Package [PDIP]	N-8	
ADG419BR	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BR-REEL	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BR-REEL7	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BRZ ¹	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BRZ-REEL ¹	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BRZ-REEL7 ¹	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
ADG419BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB
ADG419BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB
ADG419BRM-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB
ADG419BRMZ ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB#
ADG419BRMZ-REEL ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB#
ADG419BRMZ-REEL7 ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SBB#
ADG419TQ	−55°C to +125°C	8-Lead Ceramic Dual In-Line Package [CERDIP]	Q-8	

¹ Z = RoHS Compliant Part, # denotes that RoHS compliant part is top or bottom marked.

NOTES

NOTES

ADG419		
--------	--	--

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB
NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX
PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10
RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+
BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G
NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1
TC4W53FU(TE12L,F) 74HC2G66DC.125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN#PBF 74LV4066DB,118
FSA2275AUMX