FEATURES

```
44 V supply maximum ratings
Vss to VDD analog signal range
Low on resistance (12\Omega typ)
Low \Row (3\Omega max)
Low Ron match (2.5 \Omega max)
Low power dissipation
Fast switching times
```

 \(t_{\text {on }}<175\) ns
 toff < 145 ns
 Low leakage currents (5 nA max)
Low charge injection (10 pC)
Break-before-make switching action

APPLICATIONS

Audio and video switching
Battery-powered systems
Test equipment
Communications systems

GENERAL DESCRIPTION

The ADG436 is a monolithic CMOS device comprising two independently selectable SPDT switches. It is designed on an $L^{2} \mathrm{MOS}$ process, which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

Each switch conducts equally well in both directions when on and has an input signal range which extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Extended signal range.

The ADG436 is fabricated on an enhanced LC2 MOS process, giving an increased signal range that extends to the supply rails.
2. Low power dissipation.
3. Low Ron.
4. Single-supply operation.

For applications where the analog signal is unipolar, the ADG436 can be operated from a single rail power supply.

ADG436

TABLE OF CONTENTS

Specifications.
\qquad
Dual Supply

\qquad 3
Single Supply 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
Terminology 7
REVISION HISTORY
3/05-Rev. A to Rev. B
Updated Format

\qquad
Universal
Changes to Specifications Tables 3
Changes to Figure 11 8
Updated Outline Dimensions 12
Changes to Ordering Guide 12
Typical Performance Characteristics 8
Test Circuits 10
Applications Information 11
ADG436 Supply Voltages 11
Power-Supply Sequencing 11
Outline Dimensions 12
Ordering Guide 12

11/98-Rev. 0 to Rev. A

1/96-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/ Comments
ANALOG SWITCH Analog Signal Range Ron Δ Ron RonMatch	12 1 1	$V_{S S}$ to $V_{D D}$ 25 3 2.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=-5 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $I_{D}, I_{s}(O N)$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{aligned}$ Figure 13 $V_{S}=V_{D}= \pm 15.5 \mathrm{~V}$ Figure 14
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, $\mathrm{I}_{\text {ind }}$ or $\mathrm{I}_{\mathrm{INH}}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	$V_{\text {min }}$ \checkmark max μA typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Delay, topen Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $C_{D}, C_{S}(\mathrm{ON})$	70 60 10 10 72 90 13 49	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	ns typ ns max ns typ ns max ns min pC typ dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \text { Figure } 16 \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \end{aligned}$ Figure 17 $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ $\mathrm{V}_{\mathrm{s}}=2.3 \mathrm{~V}$ rms, Figure 18 $R \mathrm{~L}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; $\mathrm{V}_{\mathrm{s}}=2.3 \mathrm{~V}$ rms, Figure 19
POWER REQUIREMENTS IDD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 5 \\ & \pm 3 / \pm 20 \end{aligned}$	mA typ mA max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\text { Digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V}$ $\left\|\mathrm{V}_{\mathrm{DD}}\right\|=\left\|\mathrm{V}_{S S}\right\|$

[^0]
ADG436

SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/ Comments
ANALOG SWITCH Analog Signal Range Ron RonMatch	20	$0 \text { to } V_{D D}$ 40 2.5	V Ω typ Ω max Ω max	$\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{Is}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 4 \end{aligned}$	± 5 ± 5	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=1 \mathrm{~V} / 12.2 \mathrm{~V} \end{aligned}$ Figure 13 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}$ Figure 14
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, lind or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	\vee min \checkmark max μA typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-Before-Make Delay, topen Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	100 90 10 10 72 90 22 46	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { Figure } 16 \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \text { Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{Vrms} ; \text { Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{~V} \text { rms, Figure } 19 \end{aligned}$
POWER REQUIREMENTS IdD VD	0.05	$\begin{aligned} & 0.35 \\ & +3 /+30 \end{aligned}$	mA typ mA max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	+44 V
VDo to GND	-0.3 V to +30 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -30 V
Analog, Digital Inputs ${ }^{1}$	$V_{S S}-2 V \text { to } V_{D D}+2 V \text { or } 20 m A$ whichever occurs first
Continuous Current, S or D	20 mA
Peak Current, S or D (pulsed at 1 ms, 10\% Duty Cycle max)	40 mA
Operating Temperature Range	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA, }}$, Thermal Impedance	
PDIP Package	$117^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	$77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG436

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Descriptions
1,9	IN1, IN2	Logic Control Input.
$2,4,10,12$	S1A, S1B, S2A, S2B	Source Terminal. Can be an input or output.
3,11	Vrain Terminal. C be an input or output.	
5		Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to ground.
6	GND	Ground (0 V) Reference.
$7,8,14,15,16$	NC	No Connect.
13	Vod	Most Positive Power Supply Potential.

TERMINOLOGY

Table 6.

Mnemonic	Descriptions
Ron	Ohmic resistance between D and S.
\triangle Ron	Ron variation due to a change in the analog input voltage with a constant load current.
RosMatch	Difference between the Ron of any two channels.
$\mathrm{Is}_{\text {(}}$ (OFF)	Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{5}(\mathrm{ON})$	Channel leakage current with the switch on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$	Analog voltage on terminals D, S.
C_{s} (OFF)	OFF switch source capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	ON switch capacitance.
ton	Delay between applying the digital control input and the output switching on.
toff	Delay between applying the digital control input and the output switching off.
topen	Break-before-make delay when switches are configured as a multiplexer.
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for Logic 0.
VINH	Minimum input voltage for Logic 1.
IINL (linh)	Input current of the digital input.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
ldo	Positive supply current.
Iss	Negative supply current.

ADG436

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Ron as a Function of $V_{D}\left(V_{S}\right)$:
Dual Supply

Figure 4. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single Power Supply

Figure 5. Ron as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures: Dual Supply

Figure 6. RoN as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures: Single Supply

Figure 7. $I_{D}(O N)$ Leakage Current as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply

Figure 8. Is (OFF) Leakage Current as a Function of $V_{D}\left(V_{s}\right)$:
Dual Supply

Figure 9. IS (ON) Leakage Current as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply

Figure 10. Switching Time as a Function of $V_{D}\left(V_{s}\right)$:
Dual Supply

Figure 11. IDD as a Function of Switching Frequency: Dual Supply

ADG436

TEST CIRCUITS

Figure 12. On Resistance

Figure 13. Off Leakage

Figure 14. On Leakage

Figure 15. Switching Times

Figure 16. Break-Before-Make Delay, $t_{\text {open }}$

Figure 17. Charge Injection

Figure 18. Off Isolation

Figure 19. Channel-to Channel Crosstalk

APPLICATIONS INFORMATION

ADG436 SUPPLY VOLTAGES

The ADG436 can operate from a dual or single supply. Vss should be connected to GND when operating with a single supply. When using a dual supply, the ADG436 can also operate with unbalanced supplies, for example $V_{D D}=20 \mathrm{~V}$ and $V_{S S}=$ -5 V . The only restrictions are that V_{DD} to GND must not exceed 30 V , Vss to GND must not drop below -30 V , and V $\mathrm{V}_{\text {D }}$ to V_{ss} must not exceed +44 V . It is important to remember that the ADG436 supply voltage directly affects the input signal range, the switch on resistance and the switching times of the part. The effects of the power supplies on these characteristics can be clearly seen from the Typical Performance Characteristics curves.

POWER-SUPPLY SEQUENCING

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those listed in the Absolute Maximum Ratings. Always sequence $V_{D D}$ on first followed by $V_{S S}$ and the logic signals. An external signal can then be safely presented to the source or drain of the switch.

OUTLINE DIMENSIONS

Figure 20. 16-Lead Plastic Dual In-Line Package [PDIP] (N -16)
Dimensions are shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 21. 16-Lead Narrow Body Standard Small Outline Package [SOIC] (R-16)
Dimensions are shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG436BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG436BNZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG436BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead $0.15^{\prime \prime}$ Narrow Body SOIC	$\mathrm{R}-16$
ADG436BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead $0.15^{\prime \prime}$ Narrow Body SOIC	$\mathrm{R}-16$
ADG436BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead $0.15^{\prime \prime}$ Narrow Body SOIC	$\mathrm{R}-16$
ADG436BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead $0.15^{\prime \prime}$ Narrow Body SOIC	$\mathrm{R}-16$

[^2]\square
ww w.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118

[^0]: ${ }^{1}$ Temperature range is as follows: B version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Temperature range is as follows: B version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

