Data Sheet

FEATURES

44 V supply maximum ratings $V_{s s}$ to $V_{D D}$ analog signal range Low on resistance ($<70 \Omega$) Low $\Delta R_{\text {on }}$ (9Ω max) Low Ron match ($\mathbf{3} \Omega$ max)
Low power dissipation
Fast switching times
ton $<\mathbf{1 1 0} \mathbf{n s}$
toff < 60 ns
Low leakage currents (3 nA max)
Low charge injection (6 pC max)
Break-before-make switching action
Latch-up proof A grade
Plug-in upgrade for DG201A/ADG201A, DG202A/ADG202A, DG211/ADG211A
Plug-in replacement for DG441/DG442/DG444

APPLICATIONS

Audio and video switching
Automatic test equipment
Precision data acquisition
Battery-powered systems
Sample-and-hold systems
Communication systems

GENERAL DESCRIPTION

The ADG441, ADG442, and ADG444 are monolithic CMOS devices that comprise of four independently selectable switches. They are designed on an enhanced LC 2 MOS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments. The ADG441, ADG442, and ADG444 contain four independent SPST switches. Each switch of the ADG441 and ADG444 turns on when a logic low is applied to the appropriate control input. The ADG442 switches are turned on with logic high on the appropriate control input. The ADG441 and ADG444 switches differ in that the ADG444 requires a 5 V logic power supply that is applied to the V_{L} pin. The ADG441 and ADG442 do not have a V_{L} pin, the logic power supply is generated internally by an on-chip voltage generator.

Rev. B

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 1.
Each switch conducts equally well in both directions when ON and has an input signal range that extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Extended signal range. The ADG441A/ADG442A/ ADG444A are fabricated on an enhanced LC 2 MOS, trench-isolated process, giving an increased signal range that extends to the supply rails.
2. Low power dissipation.
3. Low Ron.
4. Trench isolation guards against latch-up for A grade parts. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
5. Break-before-make switching. This prevents channel shorting when the switches are configured as a multiplexer.
6. Single-supply operation. For applications where the analog signal is unipolar, the ADG441/ADG442/ADG444 can be operated from a single-rail power supply. The parts are fully specified with a single 12 V power supply.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1994-2014 Analog Devices, Inc. All rights reserved. Technical Support

TABLE OF CONTENTS

Features1
Applications. 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
5/14—Rev. A to Rev. B
Updated Outline Dimensions 13
Changes to Ordering Guide 14
5/05-Rev. 0 to Rev. A
Changes to Format Universal
Deleted CERDIP Package and T Grade Universal
Changes to Features and Product Highlights 1
Changes to Test Conditions in Table 2 4
Changes to Figure 11 8
Changes to Trench Isolation Section 12
Updated Outline Dimensions 13
Changes to Ordering Guide 14
4/94-Revision 0: Initial Version
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 11
Trench Isolation 12
Outline Dimensions 13
Ordering Guide 14

ADG441/ADG442/ADG444

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%$ (ADG444), GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter		B Version	Unit	Test Conditions/Comments	
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
ANALOG SWITCH					
Analog Signal Range	40	$\mathrm{V}_{S S}$ to $\mathrm{V}_{\text {D }}$	V		
Ron			Ω typ	$\mathrm{V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$	
	70	85	Ω max	$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$	
$\Delta \mathrm{RoN}^{\prime}$		4	$\Omega \operatorname{typ}$	$-8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}} \leq+8.5 \mathrm{~V}$	
		9	Ω max	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	
Ron Match		1	$\Omega \operatorname{typ}$		
		3	Ω max		
LEAKAGE CURRENTS Source OFF Leakage Is (OFF)	± 0.01		nA typ	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$	
			$\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{S}=\mp 15.5 \mathrm{~V}$		
	$\begin{aligned} & \pm 0.5 \\ & \pm 0.01 \end{aligned}$	± 3		$n A \max$	See Figure 15
Drain OFF Leakage Id (OFF)			nA typ	$\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V}$	
Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{IS}^{(O N}$ ($)$	$\pm 0.5$$\pm 0.08$	± 3	$n A \max$	See Figure 15	
			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}$	
	± 0.5	± 3	$n A$ max	See Figure 16	
DIGITAL INPUTS	2.4			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	
Input High Voltage, $\mathrm{V}_{\text {INH }}$					
Input Low Voltage, $\mathrm{V}_{\text {INL }}$	0.8		\checkmark min V max		
Input Current					
lind or linh		± 0.00001	$\mu \mathrm{A}$ typ		
		± 0.5	$\mu \mathrm{A} \max$		
DYNAMIC CHARACTERISTICS ${ }^{2}$					
ton	85		ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;	
	110	170	ns max	$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}$; see Figure 17	
toff	45		ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;	
	60	80	ns max	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$; see Figure 17	
topen	30		ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;	
Charge Injection	1		pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{RS}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$;	
	6		pC max	$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$; see Figure 18	
OFF Isolation	60		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF} ; \mathrm{f}=1 \mathrm{MHz}$; see Figure 19	
Channel-to-Channel Crosstalk	100		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF} ; \mathrm{f}=1 \mathrm{MHz}$; see Figure 20	
C_{5} (OFF)	4		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
C_{D} (OFF)	4		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	16		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
POWER REQUIREMENTS ldo			$\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$	
			Digital Inputs $=0 \mathrm{~V}$ or 5 V		
ADG441/ADG442	80				
ADG444	0.001			$\mu \mathrm{A}$ typ	
		2.5	$\mu \mathrm{A}$ max		
Iss	0.0001		$\mu \mathrm{A}$ typ		
		2.5	$\mu \mathrm{A}$ max		
IL (ADG444 Only)	0.001		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$	
		2.5	$\mu \mathrm{A}$ max		

[^0]
SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%$ (ADG444), GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	44 V
VDD to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
V to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog, Digital Inputs	$\mathrm{V}_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle Max)	100 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation	470 mW
$\theta_{j \mathrm{~A},}$, Thermal Impedance	$177^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation	600 mW
θ_{jA}, Thermal Impedance	$77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

ADG441/ADG444 IN	ADG442 IN	Switch Condition
0	1	ON
1	0	OFF

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

IN1 1	$\begin{array}{\|c\|} \hline \text { ADG441 } \\ \text { ADG442 } \\ \text { TOP VIEW } \\ \text { (Not to Scale) } \end{array}$	16 IN2
D1 2		15 D2
S1 3		14 S2
$\mathrm{v}_{\text {Ss }} 4$		13 VDD
GND 5		12 NC
S4 6		11 S 3
D4 7		10 D3
IN4 8		9 IN3

Figure 2. ADG441/ADG442 (DIP/SOIC)
Table 5. ADG441/ADG442 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,8,9,16$	IN1 to IN4	Logic Control Input.
$2,7,10,15$	D1 to D4	Drain Terminal. May be an input or output.
$3,6,11,14$	S1 to S4	Source Terminal. May be an input or output.
4	VSS	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground.
5	GND	Ground (0 V) Reference.
12	NC	No Connect.
13	VDD 2	Most Positive Power Supply Potential.

IN1 1	ADG444 TOP VIEW (Not to Scale)	16 IN2
D1 2		15 D2
S1 3		14 S 2
$\mathrm{V}_{\text {Ss }} 4$		13 VDD
GND 5		12 V
S4 6		11 S3
D4 7		10 D3
IN4 8		9 IN 3

Figure 3. ADG444 (DIP/SOIC)
Table 6. ADG444 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,8,9,16$	IN1 to IN4	Logic Control Input.
$2,7,10,15$	D1 to D4	Drain Terminal. May be an input or output.
$3,6,11,14$	S1 to S4	Source Terminal. May be an input or output.
4	V SS	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground.
5	GND	Ground (0 V) Reference.
12	V $_{\text {L }}$	Logic Power Supply (5 V).
13	V $_{\text {DD }}$	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of $V_{D}\left(V_{s}\right)$: Dual Supply

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single Supply

Figure 6. Ron as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures

Figure 7. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 8. Crosstalk and Off Isolation vs. Frequency

Figure 9. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 10. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 11. Charge Injection vs. Source Voltage

Figure 12. Switching Time vs. Bipolar Supply

Figure 13. Switching Time vs. Single Supply

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Charge Injection

Figure 19. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \times$ LOG $\left|\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\text {OUT }}\right|$
Figure 20. Channel-to-Channel Crosstalk

TERMINOLOGY

Ron $t_{\text {ON }}$
Ohmic resistance between D and S.

Ron Match

Difference between the Ron of any two channels.
Is (OFF)
Source leakage current with the switch OFF.

I_{D} (OFF)

Drain leakage current with the switch OFF.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
Channel leakage current with the switch ON.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminals D, S.
C_{s} (OFF)
OFF switch source capacitance.
C_{D} (OFF)
OFF switch drain capacitance.
$\mathrm{C}_{\mathrm{o}}, \mathrm{C}_{\mathrm{s}}$ (ON)
ON switch capacitance.

Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.
topen
Break-before-make delay when switches are configured as a multiplexer.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

TRENCH ISOLATION

In the ADG441A, ADG442A, and ADG444A, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 21. Trench Isolation

OUTLINE DIMENSIONS

Model ${ }^{1,2}$	Temperature Range	Package Description	Package Option
ADG441BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG441BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441ABCHIPS		DIE	
ADG441ABR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441ABRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG442BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N -16
ADG442BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG442BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package [PDIP]	N -16
ADG444BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16

[^2]${ }^{2} \mathrm{~A}=$ Trench isolated.
Data Sheet ADG441/ADG442/ADG444
NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118

[^0]: ${ }^{1}$ Temperature range is: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature range is: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

