8-Channel/4-Channel Fault-Protected Analog Multiplexers

FEATURES

All switches off with power supply off
Analog output of on channel clamped within power supplies if an overvoltage occurs
Latch-up proof construction
Low on resistance (270Ω typical)
Fast switching times
ton: $\mathbf{2 3 0}$ ns maximum
toff: $\mathbf{1 3 0} \mathbf{n s}$ maximum
Low power dissipation (3.3 mW maximum)
Fault and overvoltage protection (-40 V to +55 V)
Break-before-make construction
TTL and CMOS compatible inputs

APPLICATIONS

Existing multiplexer applications (both fault-protected and nonfault-protected)
New designs requiring multiplexer functions

GENERAL DESCRIPTION

The ADG508F and ADG509F are CMOS analog multiplexers, with the ADG508F comprising eight single channels and the ADG509F comprising four differential channels. These multiplexers provide fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs from -40 V to +55 V . During fault conditions with power supplies off, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer.

The ADG508F switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG509F switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched off.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

PRODUCT HIGHLIGHTS

1. Fault protection. The ADG508F/ADG509F can withstand continuous voltage inputs from -40 V to +55 V . When a fault occurs due to the power supplies being turned off, all the channels are turned off and only a leakage current of a few nanoamperes flows.
2. On channel saturates while fault exists.
3. Low Ron.
4. Fast switching times.
5. Break-before-make switching. Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
6. Trench isolation eliminates latch-up. A dielectric trench separates the p and n -channel MOSFETs thereby preventing latch-up.

Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2001-2011 Analog Devices, Inc. All rights reserved.

ADG508F/ADG509F

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams. 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Truth Tables 4
REVISION HISTORY
7/11—Rev. E to Rev. F
Deleted ADG528F Universal
Changes to Features Section and General Description Section.Changes to Specifications Section 3
Deleted Timing Diagrams Section 4
Changes to Table 4 5
Added Table 5 6
Added Table 6 7
Replaced Typical Performance Characteristics Section 8
Changes to Terminology Section. 10
Changes to Figure 27 and Figure 28 13
Changes to Figure 31 14
Changes to Theory of Operation Section 11
Updated Outline Dimensions 15
Changes to Ordering Guide 17
7/09—Rev. D: Rev. E
Updated Format Universal
Added TSSOP Universal
Updated Outline Dimensions 15
Changes to Ordering Guide 18
4/01—Data Sheet Changed from Rev. C to Rev. D.
Changes to Ordering Guide 1
Changes to Specifications Table 2
Max Ratings Changed 4
Deleted 16-Lead Cerdip from Outline Dimensions 11
Deleted 18-Lead Cerdip from Outline Dimensions 12
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 8
Terminology 10
Theory of Operation 11
Test Circuits 12
Outline Dimensions 15
Ordering Guide 17

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Ron Drift On-Resistance Match Between Channels, Δ Ron	$\begin{aligned} & V_{S S}+1.4 \\ & V_{D D}-1.4 \\ & V_{S S}+2.2 \\ & V_{D D}-2.2 \\ & 270 \\ & 0.6 \\ & 3 \end{aligned}$	$\begin{aligned} & 350 \\ & 390 \end{aligned}$	V typ V typ V typ V typ Ω typ Ω max \%/ ${ }^{\circ} \mathrm{C}$ typ \% max	Output open circuit Output loaded, 1 mA $\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \% \end{aligned}$ See Figure 21 $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Drain Off Leakage I_{D} (Off) ADG508F ADG509F Channel On Leakage $I_{D}, I_{S}(O n)$ ADG508F ADG509F	$\begin{aligned} & \pm 0.02 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.04 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 60 \\ & \pm 30 \\ & \\ & \pm 60 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} ;$ See Figure 22 $V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} ;$ See Figure 23 $V_{S}=V_{D}= \pm 10 \mathrm{~V} ;$ See Figure 24
FAULT Source Leakage Current I_{s} (Fault) (With Overvoltage) Drain Leakage Current I_{D} (Fault) (With Overvoltage) Source Leakage Current Is (Fault) (Power Supplies Off)	$\begin{aligned} & \pm 0.02 \\ & \pm 2 \\ & \pm 5 \\ & \pm 2 \\ & \\ & \pm 1 \\ & \pm 2 \end{aligned}$	± 2	nA typ $\mu \mathrm{A}$ max nA typ $\mu \mathrm{A}$ max nA typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{S}}=+55 \mathrm{~V} \text { or }-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \text {, see Figure } 25$ $\mathrm{V}_{\mathrm{s}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {, see Figure } 23$ $\mathrm{V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\text {EN }}=\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2=0 \mathrm{~V}$ See Figure 26
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{INL}}$ or I_{NH} $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ ttransition topen ton (EN) toff (EN) $\mathrm{t}_{\text {SETT }}$, Settling Time 0.1\% 0.01%	$\begin{aligned} & 175 \\ & 220 \\ & 90 \\ & 60 \\ & 180 \\ & 230 \\ & 100 \\ & 130 \end{aligned}$	$\begin{aligned} & 300 \\ & 40 \\ & 300 \\ & 150 \\ & 1 \\ & 2.5 \end{aligned}$	ns typ ns max ns typ ns min ns typ ns max ns typ ns max us typ $\mu \mathrm{styp}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=\mp 10 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$

ADG508F/ADG509F

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Charge Injection	15		pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 30
Off Isolation	93		dB typ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{s}}=7 \mathrm{~V} \mathrm{rms} ;$ see Figure 31
C_{s} (Off)	3		pF typ	
$C_{\text {d }}$ (Off)				
ADG508F	22		pF typ	
ADG509F	12		pF typ	
POWER REQUIREMENTS				
ldo	0.05	0.2	mA max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V
Iss	0.1	1	$\mu \mathrm{A}$ max	

${ }^{1}$ Guaranteed by design, not subject to production test.

TRUTH TABLES

Table 2. ADG508F Truth Table ${ }^{1}$

A2	A1	A0	EN	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	3
0	1	0	1	4
0	1	1	1	5
1	0	1	6	
1	0	1	7	
1	1	0	1	8
1	1	1	1	

${ }^{1} \mathrm{X}=$ don't care.

Table 3. ADG509F Truth Table ${ }^{1}$

A1	A0	EN	On Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

[^0]
ADG508F/ADG509F

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 4.

Parameter	Rating
V_{DD} to $\mathrm{V}_{\text {SS }}$	48 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Digital Input, EN, Ax	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 20 mA , whichever occurs first
V_{s}, Analog Input Overvoltage with Power On $\left(\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}\right)$	$\mathrm{V}_{S S}-25 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+40 \mathrm{~V}$
V_{s}, Analog Input Overvoltage with Power Off ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$)	-40 V to +55 V
Continuous Current, S or D	20 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	40 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
$\theta_{\text {JA }}$, Thermal Impedance	$112^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP Package	
$\theta_{\mathrm{J} A}$, Thermal Impedance 16-Lead	$117^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package	
$\theta_{\text {JA }}$, Thermal Impedance	
Narrow Body	$77^{\circ} \mathrm{C} / \mathrm{W}$
Wide Body	$75^{\circ} \mathrm{C} / \mathrm{W}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG508F/ADG509F

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

A0 1	$\begin{aligned} & \text { ADG508F } \\ & \text { TOP VIEW } \\ & \text { (Not to Scale) } \end{aligned}$	16	A1
EN 2		15	A2
$\mathrm{V}_{\text {SS }} 3$		14	GND
S1		13	$V_{D D}$
S2 5		12	S5
S3 6		11	S6
S4 7		10	S7
D 8		9	S8

Figure 3. ADG508F Pin Configuration

Table 5. ADG508F Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Logic Control Input.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches. Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
3	VS	Source Terminal 1. This pin can be an input or an output.
4	S1	Source Terminal 2. This pin can be an input or an output.
5	S2	Source Terminal 3. This pin can be an input or an output.
6	S3	Source Terminal 4. This pin can be an input or an output.
7	S4	Drain Terminal. This pin can be an input or an output.
8	S8	Source Terminal 8. This pin can be an input or an output.
9	S7	Source Terminal 7. This pin can be an input or an output.
10	S6	Source Terminal 6. This pin can be an input or an output.
11	S5	Source Terminal 5. This pin can be an input or an output.
12	VDD	Most Positive Power Supply Potential.
13	GND	Ground (0V) Reference.
14	A2	Logic Control Input.
15	Logic Control Input.	
16		

Figure 4. ADG509F Pin Configuration

Table 6. ADG509F Pin Function Descriptions

Pin No.	Mnemonic	Description
1	AO	Logic Control Input. Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches. 2
3	EN	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	VSS	Source Terminal 1A. This pin can be an input or an output.
5	S2A	Source Terminal 2A. This pin can be an input or an output.
6	S3A	Source Terminal 3A. This pin can be an input or an output.
7	S4A	Source Terminal 4A. This pin can be an input or an output.
8	DA	Drain Terminal A. This pin can be an input or an output.
9	DB	Drain Terminal B. This pin can be an input or an output.
10	S4B	Source Terminal 4B. This pin can be an input or an output.
11	S3B	Source Terminal 3B. This pin can be an input or an output.
12	S2B	Source Terminal 2B. This pin can be an input or an output.
13	S1B	Source Terminal 1B. This pin can be an input or an output.
14	VDD	Most Positive Power Supply Potential.
15	GND	Ground (O V) Reference.
16	A1	Logic Control Input.

ADG508F/ADG509F

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$

Figure 6. Source Input Leakage Current as a Function of V_{s} (Power Supplies Off) During Overvoltage Conditions

Figure 7. Drain Output Leakage Current as a Function of Vs (Power Supplies On) During Overvoltage Conditions

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 9. Source Input Leakage Current as a Function of V_{s} (Power Supplies On) During Overvoltage Conditions

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

ADG508F/ADG509F

Figure 11. Leakage Currents as a Function of Temperature

Figure 12. Switching Time vs. Dual Power Supply

Figure 13. Switching Time vs. Temperature

Figure 14. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 15. Capacitance vs. Source Voltage

Figure 16. Charge Injection vs. Source Voltage

ADG508F/ADG509F

TERMINOLOGY

$V_{D D}$
Most positive power supply potential.
Vss
Most negative power supply potential.
GND
Ground (0 V) reference.
Ron
Ohmic resistance between D and S.

Ron Drift

Percentage change in Ron when temperature changes by one degree Celsius.

$\Delta \mathbf{R}_{\text {ON }}$

$\Delta \mathrm{R}_{\text {on }}$ represents the difference between the Ron of any two channels as a percentage of the maximum Ron of those two channels.
Is (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current when the switch is on.

Is (Fault—Power Supplies On)

Source leakage current when exposed to an overvoltage condition.
I_{D} (Fault-Power Supplies On)
Drain leakage current when exposed to an overvoltage condition.

Is (Fault-Power Supplies Off)

Source leakage current with power supplies off.
V_{D} (Vs)
Analog Voltage on Terminals D, S.
Cs (Off)
Channel input capacitance for off condition.

C_{b} (Off)

Channel output capacitance for off condition.
$\mathrm{C}_{\text {in }}$
Digital input capacitance.
$t_{\text {ON }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {off }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {open }}$
Off time measured between 80% points of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$\mathrm{V}_{\mathrm{INH}}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.
IDD
Positive supply current.
Iss
Negative supply current.

ADG508F/ADG509F

THEORY OF OPERATION

The ADG508F/ADG509F multiplexers are capable of withstanding overvoltages from -40 V to +55 V , irrespective of whether the power supplies are present or not. Each channel of the multiplexer consists of an n-channel MOSFET, a p-channel MOSFET, and an n-channel MOSFET, connected in series. When the analog input exceeds the power supplies, one of the MOSFETs will saturate limiting the current. The current during a fault condition is determined by the load on the output. Figure 17 illustrates the channel architecture that enables these multiplexers to withstand continuous overvoltages.
When an analog input of $\mathrm{V}_{\mathrm{SS}}+2.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2.2 \mathrm{~V}$ (output loaded, 1 mA) is applied to the ADG508F/ADG509F, the multiplexer behaves as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 390Ω maximum. However, when an overvoltage is applied to the device, one of the three MOSFETs saturate.

Figure 17 to Figure 20 show the conditions of the three MOSFETs for the various overvoltage situations. When the analog input applied to an on channel approaches the positive power supply line, the n-channel MOSFET saturates because the voltage on the analog input exceeds the difference between $V_{D D}$ and the n -channel threshold voltage ($\mathrm{V}_{\text {TN }}$). When a voltage more negative than $V_{s s}$ is applied to the multiplexer, the p-channel MOSFET will saturate because the analog input is more negative than the difference between V_{ss} and the p-channel threshold voltage $\left(\mathrm{V}_{\mathrm{TP}}\right)$. Because V_{TN} is nominally 1.4 V and $\mathrm{V}_{\mathrm{TP}}-1.4 \mathrm{~V}$, the analog input range to the multiplexer is limited to $\mathrm{V}_{\mathrm{SS}}+1.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.4 \mathrm{~V}$ (output open circuit) when a $\pm 15 \mathrm{~V}$ power supply is used.
When the power supplies are present but the channel is off, again either the p-channel MOSFET or one of the n-channel MOSFETs will remain off when an overvoltage occurs.

Finally, when the power supplies are off, the gate of each MOSFET will be at ground. A negative overvoltage switches on the first n-channel MOSFET but the bias produced by the overvoltage causes the p-channel MOSFET to remain turned off. With a positive overvoltage, the first MOSFET in the series will remain off because the gate to source voltage applied to this MOSFET is negative.

During fault conditions (power supplies off), the leakage current into and out of the ADG508F/ADG509F is limited to a few microamps. This protects the multiplexer and succeeding circuitry from over stresses as well as protecting the signal sources which drive the multiplexer. Also, the other channels of the multiplexer will be undisturbed by the overvoltage and will continue to operate normally.

Figure 17. +55 V Overvoltage Input to the On Channel

Figure 18. -40 V Overvoltage on an Off Channel with Multiplexer Power On

Figure 19. +55 V Overvoltage with Power Off

Figure 20. -40 V Overvoltage with Power Off

ADG508F/ADG509F

TEST CIRCUITS

Figure 21. On Resistance

Figure 22. Is (Off)

Figure 23. I_{D} (Off)

Figure 24. ID (On)

Figure 25. Input Leakage Current (with Overvoltage)

Figure 26. Input Leakage Current (with Power Supplies Off)

Figure 27. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Figure 28. Break-Before-Make Delay, topen

Figure 29. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}(E N)$

ADG508F/ADG509F

*SIMILAR CONNECTION FOR ADG509F.
Figure 30. Charge Injection

Figure 31. Off Isolation

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 32. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N -16)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 33. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body

$$
(R-16)
$$

Dimensions shown in millimeters and (inches)

ADG508F/ADG509F

Figure 34. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body ($R W$-16)
Dimensions shown in millimeters and (inches)

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

ADG508F/ADG509F

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG508FBNZ $_{\text {ADG508FBRN }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG508FBRNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG508FBRNZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG508FBRWZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG508FBRWZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	RW-16
ADG508FBRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	RW-16
ADG508FBRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
ADG509FBNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
ADG509FBRN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead PDIP	$\mathrm{N}-16$
ADG509FBRNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG509FBRNZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG509FBRWZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_N	R-16
ADG509FBRWZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead SOIC_W	RW-16
ADG509FBRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADG509FBRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16

${ }^{1} Z=$ RoHS Compliant Part.

ADG508F/ADG509F

NOTES

NOTES

ADG508F/ADG509F

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX

MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR
HEF4053BT. 653 ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112
74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4067D.112 74HCT4351D. 112
74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ
AD7506JNZ AD7506KNZ

[^0]: ${ }^{1} \mathrm{X}=$ don't care.

