## FEATURES

## Latch-up proof

3 pF off source capacitance
26 pF off drain capacitance
-0.6 pC charge injection
Low leakage: $\mathbf{0 . 4} \mathbf{n A}$ maximum at $85^{\circ} \mathrm{C}$
$\pm 9 \mathrm{~V}$ to $\pm \mathbf{2 2} \mathrm{V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm \mathbf{1 5} \mathrm{V}, \pm \mathbf{2 0} \mathrm{V}, \mathbf{+ 1 2} \mathrm{V}$, and +36 V
$V_{s s}$ to $V_{D D}$ analog signal range

## APPLICATIONS

Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

## GENERAL DESCRIPTION

The ADG5204 is a complementary metal oxide semiconductor (CMOS) analog multiplexer, comprising four single channels.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed together with high signal bandwidth make the ADG5204 suitable for video signal switching.

The ADG5204 is designed on a trench process, which guards against latch-up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.

The ADG5204 switches one of four inputs to a common output, D , as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action.

## PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Ultralow Capacitance and $<1 \mathrm{pC}$ Charge Injection.
3. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG5204 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG5204 can be operated from a single rail power supply up to 40 V .
5. 3 V Logic-Compatible Digital Inputs.
$\mathrm{V}_{\text {INH }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}$.
6. No $V_{L}$ Logic Power Supply Required.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

## ADG5204

## TABLE OF CONTENTS

Features1
Applications .....  1
Functional Block Diagram ..... 1
General Description .....  1
Product Highlights .....  1
Revision History ..... 2
Specifications ..... 3
$\pm 15$ V Dual Supply ..... 3
$\pm 20$ V Dual Supply ..... 4
12 V Single Supply .....  5
36 V Single Supply ..... 6
Continuous Current per Channel, Sx or D ..... 7
REVISION HISTORY
12/2020—Rev. 0 to Rev. A
Changes to Leakage Currents Parameter, Table 1 .....  3
Changes to Leakage Currents Parameter, Table 2 ..... 4
Changes to Leakage Currents Parameter, Table 3 ..... 5
Changes to Leakage Currents Parameter, Table 4 ..... 6
Updated Outline Dimensions. ..... 19
Change to Ordering Guide ..... 19
Absolute Maximum Ratings .....  8
ESD Caution .....  8
Pin Configurations and Function Descriptions .....  9
Truth Table .....  9
Typical Performance Characteristics ..... 10
Test Circuits ..... 14
Terminology. ..... 16
Trench Isolation ..... 17
Applications Information ..... 18
Outline Dimensions ..... 19
Ordering Guide ..... 19

## 5/2011—Revision 0: Initial Version

## SPECIFICATIONS

$\pm 15$ V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

| Parameter | $25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance, Ron <br> On-Resistance Match Between Channels, $\Delta$ Ron <br> On-Resistance Flatness, Relation) | $\begin{aligned} & 160 \\ & 200 \\ & 4.5 \\ & 8 \\ & 38 \\ & 50 \end{aligned}$ | $250$ <br> 9 <br> 65 | $V_{D D}$ to $V_{S S}$ <br> 280 <br> 10 <br> 70 | $\checkmark$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, $I_{0}$ (Off) <br> Channel On Leakage, Io, Is (On) | $\begin{aligned} & 0.01 \\ & 0.1 \\ & 0.01 \\ & 0.1 \\ & 0.02 \\ & 0.2 \\ & \hline \end{aligned}$ | 0.2 0.4 0.5 | 0.4 <br> 2.4 $2.8$ | nA typ <br> nA max <br> nA typ <br> nA max <br> nA typ <br> nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}, \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {, see Figure } 26 \end{aligned}$ |
| DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbf{N H}}$ Input Low Voltage, ViNL Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$ | $\begin{aligned} & 0.002 \\ & 3 \end{aligned}$ |  | $\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$ | $V$ min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A} \max$ <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ <br> Transition Time, $\mathrm{t}_{\text {transition }}$ <br> ton (EN) <br> $\mathrm{t}_{\text {off }}$ (EN) <br> Break-Before-Make Time Delay, to <br> Charge Injection, Qins <br> Off Isolation <br> Channel-to-Channel Crosstalk <br> -3 dB Bandwidth <br> Insertion Loss <br> $\mathrm{C}_{\mathrm{s}}$ (Off) <br> $\mathrm{C}_{\mathrm{D}}$ (Off) <br> $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$ | $\begin{aligned} & 175 \\ & 230 \\ & 155 \\ & 205 \\ & 150 \\ & 175 \\ & 80 \\ & \\ & -0.6 \\ & -80 \\ & -80 \\ & 136 \\ & -6.8 \\ & 3 \\ & 26 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 285 \\ & 255 \\ & 200 \end{aligned}$ | 320 <br> 285 <br> 215 <br> 30 | ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ dB typ pF typ pF typ pF typ |  |
| POWER REQUIREMENTS <br> ID <br> Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ | $\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$ |  | 70 <br> 1 $\pm 9 / \pm 22$ | $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> $\checkmark$ min/max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V} \end{aligned}$ |

[^0]
## ADG5204

## $\pm 20$ V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

| Parameter | $25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance, Ron <br> On-Resistance Match Between Channels, $\Delta$ Ron <br> On-Resistance Flatness, Relation) | $\begin{aligned} & 140 \\ & 160 \\ & 4.5 \\ & 8 \\ & 33 \\ & 35 \\ & 45 \end{aligned}$ | $200$ <br> 9 <br> 55 | $V_{D D}$ to $V_{S S}$ <br> 230 <br> 10 <br> 60 | V max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {, see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, $I_{D}$ (Off) <br> Channel On Leakage, Io, Is (On) | 0.01 <br> 0.1 <br> 0.01 <br> 0.1 <br> 0.02 <br> 0.2 | $\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.5 \\ & \hline \end{aligned}$ | 0.4 $2.4$ $2.8$ | nA typ <br> nA max <br> nA typ <br> nA max <br> nA typ <br> nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V}, \text { see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {, see Figure } 26 \end{aligned}$ |
| DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{NH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{NH}}$ Digital Input Capacitance, CIN | $\begin{aligned} & 0.002 \\ & 3 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$ | $\vee$ min <br> $\checkmark$ max <br> $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ <br> Transition Time, ttransition <br> ton (EN) <br> toff (EN) <br> Break-Before-Make Time Delay, $\mathrm{t}_{\mathrm{D}}$ <br> Charge Injection, Qinj Off Isolation <br> Channel-to-Channel Crosstalk -3 dB Bandwidth Insertion Loss <br> $\mathrm{C}_{\mathrm{s}}$ (Off) <br> $C_{D}$ (Off) <br> $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On) | $\begin{aligned} & 160 \\ & 215 \\ & 150 \\ & 185 \\ & 150 \\ & 175 \\ & 75 \\ & \\ & -0.6 \\ & -80 \\ & -80 \\ & 150 \\ & -6 \\ & 3 \\ & 26 \\ & 30 \end{aligned}$ | $\begin{aligned} & 260 \\ & 225 \\ & 195 \end{aligned}$ | $\begin{aligned} & 290 \\ & 255 \\ & 210 \\ & 30 \end{aligned}$ | ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ <br> dB typ <br> MHz typ <br> dB typ <br> pF typ <br> pF typ <br> pF typ |  |
| POWER REQUIREMENTS lod Iss $V_{D D} / V_{S S}$ | $\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$ |  | $\begin{aligned} & 110 \\ & 1 \\ & \pm 9 / \pm 22 \end{aligned}$ | $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> V min/max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{GND}=0 \mathrm{~V} \end{aligned}$ |

[^1]
## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

| Parameter | $25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance, Ron <br> On-Resistance Match Between Channels, $\Delta$ Ron <br> On-Resistance Flatness, Relation) | $\begin{aligned} & 340 \\ & 500 \\ & 5 \\ & 20 \\ & 145 \\ & 280 \\ & \hline \end{aligned}$ | 610 <br> 21 <br> 335 | $\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V} D \mathrm{DD} \\ & 700 \\ & 22 \\ & 370 \end{aligned}$ | $\vee$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {, see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{sS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, $I_{D}$ (Off) <br> Channel On Leakage, Io, Is (On) | $\begin{aligned} & 0.01 \\ & 0.1 \\ & 0.01 \\ & 0.1 \\ & 0.02 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 2.4 \\ & 2.8 \end{aligned}$ | nA typ nA max nA typ nA max nA typ nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 10 \mathrm{~V} \text {, see Figure } 26 \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\mathrm{NH}}$ <br> Input Low Voltage, ViNL <br> Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ <br> Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$ | $\begin{aligned} & 0.002 \\ & 3 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$ | $\vee$ min <br> $V$ max <br> $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ <br> Transition Time, ttransition <br> ton (EN) <br> $\mathrm{t}_{\text {off }}$ (EN) <br> Break-Before-Make Time Delay, $t_{D}$ <br> Charge Injection, Qins <br> Off Isolation <br> Channel-to-Channel Crosstalk <br> -3 dB Bandwidth <br> Insertion Loss <br> $\mathrm{C}_{\mathrm{S}}$ (Off) <br> $\mathrm{C}_{\mathrm{D}}$ (Off) <br> $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$ | $\begin{aligned} & 240 \\ & 350 \\ & 250 \\ & 335 \\ & 160 \\ & 195 \\ & 140 \\ & \\ & -1.2 \\ & -80 \\ & -80 \\ & 106 \\ & -11 \\ & 3.5 \\ & 29 \\ & 33 \\ & \hline \end{aligned}$ | $\begin{aligned} & 445 \\ & 420 \\ & 220 \end{aligned}$ | 515 <br> 485 <br> 240 <br> 60 | ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ dB typ pF typ pF typ pF typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V}, \text { see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} \text {, see Figure } 30 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {, see Figure } 32 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \hline \end{aligned}$ |
| POWER REQUIREMENTS <br> lod <br> $V_{D D}$ | 40 |  | $\begin{aligned} & 65 \\ & 9 / 40 \end{aligned}$ | $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> V min/max | $\begin{aligned} & \mathrm{V} \mathrm{VD}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V} \end{aligned}$ |

[^2]
## ADG5204

## 36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

| Parameter | $25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance, Ron <br> On-Resistance Match Between Channels, $\Delta$ Ron <br> On-Resistance Flatness, Rflaton) | $\begin{aligned} & 150 \\ & 170 \\ & 4.5 \\ & 8 \\ & 35 \\ & 50 \end{aligned}$ | 215 <br> 9 <br> 60 | 0 V to $\mathrm{V}_{\mathrm{DD}}$ <br> 245 <br> 10 <br> 65 | $\checkmark$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}, \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V} \mathrm{~S}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage, Is (Off) <br> Drain Off Leakage, $I_{D}$ (Off) <br> Channel On Leakage, Io, Is (On) | $\begin{aligned} & 0.01 \\ & 0.1 \\ & 0.01 \\ & 0.1 \\ & 0.02 \\ & 0.2 \end{aligned}$ | 0.2 0.4 0.5 | $\begin{aligned} & 0.4 \\ & 2.4 \\ & 2.8 \\ & \hline \end{aligned}$ | nA typ <br> nA max <br> nA typ <br> nA max <br> nA typ <br> nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 30 \mathrm{~V} \text {, see Figure } 26 \end{aligned}$ |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\text {INH }}$ <br> Input Low Voltage, $\mathrm{V}_{\text {INL }}$ <br> Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{NH}}$ <br> Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$ | $0.002$ |  | $\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$ | $\vee$ min <br> $V$ max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ <br> Transition Time, ttransition <br> ton (EN) <br> toff (EN) <br> Break-Before-Make Time Delay, $t_{D}$ <br> Charge Injection, QinJ <br> Off Isolation <br> Channel-to-Channel Crosstalk <br> -3 dB Bandwidth <br> Insertion Loss <br> $\mathrm{C}_{\mathrm{s}}$ (Off) <br> $C_{D}$ (Off) <br> $C_{D}, C_{s}(O n)$ | $\begin{aligned} & 180 \\ & 250 \\ & 170 \\ & 220 \\ & 170 \\ & 210 \\ & 80 \\ & \\ & -0.6 \\ & -80 \\ & -80 \\ & 136 \\ & -6.7 \\ & 3 \\ & 26 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 275 \\ & 251 \\ & 215 \end{aligned}$ | $\begin{aligned} & 305 \\ & 285 \\ & 220 \\ & 30 \end{aligned}$ | ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ dB typ pF typ pF typ pF typ |  |
| POWER REQUIREMENTS lod $V_{D D}$ | $\begin{aligned} & 85 \\ & 100 \end{aligned}$ |  | $\begin{aligned} & 130 \\ & 9 / 40 \end{aligned}$ | $\mu A$ typ <br> $\mu \mathrm{A}$ max <br> V min/max | $\begin{aligned} & \mathrm{V} \mathrm{DD}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$ |

[^3]
## CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5.

| Parameter | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| CONTINUOUS CURRENT, Sx OR D PINS |  |  |  |  |
| $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$ |  |  |  |  |
| $\operatorname{TSSOP}\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$ | 24.5 | 7.5 | 2.8 | mA max |
| LFCSP ( $\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$ ) | 35.7 | 7.7 | 2.8 | mA max |
| $\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$ ) | 26 | 7.5 | 2.8 | mA max |
| LFCSP ( $\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$ ) | 37 | 7.7 | 2.8 | mA max |
| $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$ ) | 18 | 7 | 2.8 | mA max |
| LFCSP ( $\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$ ) | 28 | 7.7 | 2.8 | mA max |
| $\mathrm{V}_{\text {DD }}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ |  |  |  |  |
| TSSOP ( $\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$ ) | 30 | 7.7 | 2.8 | mA max |
| LFCSP ( $\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$ ) | 41 | 7.7 | 2.8 | mA max |

## ADG5204

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 6.

| Parameter | Rating |
| :---: | :---: |
| $V_{\text {DD }}$ to V $\mathrm{V}_{S S}$ | 48 V |
| $V_{\text {DD }}$ to GND | -0.3 V to +48 V |
| Vss to GND | +0.3 V to -48 V |
| Analog Inputs ${ }^{1}$ | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Digital Inputs ${ }^{1}$ | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first |
| Peak Current, Sx or D Pins | 81 mA (pulsed at 1 ms , $10 \%$ duty cycle maximum) |
| Continuous Current, Sx or D ${ }^{2}$ | Data + 15\% |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Thermal Impedance, $\theta_{\mathrm{JA}}$ |  |
| 16-Lead TSSOP, $\theta_{\mathrm{JA}}$ Thermal Impedance (4-Layer Board) | $112.6^{\circ} \mathrm{C} / \mathrm{W}$ |
| 16-Lead LFCSP, $\theta_{\mathrm{JA}}$ Thermal Impedance (4-Layer Board) | $30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Reflow Soldering Peak Temperature, Pb Free | $260(+0 /-5)^{\circ} \mathrm{C}$ |

[^4]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

| ESD (electrostatic discharge) sensitive device. |
| :--- | :--- |
| Charged devices and circuit boards can discharge |
| without detection. Although this product features |
| patented or proprietary protection circuitry, damage |
| may occur on devices subjected to high energy ESD. |
| Therefore, proper ESD precautions should be taken to |
| avoid performance degradation or loss of functionality. |

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 2. TSSOP Pin Configuration


NOTES

1. NC = NO CONNECT.
2. EXPOSED PAD TIED TO SUBSTRATE, $\mathrm{v}_{\text {SS }}$.

Figure 3. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

| Pin No. |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| TSSOP | LFCSP |  |  |
| 1 | 15 | A0 | Logic Control Input. |
| 2 | 16 | EN | Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches. |
| 3 | 1 | $\mathrm{V}_{\text {ss }}$ | Most Negative Power Supply Potential. |
| 4 | 3 | S1 | Source Terminal. Can be an input or an output. |
| 5 | 4 | S2 | Source Terminal. Can be an input or an output. |
| 6 | 6 | D | Drain Terminal. Can be an input or an output. |
| 7 to 9 | 2, 5, 7, 8, 13 | NC | No Connect. These pins are open. |
| 10 | 9 | S4 | Source Terminal. Can be an input or an output. |
| 11 | 10 | S3 | Source Terminal. Can be an input or an output. |
| 12 | 11 | $V_{\text {DD }}$ | Most Positive Power Supply Potential. |
| 13 | 12 | GND | Ground (0 V) Reference. |
| 14 | 14 | A1 | Logic Control Input. |
| $N / A^{1}$ | EP | Exposed Pad | Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{\mathrm{ss}}$. |

${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

## TRUTH TABLE

Table 8.

| EN | A1 | A0 | S1 | S2 | S3 | S4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $X^{1}$ | $X^{1}$ | 0 | Off | Off | Off |
| 1 | 0 | 1 | On | Off | Off | Off |
| 1 | 1 | 0 | Off | On | Off | Off |
| 1 | 1 | 1 | Off | Off | On | Off |
| 1 | 1 | Off | On |  |  |  |

[^5]
## ADG5204

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. Ron as a Function of $V_{D}$ or $V_{S}$, Dual Supply


Figure 5. Ron as a Function of $V_{D}$ or $V_{s}$, Dual Supply


Figure 6. Ron as a Function of $V_{D}$ or $V_{s,}$, Single Supply


Figure 7. Ron as a Function of $V_{D}$ or $V_{s}$, Single Supply


Figure 8. Ron as a Function of $V_{D}$ or $V_{S}$, for Different Temperatures, $\pm 15$ V Dual Supply


Figure 9. Ron as a Function of $V_{D}$ or $V_{s}$, for Different Temperatures, $\pm 20$ V Dual Supply


Figure 10. Ron as a Function of $V_{D}$ or $V_{S}$ for Different Temperatures, 12 V Single Supply


Figure 11. RoN as a Function of $V_{D}$ or $V_{S}$ for Different Temperatures,
36 V Single Supply


Figure 12. Leakage Current vs. Temperature, $\pm 15$ V Dual Supply


Figure 13. Leakage Current vs. Temperature, $\pm 20$ V Dual Supply


Figure 14. Leakage Current vs. Temperature, 12 V Single Supply


Figure 15. Leakage Current vs. Temperature, 36 V Single Supply

## ADG5204



Figure 16. Off Isolation vs. Frequency, $\pm 15$ V Dual Supply


Figure 17. Crosstalk vs. Frequency, $\pm 15$ V Dual Supply


Figure 18. Charge Injection vs. Source Voltage


Figure 19. Transition Time vs. Temperature


Figure 20. ACPSRR vs. Frequency, $\pm 15$ V Dual Supply


Figure 21. Capacitance vs. Source Voltage, Dual Supply


Figure 22. Bandwidth

## ADG5204

## TEST CIRCUITS



Figure 23. Off Leakage


Figure 24. On Resistance


Figure 25. Off Isolation


Figure 26. On Leakage


Figure 27. Bandwidth


CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathbf{V}_{\text {OUT }}}{\mathbf{V}_{\mathbf{S}}}$
Figure 28. Channel-to-Channel Crosstalk


Figure 31. Enable-to-Output Switching Delay


Figure 32. Charge Injection

## ADG5204

## TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.
$V_{D}, V_{s}$
The analog voltage on Terminal D and Terminal S .
$\mathbf{R O N}_{\text {ON }}$
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {flat(ON) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

## IS (Off)

The source leakage current with the switch off.

## $I_{D}$ (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}$ (On)
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$
The input current of the digital input.

## $\mathrm{C}_{\mathrm{s}}$ (Off)

The off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{d}}$ (Off)
The off switch drain capacitance, which is measured with reference to ground.
$C_{D}(O n), C_{s}(O n)$
The on switch capacitance, which is measured with reference to ground.

## Cin

The digital input capacitance.
$t_{\text {transition }}$
The delay time between the $50 \%$ and $90 \%$ points of the digital input and switch-on condition when switching from one address state to another.
$t_{\text {on }}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 31.
toff (EN)
The delay between applying the digital control input and the output switching off. See Figure 31.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.
ACPSRR (AC Power Supply Rejection Ratio)
The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pins to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

## TRENCH ISOLATION

In the ADG5204, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. By using trench isolation, this diode is removed, and the result is a latch-up proof switch.


Figure 33. Trench Isolation

## ADG5204

## APPLICATIONS INFORMATION

The ADG52xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5204 high voltage multiplexer allows single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

## OUTLINE DIMENSIONS



Figure 34. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 35. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG5204BRUZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead Thin Shrink Small Outline Package [TSSOP] | RU-14 |
| ADG5204BRUZ-RL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 14-Lead Thin Shrink Small Outline Package [TSSOP] | RU-14 |
| ADG5204BCPZ-RL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 -Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-17 |

[^6]
## ADG5204

## NOTES

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ


[^0]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]:    ${ }^{1}$ Overvoltages at the $S x$ and $D$ pins are clamped by internal diodes. Limit current to the maximum ratings given.
    ${ }^{2}$ See Table 5.

[^5]:    ${ }^{1} \mathrm{X}$ is don't care.

[^6]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

