

High Voltage, Latch-Up Proof, 4-Channel Multiplexer

ADG5204

FEATURES

Latch-up proof
3 pF off source capacitance
26 pF off drain capacitance
-0.6 pC charge injection
Low leakage: 0.4 nA maximum at 85°C
±9 V to ±22 V dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at ±15 V, ±20 V, +12 V, and +36 V
V_{SS} to V_{DD} analog signal range

APPLICATIONS

Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADG5204 is a complementary metal oxide semiconductor (CMOS) analog multiplexer, comprising four single channels.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed together with high signal bandwidth make the ADG5204 suitable for video signal switching.

The ADG5204 is designed on a trench process, which guards against latch-up. A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.

The ADG5204 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Trench Isolation Guards Against Latch-Up.
 A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
- 2. Ultralow Capacitance and <1 pC Charge Injection.
- 3. Dual-Supply Operation.

 For applications where the analog signal is bipolar, the ADG5204 can be operated from dual supplies up to ±22 V.
- Single-Supply Operation.
 For applications where the analog signal is unipolar, the ADG5204 can be operated from a single rail power supply up to 40 V.
- 5. 3 V Logic-Compatible Digital Inputs. $V_{INH} = 2.0 \text{ V}, V_{INL} = 0.8 \text{ V}.$
- 6. No V_L Logic Power Supply Required.

TABLE OF CONTENTS

Features	l
Applications	1
Functional Block Diagram	
General Description	
Product Highlights	
Revision History	
Specifications	3
±15 V Dual Supply	3
±20 V Dual Supply	4
12 V Single Supply	5
36 V Single Supply	6
Continuous Current per Channel, Sx or D	

Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Truth Table	9
Typical Performance Characteristics	. 10
Test Circuits	. 14
Terminology	. 16
Trench Isolation	. 17
Applications Information	. 18
Outline Dimensions	. 19
Ordering Guide	. 19

REVISION HISTORY

12/2020—Rev. 0 to Rev. A

Changes to Leakage Currents Parameter, Table 1	3
Changes to Leakage Currents Parameter, Table 2	4
Changes to Leakage Currents Parameter, Table 3	5
Changes to Leakage Currents Parameter, Table 4	6
Updated Outline Dimensions	19
Change to Ordering Guide	19

5/2011—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V max	
On Resistance, R _{ON}	160			Ωtyp	$V_s = \pm 10 \text{ V}$, $I_s = -1 \text{ mA}$, see Figure 24
,	200	250	280	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match	4.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
Between Channels, ΔR _{ON}	1.5			11 ()	V3 210 V/15 1 1111/
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	38			Ωtyp	$V_{s} = \pm 10 \text{ V}, I_{s} = -1 \text{ mA}$
	50	65	70	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I _s (Off)	0.01			nA typ	$V_S = V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 23}$
200.00 01. 2001.0ge, 13 (01.1)		0.3	0.4	* *	$VS = VS = \pm 10 \text{ V}, VD = \pm 10 \text{ V}, \text{ see Figure 23}$
2 : 0(1) 1 1 (0(0)	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 23}$
	0.1	0.4	2.4	nA max	
Channel On Leakage, ID, IS (On)	0.02			nA typ	$V_S = V_D = \pm 10 \text{ V}$, see Figure 26
	0.2	0.5	2.8	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μΑ typ	$V_{IN} = V_{GND}$ or V_{DD}
•			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	175			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
•	230	285	320	ns max	$V_s = 10 \text{ V}$, see Figure 29
ton (EN)	155			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	205	255	285	ns max	$V_s = 10 \text{ V}$, see Figure 31
t _{off} (EN)	150			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	175	200	215	ns max	V _s = 10 V, see Figure 31
Break-Before-Make Time Delay, t _D	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Dream Derore mane mine Delay, es			30	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$, see Figure 30
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 32}$
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 25
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
-3 dB Bandwidth	136			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 27
Insertion Loss	-6.8			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 27
C _s (Off)	3			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	26			pF typ	$V_S = 0 \text{ V, } I = 1 \text{ Will } Z$ $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	30			pF typ	$V_S = 0 \text{ V, } I = 1 \text{ WHz}$ $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS	30			pi typ	$V_S = 0 \text{ V}, 1 = 1 \text{ MHZ}$ $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
	A.F.			11A tom	
I_{DD}	45		70	μA typ	Digital inputs = 0 V or V _{DD}
	55		70	μA max	Distribution of a CV a CV
I _{SS}	0.001		1	μA typ	Digital inputs = 0 V or V _{DD}
V 0/			1	μA max	CND OV
V_{DD}/V_{SS}			±9/±22	V min/max	GND = 0 V

 $^{^{\}rm 1}$ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V max	
On Resistance, Ron	140			Ωtyp	$V_s = \pm 15 \text{ V}$, $I_s = -1 \text{ mA}$, see Figure 24
	160	200	230	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	4.5			Ω typ	$V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	33			Ωtyp	$V_s = \pm 15 \text{ V}, I_s = -1 \text{ mA}$
	45	55	60	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	0.01			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 23}$
	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 23}$
	0.1	0.4	2.4	nA max	
Channel On Leakage, ID, Is (On)	0.02			nA typ	$V_S = V_D = \pm 15 \text{ V}$, see Figure 26
-	0.2	0.5	2.8	nA max	_
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	160			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	215	260	290	ns max	V _s = 10 V, see Figure 29
t _{on} (EN)	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	185	225	255	ns max	$V_s = 10 \text{ V}$, see Figure 31
toff (EN)	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	175	195	210	ns max	$V_s = 10 \text{ V}$, see Figure 31
Break-Before-Make Time Delay, t _D	75			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			30	ns min	$V_{S1} = V_{S2} = 10 \text{ V, see Figure 30}$
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 32
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 25
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
−3 dB Bandwidth	150			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 27
Insertion Loss	-6			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 27
C _s (Off)	3			pF typ	$V_s = 0 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)	26			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D , C _s (On)	30			pF typ	$V_s = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I_{DD}	50			μA typ	Digital inputs = 0 V or V_{DD}
	70		110	μA max	
	0.004			μA typ	Digital inputs = 0 V or V_{DD}
Iss	0.001		1	μΑ typ μΑ max	

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V max	
On Resistance, Ron	340			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA, see Figure } 24$
	500	610	700	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	5			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V}, I_s = -1 \text{ mA}$
	20	21	22	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	145			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	280	335	370	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 23}$
	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 23}$
	0.1	0.4	2.4	nA max	
Channel On Leakage, I _D , I _S (On)	0.02			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$, see Figure 26
	0.2	0.5	2.8	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	240			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	350	445	515	ns max	$V_s = 8 \text{ V}$, see Figure 29
t _{on} (EN)	250			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	335	420	485	ns max	$V_s = 8 \text{ V}$, see Figure 31
t _{off} (EN)	160			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	195	220	240	ns max	$V_s = 8 \text{ V}$, see Figure 31
Break-Before-Make Time Delay, t _D	140			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			60	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$, see Figure 30
Charge Injection, Q _{INJ}	-1.2			pC typ	$V_s = 6 \text{ V}, R_s = 0 \Omega, C_L = 1 \text{ nF, see Figure 32}$
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 25
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
–3 dB Bandwidth	106			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 27
Insertion Loss	-11			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 27
C _s (Off)	3.5			pF typ	$V_{s} = 6 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	29			pF typ	$V_{s} = 6 \text{ V}, f = 1 \text{ MHz}$
C_D , C_S (On)	33			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I_{DD}	40			μA typ	Digital inputs = 0 V or V _{DD}
			65	μA max	
$V_{ extsf{DD}}$			9/40	V min/max	$GND = 0 V, V_{SS} = 0 V$

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V max	
On Resistance, Ron	150			Ω typ	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -1 \text{ mA, see Figure } 24$
	170	215	245	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	4.5			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	35			Ω typ	$V_s = 0 \text{ V to } 30 \text{ V}, I_s = -1 \text{ mA}$
	50	60	65	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I₅ (Off)	0.01			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}, \text{ see Figure 23}$
	0.1	0.2	0.4	nA max	
Drain Off Leakage, I _D (Off)	0.01			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}, \text{ see Figure 23}$
	0.1	0.4	2.4	nA max	
Channel On Leakage, ID, Is (On)	0.02			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$, see Figure 26
	0.2	0.5	2.8	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
•			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	180			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	250	275	305	ns max	V _s = 18 V, see Figure 29
ton (EN)	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	220	251	285	ns max	V _s = 18 V, see Figure 31
t _{OFF} (EN)	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	210	215	220	ns max	V _s = 18 V, see Figure 31
Break-Before-Make Time Delay, t _D	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			30	ns min	$V_{S1} = V_{S2} = 18 \text{ V}$, see Figure 30
Charge Injection, Q _{INJ}	-0.6			pC typ	$V_s = 18 \text{ V}, R_s = 0 \Omega, C_L = 1 \text{ nF, see Figure 32}$
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 25
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 28
−3 dB Bandwidth	136			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 27
Insertion Loss	-6.7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 27
C _s (Off)	3			pF typ	$V_{s} = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	26			pF typ	$V_s = 18 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	30			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					V _{DD} = 39.6 V
I _{DD}	85			μA typ	Digital inputs = 0 V or V _{DD}
	100		130	μA max	
$V_{ extsf{DD}}$			9/40	V min/max	$GND = 0 V, V_{SS} = 0 V$

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR D PINS				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	24.5	7.5	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	35.7	7.7	2.8	mA max
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	26	7.5	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	37	7.7	2.8	mA max
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	18	7	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	28	7.7	2.8	mA max
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	30	7.7	2.8	mA max
LFCSP ($\theta_{JA} = 30.4$ °C/W)	41	7.7	2.8	mA max

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V_{SS} to GND	+0.3 V to -48 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Peak Current, Sx or D Pins	81 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or D ²	Data + 15%
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
16-Lead TSSOP, θ _{JA} Thermal Impedance (4-Layer Board)	112.6°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance (4-Layer Board)	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C

 $^{^{\}rm 1}$ Overvoltages at the Sx and D pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

F	Pin No.							
TSSOP	LFCSP	Mnemonic	Description					
1	15	A0	Logic Control Input.					
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.					
3	1	V_{SS}	Most Negative Power Supply Potential.					
4	3	S1	Source Terminal. Can be an input or an output.					
5	4	S2	Source Terminal. Can be an input or an output.					
6	6	D	Drain Terminal. Can be an input or an output.					
7 to 9	2, 5, 7, 8, 13	NC	No Connect. These pins are open.					
10	9	S4	Source Terminal. Can be an input or an output.					
11	10	S3	Source Terminal. Can be an input or an output.					
12	11	V_{DD}	Most Positive Power Supply Potential.					
13	12	GND	Ground (0 V) Reference.					
14	14	A1	Logic Control Input.					
N/A ¹	EP	Exposed Pad	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V _{SS} .					

¹ N/A means not applicable.

TRUTH TABLE

Table 8.

								
EN	A1	A0	S1	S2	S3	S4		
0	X ¹	X ¹	Off	Off	Off	Off		
1	0	0	On	Off	Off	Off		
1	0	1	Off	On	Off	Off		
1	1	0	Off	Off	On	Off		
1	1	1	Off	Off	Off	On		

¹ X is don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. R_{ON} as a Function of V_D or V_S , Dual Supply

Figure 5. R_{ON} as a Function of V_D or V_S , Dual Supply

Figure 6. R_{ON} as a Function of V_D or V_S , Single Supply

Figure 7. R_{ON} as a Function of V_D or V_S , Single Supply

Figure 8. R_{ON} as a Function of V_D or V_S , for Different Temperatures, ± 15 V Dual Supply

Figure 9. R_{ON} as a Function of V_D or V_S , for Different Temperatures, $\pm 20 \text{ V}$ Dual Supply

Figure 10. R_{ON} as a Function of V_D or V_S for Different Temperatures, 12 V Single Supply

Figure 11. R_{ON} as a Function of V_D or V_S for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Current vs. Temperature, ±15 V Dual Supply

Figure 13. Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Current vs. Temperature, 12 V Single Supply

Figure 15. Leakage Current vs. Temperature, 36 V Single Supply

Figure 16. Off Isolation vs. Frequency, ±15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ±15 V Dual Supply

Figure 18. Charge Injection vs. Source Voltage

Figure 19. Transition Time vs. Temperature

Figure 20. ACPSRR vs. Frequency, ±15 V Dual Supply

Figure 21. Capacitance vs. Source Voltage, Dual Supply

Figure 22. Bandwidth

TEST CIRCUITS

Figure 23. Off Leakage

Figure 24. On Resistance

Figure 25. Off Isolation

Figure 26. On Leakage

Figure 27. Bandwidth

Figure 28. Channel-to-Channel Crosstalk

Figure 29. Address to Output Switching Times

Figure 30. Break-Before-Make Time Delay, t_D

Figure 31. Enable-to-Output Switching Delay

Figure 32. Charge Injection

TERMINOLOGY

 I_{DD}

The positive supply current.

 I_{ss}

The negative supply current.

VD, Vs

The analog voltage on Terminal D and Terminal S.

RON

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 \mathbf{V}_{INII}

The maximum input voltage for Logic 0.

 V_{INH}

The minimum input voltage for Logic 1.

IINL, IINH

The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

CD (Off)

The off switch drain capacitance, which is measured with reference to ground.

 C_D (On), C_S (On)

The on switch capacitance, which is measured with reference to ground.

 C_{IN}

The digital input capacitance.

 $\mathbf{t}_{\text{TRANSITION}}$

The delay time between the 50% and 90% points of the digital input and switch-on condition when switching from one address state to another.

ton (EN)

The delay between applying the digital control input and the output switching on. See Figure 31.

t_{off} (EN)

The delay between applying the digital control input and the output switching off. See Figure 31.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

ACPSRR (AC Power Supply Rejection Ratio)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pins to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5204, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. By using trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 33. Trench Isolation

APPLICATIONS INFORMATION

The ADG52xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5204 high voltage multiplexer allows single-supply operation from 9 V to 40 V and dual-supply operation from ± 9 V to ± 22 V.

OUTLINE DIMENSIONS

Figure 34. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

Figure 35. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-17) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5204BRUZ	−40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG5204BRUZ-RL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG5204BCPZ-RL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17

 $^{^{1}}$ Z = RoHS Compliant Part.

ADG5204

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX
ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
LTC4305IDHD#PBF CD4053BPWRG4 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112
74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4067D.112
74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ
ADG1438BRUZ AD7506JNZ