FEATURES

Latch-up proof
3.5 pF off source capacitance

Off drain capacitance
ADG5206: 64 pF
ADG5207: 33 pF
0.35 pC typical charge injection
$\pm 0.02 \mathrm{nA}$ on channel leakage
Low on resistance: 155Ω typical
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
$V_{s s}$ to $V_{D D}$ analog signal range
Human body model (HBM) ESD rating
ADG5206: 8 kV all pins
ADG5207: 8 kV I/O port to supplies

APPLICATIONS

Automatic test equipment
Data acquisition
Instrumentation
Avionics
Battery monitoring
Communication systems

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG5206 and ADG5207 are monolithic CMOS analog multiplexers comprising 16 single channels and 8 differential channels, respectively. The ADG5206 switches one of sixteen inputs to a common output, as determined by the 4 -bit binary address lines, A0, A1, A2, and A3. The ADG5207 switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines, A0, A1, and A2.

An EN input on both devices enables or disables the device. When EN is low, the device is disabled and all channels switch off. The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make these devices suitable for video signal switching.

Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply 6
36 V Single Supply 8
Continuous Current per Channel, Sx, D, or Dx 10
REVISION HISTORY
5/13-Rev. 0 to Rev. A
Added 32-Lead LFCSP Universal
Changes to Features Section and Product Highlights Section. 1
Moved Continuous Current per Channel, Sx, D, or Dx Section,Table 5, and Table 610
Changes to Table 7 11
Changes to Figure 3 12
Changes to Figure 5 13
Changes to Figure 30, Figure 32, and Figure 33 22
Absolute Maximum Ratings 11
ESD Caution 11
Pin Configurations and Function Descriptions 12
Typical Performance Characteristics 16
Test Circuits 21
Terminology 23
Applications Information 24
Trench Isolation 24
Outline Dimensions 25
Ordering Guide 25

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

${ }^{1}$ The off channel leakage delta is calculated using the maximum of $\mathrm{V}_{S}=+10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$, or $\mathrm{V}_{S}=-10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}$.
${ }^{2}$ The on channel leakage delta is calculated using the maximum of $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$.
${ }^{3}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments	
ANALOG SWITCH							
Analog Signal Range	130			$V_{\text {do }}$ to $\mathrm{V}_{\text {Ss }}$	V		
On Resistance, Ron			Ω typ		$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} ;$ see Figure 32		
	160	180		200	230	Ω max	$\mathrm{V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-18 \mathrm{~V}$
On-Resistance Match Between Channels, \triangle Ron	4				$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$	
	12	13	14	15	Ω max		
On-Resistance Flatness, Rflat (on)	35				Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$	
	50	58	65	75	Ω max		

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
LEAKAGE CURRENTS						$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{5 S}=-22 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.005				nA typ	$V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} ;$ see Figure 33
	± 0.1	± 0.15	± 0.2	± 0.4	nA max	
Match Between Channels, Δ Leakage, Is (Off) ${ }^{1}$	0.01			0.015	nA typ	
Drain Off Leakage, $I_{\text {D }}$ (Off)						$V_{S}= \pm 15 \mathrm{~V}, V_{D}=\mp 15 \mathrm{~V} ;$ see Figure 33
ADG5206	± 0.02				nA typ	
	± 0.1	± 0.25	± 0.6	± 3.3	nA max	
ADG5207	± 0.02				nA typ	
	± 0.1	± 0.25	± 0.4	± 1.7	nA max	
Match Between Channels, Δ Leakage, ID (Off), ADG5207 Only	0.015			0.015	nA typ	
Channel On Leakage, $\mathrm{ID}_{\mathrm{D}}(\mathrm{On})$, $\mathrm{I}_{\text {(}}(\mathrm{On})$						$\begin{aligned} & V_{S}=V_{D}= \pm 15 \mathrm{~V} ; \\ & \text { see Figure } 34 \end{aligned}$
ADG5206	± 0.02				nA typ	
	± 0.1	± 0.25	± 0.6	± 3.3	nA max	
ADG5207	± 0.02				nA typ	
	± 0.1	± 0.2	± 0.4	± 1.7	$n A \max$	
Match Between Channels, Δ Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{S}}(\mathrm{On})^{2}$	0.01			0.03	nA typ	
DIGITAL INPUTS						
Input High Voltage, $\mathrm{V}_{\text {INH }}$				2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$				0.8	V max	
Input Current, linl or linh	± 0.002				$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
				± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{ClN}_{\text {IN }}$	3				pF typ	
DYNAMIC CHARACTERISTICS ${ }^{3}$						
Transition Time, tiransition	185				ns typ	$\mathrm{RL}=300 \Omega, \mathrm{CL}^{2}=35 \mathrm{pF}$
	240	270	290	320	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 35
ton (EN)	175				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	230	245	255	270	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 36
toff (EN)	135				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	185	205	220	245	$n \mathrm{nmax}$	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 36
Break-Before-Make Time Delay, t_{D}	75				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
				27	ns min	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}^{2} 2=10 \mathrm{~V}$; see Figure 37
Charge Injection, Qinj	0.45				pC typ	$V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ $\text { see Figure } 38$
	± 4			± 4	pC typ	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$
Off Isolation	-90				dB typ	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 39 \end{aligned}$
Channel-to-Channel Crosstalk	-76				dB typ	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 40 \end{aligned}$
-3 dB Bandwidth						$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 41
ADG5206	65				MHz typ	
ADG5207	145				MHz typ	
Insertion Loss	5.6				dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 41 \end{aligned}$
C_{s} (Off)	3.3				pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

${ }^{1}$ The off channel leakage delta is calculated using the maximum of $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=-15 \mathrm{~V}$, or $\mathrm{V}_{s}=-15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=+15 \mathrm{~V}$.
${ }^{2}$ The on channel leakage delta is calculated using the maximum of $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{D}}=+15 \mathrm{~V}$, or $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=-15 \mathrm{~V}$.
${ }^{3}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

[^0]
ADG5206/ADG5207

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range				OV to VDD	V	
On Resistance, Ron	140				Ω typ	$\begin{aligned} & V_{s}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} ; \\ & \text { see Figure } 32 \end{aligned}$
	170	195	215	245	Ω max	$\mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On-Resistance Match Between Channels, \triangle Ron	4				Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	12	13	14	15	Ω max	
On-Resistance Flatness, Rflat (on)	40				Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	55	63	70	80	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} ; \end{aligned}$$\text { see Figure } 33$
	± 0.005					
	± 0.1	± 0.15	± 0.2	± 0.4	$n A \max$	
Match Between Channels, Δ Leakage, $\mathrm{Is}_{\text {(}}(\mathrm{Off})^{1}$	0.01			0.015	nA typ	
Drain Off Leakage, l_{D} (Off)						$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} ; \\ & \text { see Figure } 33 \end{aligned}$
ADG5206	$\pm 0.02$$\pm 0.1$				nA typ	
		± 0.25	± 0.6	± 3.3	$n A \max$	
ADG5207	± 0.02				nA typ	
	± 0.1	± 0.25	± 0.4	± 1.7	nA max	
Match Between Channels, Δ Leakage, ID (Off), ADG5207 Only	0.015			0.015	nA typ	
Channel On Leakage, Io (On), Is (On)						$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 30 \mathrm{~V} ; \\ & \text { see Figure } 34 \end{aligned}$
ADG5206	± 0.02				nA typ	
	± 0.1	± 0.25	± 0.6	± 3.3	$n A \max$	
ADG5207	± 0.02				nA typ	
	± 0.1	± 0.2	± 0.4	± 1.7	$n A \max$	
Match Between Channels, Δ Leakage, $\mathrm{I}_{\mathrm{L}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})^{2}$	0.01			0.03	nA typ	
DIGITAL INPUTS	0.002					$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
Input High Voltage, $\mathrm{V}_{\text {INH }}$				2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$				0.8	V max	
Input Current, linL or linh					$\mu \mathrm{A}$ typ	
				± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$					pF typ	
DYNAMIC CHARACTERISTICS ${ }^{3}$						
Transition Time, trransition	225				ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	290	310	320	350	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 35
ton (EN)	215				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	265	285	285	295	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 36
toff (EN)	170				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	215	230	245	270	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 36
Break-Before-Make Time Delay, t_{D}	90				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
				28	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=18 \mathrm{~V}$; see Figure 37
Charge Injection, QiN	0.7				pC typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 38
	± 3			± 3	pC typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \end{aligned}$

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
Off Isolation	-90				dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 39
Channel-to-Channel Crosstalk	-76				dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { see Figure } 40 \end{aligned}$
-3 dB Bandwidth						$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 41
ADG5206	55				MHz typ	
ADG5207	115				MHz typ	
Insertion Loss	5.65				dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 41 \end{aligned}$
C_{s} (Off)	3.4				pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)						
ADG5206	62				pF typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5207	32				pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$						
ADG5206	66				pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5207	35				pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS						$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$
ldo	80				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	100			130	$\mu \mathrm{A}$ max	
$V_{\text {DD }}$				9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {Ss }}=0 \mathrm{~V}$

${ }^{1}$ The off channel leakage delta is calculated using the maximum of $V_{S}=1 \mathrm{~V}$ and $V_{D}=30 \mathrm{~V}$, or $V_{S}=30 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$.
${ }^{2}$ The on channel leakage delta is calculated using the maximum of $V_{S}=V_{D}=1 \mathrm{~V}$, or $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=30 \mathrm{~V}$.
${ }^{3}$ Guaranteed by design; not subject to production test.

ADG5206/ADG5207

CONTINUOUS CURRENT PER CHANNEL, Sx, D, OR Dx

Table 5. ADG5206

Parameter	$25^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR D					
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$					
TSSOP ($\theta_{\text {jA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	44	32	23	12	mA maximum
LFCSP ($\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}$)	62	42	28	13	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$					
TSSOP ($\theta_{\text {JA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	47	33	24	12	mA maximum
LFCSP ($\left.\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}\right)$	66	44	29	13	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$					
TSSOP ($\theta_{\text {JA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	31	24	19	11	mA maximum
LFCSP ($\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}$)	45	33	24	12	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$					
TSSOP ($\theta_{\text {jA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	46	33	24	12	mA maximum
LFCSP ($\left.\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}\right)$	65	43	28	13	mA maximum

Table 6. ADG5207

Parameter	$25^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx					
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$					
TSSOP ($\theta_{\text {JA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	33	25	19	11	mA maximum
LFCSP ($\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}$)	48	34	24	12	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$					
TSSOP ($\theta_{\text {jA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	35	27	20	11	mA maximum
LFCSP ($\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}$)	51	36	25	12	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$					
TSSOP ($\theta_{\text {JA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	23	19	15	12	mA maximum
LFCSP ($\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}$)	34	26	20	12	mA maximum
$V_{\text {DD }}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$					
TSSOP ($\theta_{\text {JA }}=67.7^{\circ} \mathrm{C} / \mathrm{W}$)	34	26	20	11	mA maximum
LFCSP ($\left.\theta_{\text {JA }}=27.27^{\circ} \mathrm{C} / \mathrm{W}\right)$	50	35	25	12	mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 7.

Parameter	Rating
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	48 V
VDD to GND	-0.3 V to +48 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, Sx, D, or Dx Pins ADG5206	140 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
ADG5207	105 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx, D, or Dx Pins ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
28-Lead TSSOP (4-Layer Board)	$67.7^{\circ} \mathrm{C} / \mathrm{W}$
32-Lead LFCSP (4-Layer Board)	$27.27^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
HBM ESD (ESDA/JEDEC JS-001-2011)	
ADG5206	
All Pins	8 kV
ADG5207	
I/O Port to Supplies	8 kV
I/O Port to I/O Port	2 kV
All Other Pins	8 kV

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

1. NO CONNECT. NOT INTERNALLY CONNECTED. 㞻

Figure 3. ADG5206 Pin Configuration (TSSOP)

NOTES

1. NO CONNECT. NOT INTERNALLY CONNECTED.
2. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED

Figure 4. ADG5206 Pin Configuration (LFCSP)

Table 8. ADG5206 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	31	V_{DD}	Most Positive Power Supply Potential.
2,3,13	$\begin{aligned} & 12,13,26,27, \\ & 28,30,32 \end{aligned}$	NC	No Connect. Not internally connected.
4	1	S16	Source Terminal 16. This pin can be an input or an output.
5	2	S15	Source Terminal 15. This pin can be an input or an output.
6	3	S14	Source Terminal 14. This pin can be an input or an output.
7	4	S13	Source Terminal 13. This pin can be an input or an output.
8	5	S12	Source Terminal 12. This pin can be an input or an output.
9	6	S11	Source Terminal 11. This pin can be an input or an output.
10	7	S10	Source Terminal 10. This pin can be an input or an output.
11	8	S9	Source Terminal 9. This pin can be an input or an output.
12	9	GND	Ground (0 V) Reference.
14	10	A3	Logic Control Input.
15	11	A2	Logic Control Input.
16	14	A1	Logic Control Input.
17	15	A0	Logic Control Input.
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
19	17	S1	Source Terminal 1. This pin can be an input or an output.
20	18	S2	Source Terminal 2. This pin can be an input or an output.
21	19	S3	Source Terminal 3. This pin can be an input or an output.
22	20	S4	Source Terminal 4. This pin can be an input or an output.
23	21	S5	Source Terminal 5. This pin can be an input or an output.
24	22	S6	Source Terminal 6. This pin can be an input or an output.
25	23	S7	Source Terminal 7. This pin can be an input or an output.
26	24	S8	Source Terminal 8. This pin can be an input or an output.
27	25	$\mathrm{V}_{5 s}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
28	29	D	Drain Terminal. This pin can be an input or an output.
NA	Exposed Pad		The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{ss}.

Table 9. ADG5206 Truth Table

A3	A2	A1	A0	EN	On Switch
X	X	X	X	0	None
0	0	0	0	1	1
0	0	1	1	2	
0	0	1	1	3	
0	1	0	1	4	
0	1	0	1	5	
0	1	1	1	6	
0	0	0	1	7	
0	0	1	1	8	
1	0	1	1	9	
1	1	0	1	10	
1	1	0	1	11	
1	1	1	1	12	
1	1	0	1	13	
1	1	1	1	15	
1	0	1	16		

Figure 6. ADG5207 Pin Configuration (LFCSP)

Table 10. ADG5207 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	29	V_{DD}	Most Positive Power Supply Potential.
2	31	DB	Drain Terminal B. This pin can be an input or an output.
$\begin{aligned} & 3,13 \\ & 14 \end{aligned}$	$\begin{aligned} & 11,12,12,26, \\ & 28,30,32 \end{aligned}$	NC	No Connect. Not internally connected.
4	1	S8B	Source Terminal 8B. This pin can be an input or an output.
5	2	S7B	Source Terminal 7B. This pin can be an input or an output.
6	3	S6B	Source Terminal 6B. This pin can be an input or an output.
7	4	S5B	Source Terminal 5B. This pin can be an input or an output.
8	5	S4B	Source Terminal 4B. This pin can be an input or an output.
9	6	S3B	Source Terminal 3B. This pin can be an input or an output.
10	7	S2B	Source Terminal 2B. This pin can be an input or an output.
11	8	S1B	Source Terminal 1B. This pin can be an input or an output.
12	9	GND	Ground (0V) Reference.
15	10	A2	Logic Control Input.
16	14	A1	Logic Control Input.
17	15	A0	Logic Control Input.
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
19	17	S1A	Source Terminal 1A. This pin can be an input or an output.
20	18	S2A	Source Terminal 2A. This pin can be an input or an output.
21	19	S3A	Source Terminal 3A. This pin can be an input or an output.
22	20	S4A	Source Terminal 4A. This pin can be an input or an output.
23	21	S5A	Source Terminal 5A. This pin can be an input or an output.
24	22	S6A	Source Terminal 6A. This pin can be an input or an output.
25	23	S7A	Source Terminal 7A. This pin can be an input or an output.
26	24	S8A	Source Terminal 8A. This pin can be an input or an output.
27	25	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
28	27	DA	Drain Terminal A. This pin can be an input or an output.
NA	Exposed Pad		The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{ss}.

Table 11. ADG5207 Truth Table

A2	A1	A0	EN	On Switch Pair
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	6	7
1	1	0	1	8
1	1	1	1	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Ron as a Function of $V_{S}, V_{D}(\pm 20$ V Dual Supply)

Figure 8. Ron as a Function of $V_{S}, V_{D}(\pm 15$ V Dual Supply)

Figure 9. Ron as a Function of V_{S}, V_{D} (12 V Single Supply)

Figure 10. Ron as a Function of $V_{S,}, V_{D}$ (36 V Single Supply)

Figure 11. Ron as a Function of V_{S}, V_{D} for Different Temperatures, ± 15 V Dual Supply

Figure 12. Ron as a Function of $V_{s,} V_{D}$ for Different Temperatures, ± 20 V Dual Supply

Figure 13. Ron as a Function of V_{S}, V_{D} for Different Temperatures, 12 V Single Supply

Figure 14. Ron as a Function of V_{S}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 15. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 16. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 17. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 18. Leakage Currents vs. Temperature, 36 V Single Supply

Figure 19. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 20. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 21. Charge Injection vs. Source Voltage, Drain to Source

Figure 22. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 23. Bandwidth

Figure 24. Charge Injection vs. Source Voltage, Source to Drain

Figure 25. Qins as a Function of V_{s} for Different Temperatures, ± 15 V Dual Supply

Figure 26. QiNJ as a Function of V_{s} for Different Temperatures, ± 20 V Dual Supply

Figure 28. Qins as a Function of V_{s} for Different Temperatures, 12 V Single Supply

Figure 29. QINJ as a Function of Vs for Different Temperatures, 36 V Single Supply

Figure 27. trkansition Time vs. Temperature

Figure 30. ADG5206 Capacitance vs. Source Voltage, ± 15 V Dual Supply

Figure 31. ADG5207 Capacitance vs. Source Voltage, ± 15 V Dual Supply

TEST CIRCUITS

Figure 33. Off Leakage

${ }^{1}$ SIMILAR CONNECTION FOR ADG5207.
Figure 35. Address to Output Switching Times, ttransition

Figure 36. Enable Delay, toN (EN), toff (EN)

1sIMILAR CONNECTION FOR ADG5207.
Figure 37. Break-Before-Make Time Delay, to

Figure 38. Charge Injection

Figure 39. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

Figure 41. Bandwidth

TERMINOLOGY

$I_{D D}$
$I_{D D}$ represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.
Ron
Ron is the ohmic resistance between Terminal D and Terminal S.

Δ Ron $^{\prime}$

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat (ON) }}$
$\mathrm{R}_{\text {FLAT (ON) }}$ is the flatness defined as the difference between the maximum and the minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{S} (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.

Cin

C_{IN} represents digital input capacitance.
$t_{\text {ON }}$ (EN)
ton $^{(E N)}$) represents the delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {off }}$ (EN)
toff $_{\text {(EN) }}$) represents the delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
$\mathrm{t}_{\text {transition }}$ represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

Break-Before-Make Time Delay (t_{D})
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.
AC Power Supply Rejection Ratio (ACPSRR)
ACPSRR is a measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

APPLICATIONS INFORMATION

The ADG52xx family of switches and multiplexers provides a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persist until the power supply is turned off. The ADG5206/ADG5207 high voltage switches allow singlesupply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

TRENCH ISOLATION

In the ADG5206/ADG5207, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed and the result is a latchup proof switch.

10714-038
Figure 42. Trench Isolation

OUTLINE DIMENSIONS

Figure 43. 28-Lead Thin Shrink Small Outline Package [TSSOP] (RU-28)
Dimensions shown in millimeters

FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
*COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5 WITH EXCEPTION TO EXPOSED PAD DIMENSION.

Figure 44. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
5×5 mm Body, Very Very Thin Quad (CP-32-12)
Dimensions shown in millimeters
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
ADG5206BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG5206BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG5206BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12
ADG5207BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG5207BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG5207BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-12

[^2]
NOTES

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ

[^0]: ${ }^{1}$ The off channel leakage delta is calculated using the maximum of $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$.
 ${ }^{2}$ The on channel leakage delta is calculated using the maximum of $V_{S}=V_{D}=1 \mathrm{~V}$, or $\mathrm{V}_{S}=\mathrm{V}_{D}=10 \mathrm{~V}$.
 ${ }^{3}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at the $\mathrm{Ax}, \mathrm{EN}, \mathrm{Sx}, \mathrm{D}$, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5 and Table 6.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

