Data Sheet

FEATURES

Overvoltage protection up to - 55 V and +55 V
Power-off protection up to -55 V and +55 V
Overvoltage detection on source pins
Low charge injection (Qin): -0.4 pC
Low on capacitance
ADG5208F: 20 pF
ADG5209F: 14 pF
Latch-up immune under any circumstance
Known state without digital inputs present
V_{SS} to V_{DD} analog signal range
$\pm 5 \mathrm{~V}$ to $\pm \mathbf{2 2} \mathrm{V}$ dual-supply operation
8 V to 44 V single-supply operation
Fully specified at $\pm 15 \mathrm{~V}, \pm \mathbf{2 0} \mathrm{V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$

APPLICATIONS

Analog input/output modules

Process control/distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems
Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG5208F Functional Block Diagram

Figure 2. ADG5209F Functional Block Diagram

GENERAL DESCRIPTION

The ADG5208F and ADG5209F are 8:1 and dual 4:1 analog multiplexers. The ADG5208F switches one of eight inputs to a common output, and the ADG5209F switches one of four differential inputs to a common differential output. An EN input on both devices enables or disables the device. Each channel conducts equally well in both directions when on, and each channel has an input signal range that extends to the supplies. The digital inputs are compatible with 3 V logic inputs over the full operating supply range.
When no power supplies are present, the channel remains in the off condition, and the switch inputs are high impedance. Under normal operating conditions, if the analog input signal levels on any Sx pin exceed positive fault voltage (V_{DD}) or negative fault voltage (V_{Ss}) by a threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$, the channel turns off and that Sx pin becomes high impedance. If the fault channel is selected, the drain pin is pulled to the secondary supply voltage that was exceeded.

[^0]
ADG5208F/ADG5209F

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 5
12 V Single Supply 7
36 V Single Supply 9
Continuous Current per Channel, Sx, D, or Dx 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 15
REVISION HISTORY
3/16-Rev. 0 to Rev. A
Added 16-Lead LFCSP Universal
Changes to General Description Section 1
Changes to Table 5 11
Changes to Table 6 12
Added Figure 4; Renumbered Sequentially 13
Changes to Table 7 13
Added Figure 6 14
Changes to Table 9 14
Updated Outline Dimensions 27
Changes to Ordering Guide 27
Test Circuits 20
Terminology 23
Theory of Operation 24
Switch Architecture 24
Fault Protection 25
Applications Information 26
Power Supply Rails 26
Power Supply Sequencing Protection 26
Signal Range 26
Power Supply Recommendations. 26
High Voltage Surge Suppression 26
Large Voltage, High Frequency Signals 26
Outline Dimensions 27
Ordering Guide 27

4/15—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{Decoupling}}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 1.

[^1]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{C}_{\mathrm{DECOUPLING}}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 2.

[^2]
12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {Decoupling }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 3.

[^3]
36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {Decoupling }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 4.

[^4]
Data Sheet

CONTINUOUS CURRENT PER CHANNEL, Sx, D, OR Dx

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{aligned} & \text { ADG5208F } \\ & \text { 16-Lead TSSOP, } \theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W} \\ & \text { 16-Lead LFCSP, } \theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 27 \\ & 16 \\ & 48 \\ & 27 \end{aligned}$	$\begin{aligned} & 16 \\ & 11 \\ & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & 11 \\ & 9 \end{aligned}$	mA max mA max mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
```ADG5209F 16-Lead TSSOP, }\mp@subsup{0}{\textrm{JA}}{}=112.\mp@subsup{6}{}{\circ}\textrm{C}/\textrm{W 16-Lead LFCSP, }\mp@subsup{0}{\textrm{JA}}{}=30.\mp@subsup{4}{}{\circ}\textrm{C}/\textrm{W```	$\begin{aligned} & 20 \\ & 12 \\ & 36 \\ & 21 \end{aligned}$	$\begin{aligned} & 13 \\ & 8 \\ & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 10 \\ & 8 \end{aligned}$	mA max mA max mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	-48 V to +0.3 V
Sx Pins	-55 V to +55 V
Sx to $V_{D D}$ or $V_{S S}$	80 V
$\mathrm{V}_{\mathrm{s}}$ to $\mathrm{V}_{\mathrm{D}}$	80 V
D or Dx Pins ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.7 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{2}$	GND - 0.7 V to 48 V or 30 mA , whichever occurs first
Peak Current, Sx, D, or Dx Pins	72.5 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, Sx, D, or Dx	Data ${ }^{3}+15 \%$
D or Dx Pins, Overvoltage State, Load Current	1 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\mathrm{JA}}$ (4-Layer Board)	
16-Lead TSSOP	$112.6{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020

${ }^{1}$ Overvoltages at the $D$ or Dx pins are clamped by internal diodes. Limit the current to the maximum ratings given.
${ }^{2}$ The digital inputs are the EN and Ax pins.
${ }^{3}$ See Table 5.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS




NOTES

1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 4. ADG5208F Pin Configuration (LFCSP)

Table 7. ADG5208F Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
3	1	Vss	Most Negative Power Supply Potential.
4	2	S1	Overvoltage Protected Source Terminal 1. This pin can be an input or an output.
5	3	S2	Overvoltage Protected Source Terminal 2. This pin can be an input or an output.
6	4	S3	Overvoltage Protected Source Terminal 3. This pin can be an input or an output.
7	5	S4	Overvoltage Protected Source Terminal 4. This pin can be an input or an output.
8	6	D	Drain Terminal. This pin can be an input or an output.
9	7	S8	Overvoltage Protected Source Terminal 8. This pin can be an input or an output.
10	8	S7	Overvoltage Protected Source Terminal 7. This pin can be an input or an output.
11	9	S6	Overvoltage Protected Source Terminal 6. This pin can be an input or an output.
12	10	S5	Overvoltage Protected Source Terminal 5. This pin can be an input or an output.
13	11	$V_{\text {DD }}$	Most Positive Power Supply Potential.
14	12	GND	Ground (0V) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
N/A ${ }^{1}$	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{5 s}$.

N/A means not applicable.
Table 8. ADG5208F Truth Table

A2	A1	A0	EN	On Switch
$\mathrm{X}^{1}$	$\mathrm{X}^{1}$	$\mathrm{X}^{1}$	0	None
0	0	0	1	S 1
0	0	1	1	S 2
0	1	0	1	S 3
0	1	1	1	S 5
1	0	1	S	
1	0	1	$\mathrm{S7}$	
1	1	1	1	S 8
1	1	1		



Figure 5. ADG5209F Pin Configuration (TSSOP)


Figure 6. ADG5209F Pin Configuration (LFCSP)

Table 9. ADG5209F Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential.
4	2	S1A	Overvoltage Protected Source Terminal 1A. This pin can be an input or an output.
5	3	S2A	Overvoltage Protected Source Terminal 2A. This pin can be an input or an output.
6	4	S3A	Overvoltage Protected Source Terminal 3A. This pin can be an input or an output.
7	5	S4A	Overvoltage Protected Source Terminal 4A. This pin can be an input or an output.
8	6	DA	Drain Terminal A. This pin can be an input or an output.
9	7	DB	Drain Terminal B. This pin can be an input or an output.
10	8	S4B	Overvoltage Protected Source Terminal 4B. This pin can be an input or an output.
11	9	S3B	Overvoltage Protected Source Terminal 3B. This pin can be an input or an output.
12	10	S2B	Overvoltage Protected Source Terminal 2B. This pin can be an input or an output.
13	11	S1B	Overvoltage Protected Source Terminal 1B. This pin can be an input or an output.
14	12	VD	Most Positive Power Supply Potential.
15	13	GND	Ground (0 V) Reference.
16	14	A1	Logic Control Input.
N/A ${ }^{1}$	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{\mathrm{s}}$.

${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

Table 10. ADG5209F Truth Table

A1	A0	EN	On Switch Pair
$X^{1}$	$X^{1}$	0	None
0	0	1	S1x
0	1	1	S2x
1	0	1	S3x
1	1	1	S4x

[^5]
## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 7. Ron as a Function of $V_{S,}, V_{D}$, Dual Supply


Figure 8. Ron as a Function of $V_{S,}, V_{D}, 12 \mathrm{~V}$ Single Supply


Figure 9. Ron as a Function of $V_{S}, V_{D}, 36 V$ Single Supply


Figure 10. Ron as a Function of $V_{s,}, V_{D}$ for Different Temperatures, $\pm 15$ V Dual Supply


Figure 11. Ron as a Function of $V_{S}, V_{D}$ for Different Temperatures, $\pm 20$ V Dual Supply


Figure 12. Ron as a Function of $V_{S}, V_{D}$ for Different Temperatures,
12 V Single Supply


Figure 13. Ron as a Function of $V_{S}, V_{D}$ for Different Temperatures, 36 V Single Supply


Figure 14. Leakage Current vs. Temperature, $\pm 15$ V Dual Supply


Figure 15. Leakage Current vs. Temperature, $\pm 20$ V Dual Supply


Figure 16. Leakage Current vs. Temperature, 12 V Single Supply


Figure 17. Leakage Current vs. Temperature, 36 V Single Supply


Figure 18. Overvoltage Leakage Current vs. Temperature, $\pm 15$ V Dual Supply


Figure 19. Overvoltage Leakage Current vs. Temperature, $\pm 20$ V Dual Supply


Figure 20. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply


Figure 21. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply


Figure 22. Off Isolation vs. Frequency, $\pm 15$ V Dual Supply


Figure 23. Crosstalk vs. Frequency, $\pm 15$ V Dual Supply


Figure 24. Charge Injection vs. Source Voltage (Vs), Single Supply


Figure 25. Charge Injection vs. Source Voltage (Vs), Dual Supply


Figure 26. ACPSRR vs. Frequency, $\pm 15$ V Dual Supply


Figure 27. $T H D+N$ vs. Frequency


Figure 28. Bandwidth vs. Frequency


Figure 29. ttransition vs. Temperature


Figure 30. Threshold Voltage $\left(V_{T}\right)$ vs. Temperature


Figure 31. Drain Output Response to Positive Overvoltage


Figure 32. Drain Output Response to Negative Overvoltage


Figure 33. Large Voltage Signal Tracking vs. Frequency

## TEST CIRCUITS



Figure 34. Switch Unpowered Leakage


Figure 35. Switch Overvoltage Leakage

*SIMILAR CONNECTION FOR ADG5209F.
Figure 36. Off Leakage


Figure 37. On Leakage


Figure 38. On Resistance


Figure 39. $T H D+N$


Figure 40. Off Isolation


Figure 41. Bandwidth


Figure 42. Channel-to-Channel Crosstalk


NOTES

1. THE OUTPUT PULLS TO $V_{\text {DD }}$ WITHOUT A $1 k \Omega$ RESISTOR (INTERNAL $40 \mathrm{k} \Omega$
PULL-UP RESISTOR TO THE SUPPLY RAIL DURING A FAULT).
Figure 43. Overvoltage Response Time, $t_{\text {RESPONSE }}$


NOTES

1. THE OUTPUT STARTS FROM THE $V_{\text {DD }}$ CLAMP LEVEL WITHOUT A $1 \mathrm{k} \Omega$ RESISTOR (INTERNAL 40k $\Omega$ PULL-UP RESISTOR TO THE SUPPLY RAIL DURING A FAULT).

Figure 44. Overvoltage Recovery Time, $t_{\text {RECOVERY }}$


Figure 45. Break-Before-Make Time Delay, $t_{D}$


Figure 46. Enable Delay, toN (EN), toff (EN)


Figure 47.Address to Output Switching Time, titansition


Figure 48. Charge Injection, $Q_{I N J}$

## TERMINOLOGY

IDD
IDD represents the positive supply current.
Iss
Iss represents the negative supply current.
$V_{D}, V_{s}$
$V_{D}$ and $V_{S}$ represent the analog voltage on the D or Dx pins and the $S x$ pins, respectively.

Ron
Ron represents the ohmic resistance between the D or Dx pins and the Sx pins.

## $\Delta \mathrm{R}_{\text {on }}$

$\Delta$ Ron $_{\text {on }}$ represents the difference between the Ron of any two channels.
$\mathrm{R}_{\mathrm{flat}(\mathrm{ON})}$
$\mathrm{R}_{\text {flat(on) }}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
$I_{S}$ (Off)
Is (off) is the source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
$\mathrm{I}_{\mathrm{D}}$ (off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{on})$ and $\mathrm{I}_{\mathrm{S}}$ (on) represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
Vinh
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Int, $\mathbf{I}_{\text {INH }}$
InNL and INH represent the low and high input currents of the digital inputs.
$C_{D}$ (Off)
$C_{D}$ (off) represents the off switch drain capacitance, which is measured with reference to ground.
$\mathrm{C}_{s}$ (Off)
$\mathrm{C}_{s}$ (off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{Cs}(\mathbf{O n})$
$\mathrm{C}_{\mathrm{D}}$ (on) and $\mathrm{C}_{s}$ (on) represent the on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\mathrm{IN}}$
$\mathrm{C}_{\mathrm{IN}}$ is the digital input capacitance.
ton (EN)
$\mathrm{t}_{\mathrm{ON}}$ (EN) represents the delay between applying the digital control input and the output switching on (see Figure 46).
$t_{\text {off }}$ (EN)
$\mathrm{t}_{\text {off }}$ (EN) represents the delay between applying the digital control input and the output switching off (see Figure 46).

## t Transition

$t_{\text {transition }}$ represents the delay time between the $50 \%$ and $90 \%$ points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {D }}$
$t_{D}$ represents the off time measured between the $90 \%$ points of both switches when switching from one address state to another.
$t_{\text {RESPONSE }}$
$\mathrm{t}_{\text {RESPONSE }}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to $50 \%$ of its peak voltage.
trecovery
$t_{\text {recovery }}$ represents the delay between an overvoltage on the Sx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to $50 \%$ of its peak voltage.

## Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

## Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

## -3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

## AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

## On Response

On response is the frequency response of the on switch.
$V_{T}$
$\mathrm{V}_{\mathrm{T}}$ is the voltage threshold at which the overvoltage protection circuitry engages (see Figure 30).

Total Harmonic Distortion Plus Noise (THD + N)
$\mathrm{THD}+\mathrm{N}$ is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

## THEORY OF OPERATION

## SWITCH ARCHITECTURE

Each channel of the ADG5208F/ADG5209F consists of a parallel pair of NDMOS and PDMOS transistors. This construction provides excellent performance across the signal range. The ADG5208F/ADG5209F channels operate as standard switches when input signals with a voltage between $\mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{DD}}$ are applied. For example, the on resistance is $250 \Omega$ typically and opening or closing the switch is controlled using the appropriate address pins.
Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on a source pin with $V_{\text {DD }}$ and $V_{\text {Ss. }}$ A signal is considered overvoltage if it exceeds the supply voltages by the voltage threshold, $\mathrm{V}_{\mathrm{T}}$. The threshold voltage is typically 0.7 V , but can range from 0.8 V at $-40^{\circ} \mathrm{C}$ down to 0.6 V at $+125^{\circ} \mathrm{C}$. See Figure 30 to see the change in $V_{T}$ with operating temperature.

The voltage range that can be applied to any source input is +55 V to -55 V . When the device is powered using a single supply of 25 V or greater, the minimum signal level increases from -55 V to -40 V at $\mathrm{V}_{\mathrm{DD}}=+40 \mathrm{~V}$ to remain within the 80 V maximum rating. Construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.


Figure 49. Switch Channel and Control Function

## Overvoltage Reaction

When an overvoltage condition is detected on a source pin, the switch automatically opens regardless of the digital logic state. The source pin becomes high impedance and, if that source pin is selected, the drain pin is pulled to the supply that was exceeded. For example, if the source voltage exceeds $V_{D D}$, then the drain output pulls to $\mathrm{V}_{\mathrm{DD}}$, similarly for $\mathrm{V}_{\text {ss }}$. In Figure 31, the voltage on the drain pin can be seen to follow the voltage on the source pin until the switch turns off completely. The drain pin then pulls to GND due to the $1 \mathrm{k} \Omega$ load resistor; otherwise, it pulls to the $V_{D D}$ supply. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the pin.

During overvoltage conditions, the leakage current into and out of the source pins is limited to tens of microamperes. If the source pin is unselected, only nanoamperes of leakage appear on the drain pin. However, if the source is selected, the pin is pulled to the supply rail. The device that pulls the drain pin to the rail has an impedance of approximately $40 \mathrm{k} \Omega$; thus, the D or Dx pin current is limited to approximately 1 mA during a shorted load condition. This internal impedance also determines the minimum external load resistance required to ensure that the drain pin is pulled to the desired voltage level during a fault. When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

## ESD Performance

The drain pins have ESD protection diodes to the rails and the voltage at these pins must not exceed the supply voltage. The source pins have specialized ESD protection that allows the signal voltage to reach $\pm 55 \mathrm{~V}$ regardless of supply voltage level. See Figure 49 for an overview of the switch channel function.

## Trench Isolation

In the ADG5208F and ADG5209F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances.


Figure 50. Trench Isolation

## FAULT PROTECTION

When the voltages at the source inputs exceed $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$ by $\mathrm{V}_{\mathrm{T}}$, the switch turns off or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state and if it is selected, the drain pulls to either $V_{D D}$ or $V_{\text {SS. }}$. Signal levels up to +55 V and -55 V are blocked in both the powered and unpowered condition as long as the 80 V limitation between the source and supply pins is met.

## Power-On Protection

The following three conditions must be satisfied for the switch to be in the on condition:

- $V_{\text {DD }}$ to $\mathrm{V}_{\text {SS }} \geq 8 \mathrm{~V}$
- The input signal is between $V_{s s}-V_{T}$ and $V_{D D}+V_{T}$
- The digital logic control input is active

When the switch is turned on, signal levels up to the supply rails are passed.
The switch responds to an analog input that exceeds $V_{D D}$ or $V_{S S}$ by a threshold voltage, $\mathrm{V}_{\mathrm{T}}$, by turning off. The absolute input voltage limits are -55 V and +55 V , while maintaining an 80 V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between $V_{\text {DD }}$ and $V_{\text {Ss }}$.
The fault response time (tresponse) when powered by a $\pm 15 \mathrm{~V}$ dual supply is typically 90 ns and the fault recovery time (trecovery) is 745 ns. These vary with supply voltages and output load conditions.

Exceeding $\pm 55 \mathrm{~V}$ on any source input may damage the ESD protection circuitry on the device.
The maximum stress across the switch channel is 80 V , therefore, the user must pay close attention to this limit under a fault condition.

For example, consider the case where the device is set up as shown in Figure 51.

- $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 22 \mathrm{~V}, \mathrm{~S} 1=+22 \mathrm{~V}, \mathrm{~S} 1$ is selected
- S 2 has a -55 V fault and S 3 has a +55 V fault
- The voltage between S 2 and $\mathrm{D}=+22 \mathrm{~V}-(-55 \mathrm{~V})=+77 \mathrm{~V}$
- The voltage between S3 and D $=55 \mathrm{~V}-22 \mathrm{~V}=33 \mathrm{~V}$

These calculations are all within device specifications: a 55 V maximum fault on the source inputs and a maximum of 80 V across the off switch channel.


Figure 51. ADG5208F in an Overvoltage Condition

## Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.
The switch remains off regardless of whether the $V_{D D}$ and $V_{S S}$ supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to $\pm 55 \mathrm{~V}$ are blocked in the unpowered condition.

## Digital Input Protection

The ADG5208F and the ADG5209F can tolerate digital input signals being present on the device without power. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.
The digital inputs are protected against positive faults of up to 44 V . The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

## APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provides robust solutions for instrumentation, industrial, automotive, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

## POWER SUPPLY RAILS

To guarantee correct operation of the device, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.
The ADG5208F and the ADG5209F can operate with bipolar supplies between $\pm 5 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. The supplies on $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {SS }}$ need not be symmetrical, but the $V_{D D}$ to $V_{S S}$ range must not exceed 44 V . The ADG5208F and the ADG5209F can also operate with single supplies between 8 V and 44 V with $\mathrm{V}_{\text {ss }}$ connected to GND.

These devices are fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V supply ranges.

## POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the devices are unpowered and signals from -55 V to +55 V can be applied without damaging the devices. The switch channel closes only when the supplies are connected, a suitable digital control signal is placed on the address pins, and the signal is within normal operating range. Placing the ADG5208F/ADG5209F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

## SIGNAL RANGE

The ADG5208F/ADG5209F switches have overvoltage detection circuitry on their inputs that compares the voltage levels at the source terminals with $V_{D D}$ and $V_{S S}$. To protect downstream circuitry from overvoltages, supply the ADG5208F/ADG5209F with voltages that match the intended signal range. The additional protection architecture allows the signals up to the supply rails to be passed and only a signal that exceeds the supply rail by the threshold voltage is then blocked. This signal block offers protection to both the device and any downstream circuitry.

## POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.
An example of a bipolar power solution is shown in Figure 52. The ADP7118 and ADP7182 can be used to generate clean positive and negative rails from the ADP5070 (dual switching regulator) output. These rails can be used to power the ADG5208F/ ADG5209F amplifier, and/or a precision converter in a typical signal chain.


Figure 52. Bipolar Power Solution
Table 11. Recommended Power Management Devices

Product	Description
ADP5070	$1 \mathrm{~A} / 0.6 \mathrm{~A}$, dc-to-dc switching regulator with independent positive and negative outputs
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7142	$40 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, linear regulator

## HIGH VOLTAGE SURGE SUPPRESSION

The ADG5208F/ADG5209F are not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V . In applications where the inputs are likely to be subject to overvoltages exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar devices.

## LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 33 illustrates the voltage range and frequencies that the ADG5208F/ADG5209F can reliably convey. For signals that extend across the full signal range from $V_{s s}$ to $V_{D D}$, keep the frequency below 1 MHz . If the required frequency is greater than 1 MHz , decrease the signal range appropriately to ensure signal integrity.

## OUTLINE DIMENSIONS



Figure 53. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters


Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5208FBCPZ-RL7 $_{\text {ADG5208FBRUZ }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17
ADG5208FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]
RU-16			
ADG5209FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5209FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-16-17$
ADG5209FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

[^6]
## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ


[^0]:    Rev. A
    Document Feedback
    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]:    ${ }^{1}$ Guaranteed by design; not subject to production test

[^2]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^5]:    ${ }^{1} \mathrm{X}$ is don't care.

[^6]:    ${ }^{1} Z=$ RoHS Compliant Part.

