FEATURES

Latch-up proof
3 pF off source capacitance
5 pF off drain capacitance
0.07 pC charge injection

Low leakage: 0.2 nA maximum at $85^{\circ} \mathrm{C}$
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
$V_{s s}$ to $V_{D D}$ analog signal range

APPLICATIONS

Automatic test equipment

Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADG5212/ADG5213 contain four independent single-pole/single-throw (SPST) switches. The ADG5212 switches turn on with Logic 1. The ADG5213 has two switches with digital control logic similar to that of the ADG5212; however, the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.
The ADG5212 and ADG5213 do not have a V_{L} pin. The digital inputs are compatible with 3 V logic inputs over the full operating supply range.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed together with high signal bandwidth make the parts suitable for video signal switching.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT.
Figure 1.

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up.

A dielectric trench separates the P and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Ultralow Capacitance and $<1 \mathrm{pC}$ Charge Injection.
3. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG5212/ADG5213 can be operated from dual supplies of up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG5212/ADG5213 can be operated from a single rail power supply of up to 40 V .
5. 3 V Logic-Compatible Digital Inputs.
$\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} Logic Power Supply Required.

Rev. A

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011-2015 Analog Devices, Inc. All rights reserved. Technical Support

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
REVISION HISTORY
9/15-Rev. 0 to Rev. A
Changed Off Isolation Parameter from -105 dB Typical at $25^{\circ} \mathrm{C}$
to -80 dB Typical at $25^{\circ} \mathrm{C}$
\qquad Throughout
Change to Applications Information Section 18
Change to Figure 34 Caption 19
Changes to Ordering Guide 19
Continuous Current per Channel, Sx or Dx 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics. 10
Test Circuits 14
Terminology 16
Trench Isolation 17
Applications Information 18
Outline Dimensions 19
Ordering Guide 19

4/11-Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS ID Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 110 \\ & 1 \\ & \pm 9 / \pm 22 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

${ }^{1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Insertion Loss	-11			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see Figure 28
Cs_{5} (Off)	3.5			pF typ	$\mathrm{V}_{5}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	5.5			pF typ	$\mathrm{V}_{5}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	9			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS	40		65$9 / 40$	μA typ $\mu \mathrm{A}$ max V min/V max	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
lod					Digital inputs $=0 \mathrm{~V}$ or V_{DD}
$V_{D D}$					$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflaton)	$\begin{aligned} & 150 \\ & 170 \\ & 1.6 \\ & 8 \\ & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 215 \\ & 9 \\ & 60 \end{aligned}$	$\begin{aligned} & 0 \text { V to } V_{D D} \\ & 245 \\ & 10 \\ & 65 \end{aligned}$	V max Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}, \\ & \text { see Figure } 24 \\ & \mathrm{~V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, ID (On), Is (On)	$\begin{aligned} & 0.01 \\ & 0.1 \\ & 0.01 \\ & 0.1 \\ & 0.02 \\ & 0.2 \end{aligned}$	0.2 0.2 0.25	0.4 0.4 0.9	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V}, \end{aligned}$ see Figure 23 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V},$ see Figure 23 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 30 \mathrm{~V},$ see Figure 26
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{N} \boldsymbol{N}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I InL or $\mathrm{I}_{\text {INH }}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.002 \\ & 3 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t_{D} (ADG5213 Only) Charge Injection, Qins Off Isolation Channel-to-Channel Crosstalk	$\begin{aligned} & 190 \\ & 230 \\ & 175 \\ & 215 \\ & 45 \\ & \\ & -0.5 \\ & -80 \\ & -105 \end{aligned}$	$\begin{aligned} & 255 \\ & 230 \end{aligned}$	265 245 25	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {, see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {, see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=18 \mathrm{~V}$, see Figure 29 $\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, see Figure 31 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see Figure 25 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ Figure 27

ADG5212/ADG5213

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
-3 dB Bandwidth	410			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},$ see Figure 28
Insertion Loss	-6.8			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { see Figure } 28 \end{aligned}$
C_{s} (Off)	3			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	5			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$	8			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$
ld	80			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	100		130	$\mu \mathrm{A}$ max	
V_{DD}			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx or Dx				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	18	10	5	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	32	15	6	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	29	16	8	mA maximum
LFCSP ($\mathrm{JjA}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	50	22	9	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	18	12	7	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	32	17	8	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	34	18	8	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	59	24	9	mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 6.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	48 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pin	60 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2}$	Data + 15\%
Temperature	
Operating Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	$260(+0 /-5)^{\circ} \mathrm{C}$

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

NOTES

1. EXPOSED PAD TIED TO SUBSTRATE, $v_{\text {SS }}$
2. $\mathrm{NC}=\mathrm{NO}$ CONNECT.

Figure 3. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. This pin can be an input or an output.
3	1	S1	Source Terminal. This pin can be an input or an output.
4	2	VSS	Most Negative Power Supply Potential.
5	3	GND	Ground (0V) Reference.
6	4	S4	Source Terminal. This pin can be an input or an output.
7	5	D4	Drain Terminal. This pin can be an input or an output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. This pin can be an input or an output.
11	9	S3	Source Terminal. This pin can be an input or an output.
12	10	NC	No Connect. These pins are open.
13	11	VDD	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. This pin can be an input or an output.
15	13	D2	Drain Terminal. This pin can be an input or an output.
16	14	IN2	Logic Control Input.
N/A	EP	Exposed pad	Exposed Pad. The exposed pad is connected internally. For increased reliability of the
			solder joints and maximum thermal capability, it is recommended that the pad be
soldered to the substrate, Vss.			

${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.
Table 8. ADG5212 Truth Table

ADG5212 INx	Switch Condition
1	On
0	Off

Table 9. ADG5213 Truth Table

ADG5213 INx	S1, $\mathbf{S 4}$	S2, S3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of V_{S}, V_{D} (Dual Supply)

Figure 5. Ron as a Function of V_{S}, V_{D} (Dual Supply)

Figure 6. Ron as a Function of $V_{S,} V_{D}$ (Single Supply)

Figure 7. Ron as a Function of $V_{S,} V_{D}$ (Single Supply)

Figure 8. Ron as a Function of $V_{s,}, V_{D}$ for Different Temperatures, ± 15 V Dual Supply

Figure 9. RoN as a Function of V_{S}, V_{D} for Different Temperatures, ± 20 V Dual Supply

Figure 10. Ros as a Function of V_{S}, V_{D} for Different Temperatures, 12 V Single Supply

Figure 11. Ron as a Function of V_{S}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 13. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply

Figure 16. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 17. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 18. Charge Injection vs. Source Voltage

Figure 19. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 20. Bandwidth

Figure 21. Capacitance

Figure 22. ton, toff Times vs. Temperature

TEST CIRCUITS

Figure 23. Off Leakage

Figure 24. On Resistance

Figure 25. Off Isolation

Figure 26. On Leakage

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 27. Channel-to-Channel Crosstalk

Figure 28. Bandwidth

Figure 29. Break-Before-Make Time Delay, t_{D}

Figure 30. Switching Times

TERMINOLOGY

I_{DD}
$I_{D D}$ represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on Terminal Dx and Terminal Sx, respectively.
Ron
Ron represents the ohmic resistance between Terminal Dx and Terminal Sx.

Δ Ron

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {FLAT(ON) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by $\mathrm{R}_{\text {fLat(on) }}$.

Is (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$\mathrm{V}_{\text {INL }}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{S} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), C_{s} (On)
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.

$\mathrm{C}_{\text {In }}$

$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
ton
$t_{\text {ON }}$ represents the delay between applying the digital control input and the output switching on (see Figure 30).
$\mathbf{t}_{\text {off }}$
$t_{\text {off }}$ represents the delay between applying the digital control input and the output switching off (see Figure 30).
t_{D}
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

AC Power Supply Rejection Ratio (ACPSRR)

AC power supply rejection ratio (ACPSRR) is the ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5212 and ADG5213, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed and the result is a latchup proof switch.

Figure 32. Trench Isolation

APPLICATIONS INFORMATION

The high voltage latch-up proof family of switches and multiplexers provides a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5212/ADG5213 high voltage switches allow single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

OUTLINE DIMENSIONS

Figure 33. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-wGGc.
Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-17)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5212BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5212BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5212BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5213BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5213BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5213BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

[^2]
NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Overvoltages at the $\mathrm{INx}, \mathrm{Sx}$, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^2]: ${ }^{1} Z=$ RoHS Compliant Part.

