

Enhanced Product

High Voltage Latch-Up Proof, 4-/8-Channel Multiplexers

ADG5408-EP/ADG5409-EP

FEATURES

Latch-up proof 8 kV human body model (HBM) ESD rating Low on resistance (13.5 Ω) ± 9 V to ± 22 V dual-supply operation 9 V to 40 V single-supply operation Fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V V_{SS} to V_{DD} analog signal range

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range: -55°C to +125°C
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Relay replacement
Automatic test equipment
Data acquisition
Instrumentation
Avionics
Communication systems

GENERAL DESCRIPTION

The ADG5408-EP/ADG5409-EP are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG5408-EP switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG5409-EP switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1.

An EN input on both devices enables or disables the device. When EN is disabled, all channels switch off. The on-resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching.

Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

Rev. 0 Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

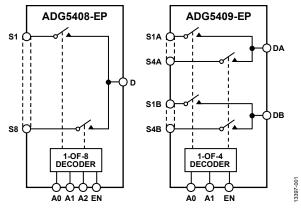


Figure 1.

The ADG5408-EP/ADG5409-EP do not have $V_{\rm L}$ pins; rather, the logic power supply is generated internally by an on-chip voltage generator.

Additional application and technical information can be found in the ADG5408/ADG5409 data sheet.

PRODUCT HIGHLIGHTS

- 1. Trench isolation guards against latch-up. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
- Low Ron.
- 3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5408-EP/ADG5409-EP can be operated from dual supplies up to ±22 V.
- 4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5408-EP/ADG5409-EP can be operated from a single rail power supply up to 40 V.
- 5. 3 V logic compatible digital inputs: $V_{INH} = 2.0 \text{ V}$, $V_{INL} = 0.8 \text{ V}$.
- No V_L logic power supply required.

Enhanced Product

TABLE OF CONTENTS

Features 1	L
Enhanced Product Features 1	L
Applications1	L
Functional Block Diagrams1	L
General Description1	L
Product Highlights1	L
Revision History2	2
Specifications3	3
±15 V Dual Supply3	3
±20 V Dual Supply4	ŀ
12 V Single Supply5	5

36 V Single Supply	6
Continuous Current per Channel, Sx or D	8
Absolute Maximum Ratings	9
ESD Caution	9
Pin Configurations and Function Descriptions	10
Typical Performance Characteristics	12
Test Circuits	16
Outline Dimensions	18
Ordering Guide	18

REVISION HISTORY

9/15—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, Ron	13.5			Ωtyp	$V_s = \pm 10 \text{ V}, I_s = -10 \text{ mA}; \text{ see Figure 24}$
, .	15	18	22	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between	0.3			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -10 \text{ mA}$
Channels, ΔR _{ON}				71	
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.8			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	2.2	2.6	3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}; \text{ see Figure 27}$
_	±0.25	±1	±7	nA max	_
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}; \text{ see Figure 27}$
5	±0.4	±4	±30	nA max	
Channel On Leakage, ID (On), Is (On)	±0.1			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 23
5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	±0.4	±4	±30	nA max	J
DIGITAL INPUTS				-	
			2.0	V min	
Input High Voltage, V _{INH}			2.0		
Input Low Voltage, V _{INL}	0.000		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002		. 0 1	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
D: :: II	2		±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	217	258	292	ns max	$V_s = 10 \text{ V}$; see Figure 30
t _{on} (EN)	140			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	175	213	242	ns max	$V_s = 10 \text{ V}$; see Figure 32
t _{OFF} (EN)	130			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	161	183	198	ns max	$V_s = 10 \text{ V}$; see Figure 32
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			13	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	115			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 33
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 15 V p-p, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 28
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
ADG5408-EP	50			MHz typ	
ADG5409-EP	87			MHz typ	
Insertion Loss	0.9			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 29
C _s (Off)	15			pF typ	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)					
ADG5408-EP	102			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
ADG5409-EP	50			pF typ	$V_S = 0 V, f = 1 MHz$

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
C _D (On), C _S (On)					
ADG5408-EP	133			pF typ	$V_S = 0 V, f = 1 MHz$
ADG5409-EP	81			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	45			μA typ	Digital inputs = 0 V or V _{DD}
	55		80	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V ± 10%, V_{SS} = -20 V ± 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}	12.5			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 24}$
	14	17	21	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.3			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	2.3			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
	2.7	3.1	3.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 27}$
	±0.25	±1	±7	nA max	
Drain Off Leakage, I _D (Off)	±0.15			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 27}$
	±0.4	±4	±30	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.15			nA typ	$V_S = V_D = \pm 15 \text{ V}$; see Figure 23
	±0.4	±4	±30	nA max	_
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	160			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	207	237	262	ns max	$V_s = 10 V$; see Figure 30
t _{ON} (EN)	140			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	165	194	218	ns max	$V_s = 10 V$; see Figure 32
t _{OFF} (EN)	133			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	153	174	189	ns max	$V_s = 10 V$; see Figure 32
Break-Before-Make Time Delay, t _D	38			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
·			8	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	155			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 33
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
Total Harmonic Distortion + Noise	0.012			% typ	$R_L = 1 \text{ k}\Omega$, 20 V p-p, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 28
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
ADG5408-EP	50			MHz typ	
ADG5409-EP	88			MHz typ	
Insertion Loss	0.8			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
C _s (Off)	17			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)					
ADG5408-EP	98			pF typ	$V_S = 0 V, f = 1 MHz$
ADG5409-EP	48			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)				·	
ADG5408-EP	128			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
ADG5409-EP	80			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I_{DD}	50			μA typ	Digital inputs = 0 V or V_{DD}
	70		120	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	26			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA; see}$ Figure 24
	30	36	42	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.3			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V}, I_s = -10 \text{ mA}$
	1	1.5	1.6	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	5.5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA}$
	6.5	8	12	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see}$ Figure 27
	±0.25	±1	±7	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see}$ Figure 27
	±0.4	±4	±30	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.05			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 23
	±0.4	±4	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, CIN	3			pF typ	

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	230			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	321	388	430	ns max	$V_S = 8 V$; see Figure 30
ton (EN)	215			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	276	345	397	ns max	$V_S = 8 \text{ V}$; see Figure 32
toff (EN)	134			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	161	187	209	ns max	$V_S = 8 \text{ V}$; see Figure 32
Break-Before-Make Time Delay, t _D	118			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			44	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	45			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 33
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Total Harmonic Distortion + Noise	0.1			% typ	$R_L = 1~k\Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 28
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
ADG5408-EP	35			MHz typ	
ADG5409-EP	74			MHz typ	
Insertion Loss	-1.8			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
C _s (Off)	22			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)					
ADG5408-EP	119			pF typ	$V_S = 6 V, f = 1 MHz$
ADG5409-EP	59			pF typ	$V_S = 6 V, f = 1 MHz$
C_D (On), C_S (On)					
ADG5408-EP	146			pF typ	$V_S = 6 V, f = 1 MHz$
ADG5409-EP	86			pF typ	$V_S = 6 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 13.2 V
IDD	40			μA typ	Digital inputs = 0 V or V_{DD}
	50		75	μA max	
V_{DD}			9/40	V min/V max	$GND = 0V, V_SS = 0V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	14.5			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA; see}$ Figure 24
	16	19	23	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR _{ON}	0.3			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	3.5			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -10 \text{ mA}$
	4.3	5.5	6.5	Ω max	

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}; \text{ see}$ Figure 27
	±0.25	±1	±7	nA max	
Drain Off Leakage, I _D (Off)	±0.15			nA typ	$V_s = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}; \text{ see}$ Figure 27
	±0.4	±4	±30	nA max	
Channel On Leakage, I_D (On), I_S (On)	±0.15			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$; see Figure 23
	±0.4	±4	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, t _{TRANSITION}	187			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	242	257	281	ns max	V _s = 18 V; see Figure 30
t _{on} (EN)	160			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	195	219	237	ns max	$V_s = 18 V$; see Figure 32
t _{OFF} (EN)	147			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	184	184	190	ns max	V _s = 18 V; see Figure 32
Break-Before-Make Time Delay, t _D	53			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			14	ns min	$V_{S1} = V_{S2} = 18 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	150			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 33
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Total Harmonic Distortion + Noise	0.4			% typ	$R_L = 1 \text{ k}\Omega$, 18 V p-p, f = 20 Hz to 20 kHz see Figure 28
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
ADG5408-EP	45			MHz typ	
ADG5409-EP	76			MHz typ	
Insertion Loss	-1			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Cs (Off)	18			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)					
ADG5408-EP	120			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
ADG5409-EP	60			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)					
ADG5408-EP	137			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
ADG5409-EP	80			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$
I_{DD}	80			μA typ	Digital inputs = 0 V or V_{DD}
	100		155	μA max	
V_{DD}		<u> </u>	9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5. ADG5408-EP

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR D ($\theta_{JA} = 30.4$ °C/W)				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$	207	113	60	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$	218	117	61	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$	168	99	57	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$	214	116	61	mA maximum

Table 6. ADG5409-EP

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR D ($\theta_{JA} = 30.4$ °C/W)				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$	156	95	55	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$	165	98	56	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$	126	81	50	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$	161	97	56	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

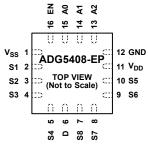
Table 7.

Table 7.			
Parameter	Rating		
V_{DD} to V_{SS}	48 V		
V_{DD} to GND	–0.3 V to +48 V		
V _{SS} to GND	+0.3 V to -48 V		
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first		
Digital Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first		
Peak Current, Sx or D Pins			
ADG5408-EP	435 mA (pulsed at 1 ms, 10% duty cycle maximum)		
ADG5409-EP	300 mA (pulsed at 1 ms, 10% duty cycle maximum)		
Continuous Current, Sx or D ²	Data + 15%		
Temperature Range			
Operating	−55°C to +125°C		
Storage	−65°C to +150°C		
Junction Temperature	150°C		
Thermal Impedance, θ_{JA}			
16-Lead LFCSP (4-Layer Board)	30.4°C/W		
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020		

¹ Overvoltages at the Ax, EN, Sx, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES
1. THE EXPOSED PAD IS
CONNECTED INTERNALLY. FOR
INCREASED RELIABILITY OF THE
SOLDER JOINTS AND MAXIMUM
THERMAL CAPABILITY, IT IS
RECOMMENDED THAT THE PAD BE
SOLDERED TO THE SUBSTRATE, V_{SS}.

Figure 2. ADG5408-EP Pin Configuration

Table 8. ADG5408-EP Pin Function Descriptions

Pin No.	Mnemonic	Description		
15	A0	Logic Control Input.		
16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.		
1	V_{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.		
2	S1	Source Terminal 1. This pin can be an input or an output.		
3	S2	Source Terminal 2. This pin can be an input or an output.		
4	S3	Source Terminal 3. This pin can be an input or an output.		
5	S4	Source Terminal 4. This pin can be an input or an output.		
6	D	Drain Terminal. This pin can be an input or an output.		
7	S8	Source Terminal 8. This pin can be an input or an output.		
8	S7	Source Terminal 7. This pin can be an input or an output.		
9	S6	Source Terminal 6. This pin can be an input or an output.		
10	S5	Source Terminal 5. This pin can be an input or an output.		
11	V_{DD}	Most Positive Power Supply Potential.		
12	GND	Ground (0 V) Reference.		
13	A2	Logic Control Input.		
14	A1	Logic Control Input.		
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.		

Table 9. ADG5408-EP Truth Table

A2	A1	A0	EN	On Switch
Χ	X	Х	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
_1	1	1	1	8

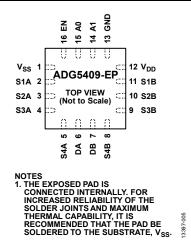


Figure 3. ADG5409-EP Pin Configuration

Table 10. ADG5409-EP Pin Function Descriptions

Pin No.	Mnemonic	Description	
15	A0	Logic Control Input.	
16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax login inputs determine on switches.	
1	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.	
2	S1A	Source Terminal 1A. This pin can be an input or an output.	
3	S2A	Source Terminal 2A. This pin can be an input or an output.	
4	S3A	Source Terminal 3A. This pin can be an input or an output.	
5	S4A	Source Terminal 4A. This pin can be an input or an output.	
6	DA	Drain Terminal A. This pin can be an input or an output.	
7	DB	Drain Terminal B. This pin can be an input or an output.	
8	S4B	Source Terminal 4B. This pin can be an input or an output.	
9	S3B	Source Terminal 3B. This pin can be an input or an output.	
10	S2B	Source Terminal 2B. This pin can be an input or an output.	
11	S1B	Source Terminal 1B. This pin can be an input or an output.	
12	V_{DD}	Most Positive Power Supply Potential.	
13	GND	Ground (0 V) Reference.	
14	A1	Logic Control Input.	
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum therma capability, it is recommended that the pad be soldered to the substrate, Vss.	

Table 11. ADG5409-EP Truth Table

A1	A0	EN	On Switch Pair
Χ	Х	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

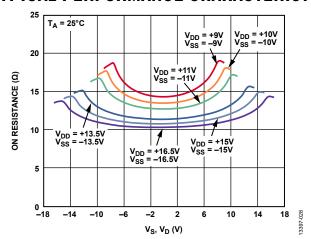


Figure 4. R_{ON} as a Function of V_S , V_D (Dual Supply)

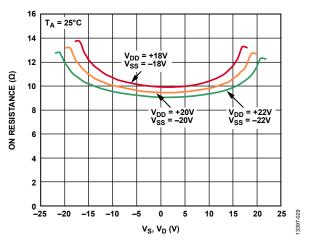


Figure 5. R_{ON} as a Function of V_S , V_D (Dual Supply)

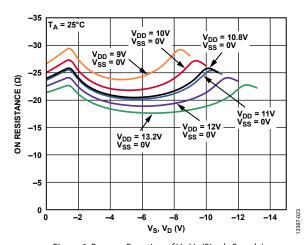


Figure 6. R_{ON} as a Function of V_S , V_D (Single Supply)

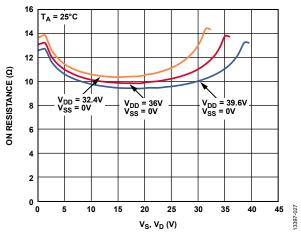


Figure 7. R_{ON} as a Function of V_S , V_D (Single Supply)

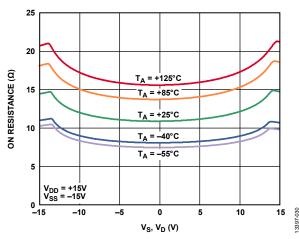


Figure 8. R_{ON} as a Function of V_S (V_D) for Different Temperatures, ± 15 V Dual Supply

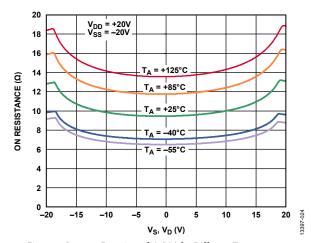


Figure 9. R_{ON} as a Function of V_S (V_D) for Different Temperatures, $\pm 20 \text{ V Dual Supply}$

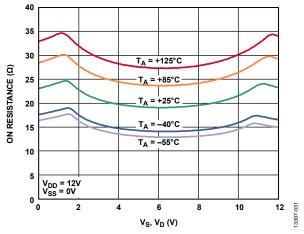


Figure 10. R_{ON} as a Function of V_S (V_D) for Different Temperatures, 12 V Single Supply

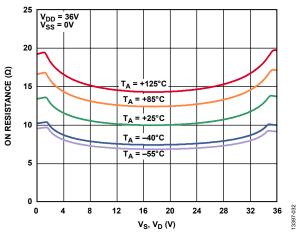


Figure 11. R_{ON} as a Function of V_D (V_S) for Different Temperatures, 36 V Single Supply

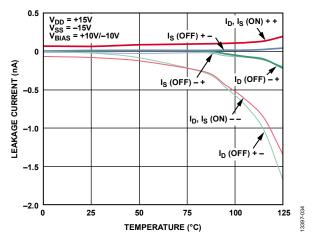


Figure 12. Leakage Currents vs. Temperature, ± 15 V Dual Supply

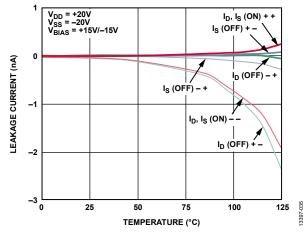


Figure 13. Leakage Currents vs. Temperature, ± 20 V Dual Supply

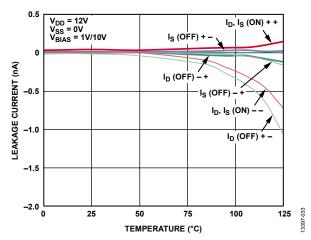


Figure 14. Leakage Currents vs. Temperature, 12 V Single Supply

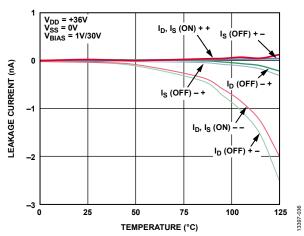


Figure 15. Leakage Currents vs. Temperature, 36 V Single Supply

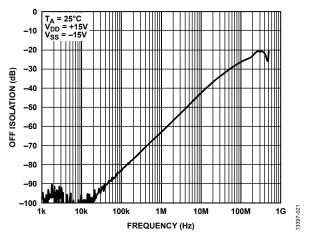


Figure 16. Off Isolation vs. Frequency, ±15 V Dual Supply

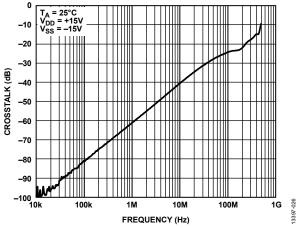


Figure 17. Crosstalk vs. Frequency, ±15 V Dual Supply

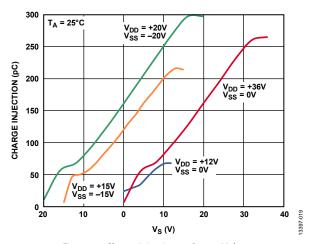


Figure 18. Charge Injection vs. Source Voltage

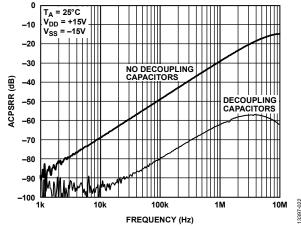


Figure 19. ACPSRR vs. Frequency, ±15 V Dual Supply

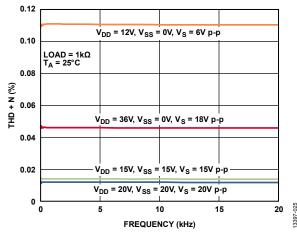


Figure 20. THD + N vs. Frequency

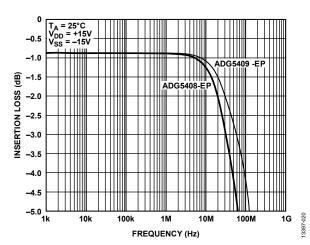


Figure 21. Bandwidth

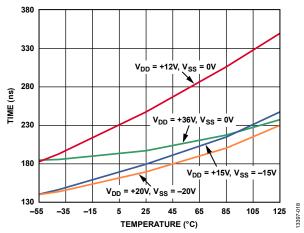


Figure 22. t_{TRANSITION} Times vs. Temperature

TEST CIRCUITS

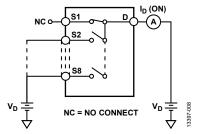


Figure 23. On Leakage

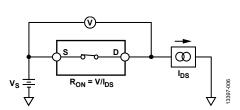


Figure 24. On Resistance

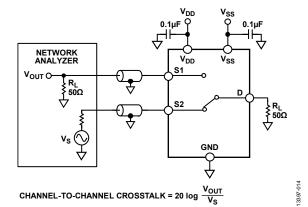
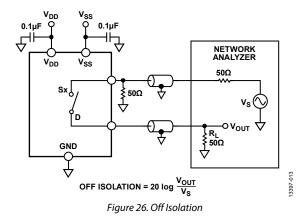



Figure 25. Channel-to-Channel Crosstalk

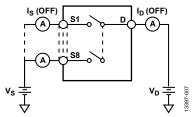


Figure 27. Off Leakage

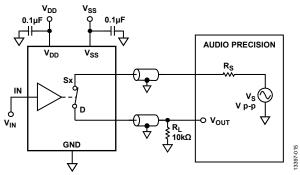


Figure 28. THD + Noise Figure

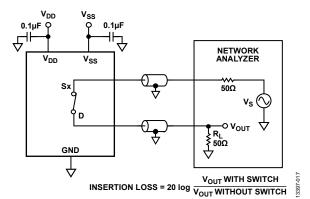


Figure 29. Bandwidth

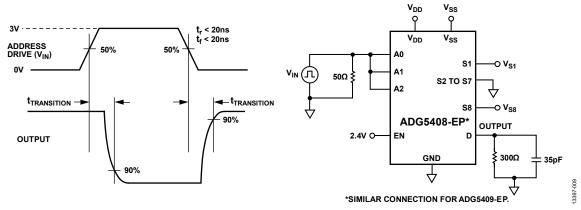


Figure 30. Address to Output Switching Times, ttransition

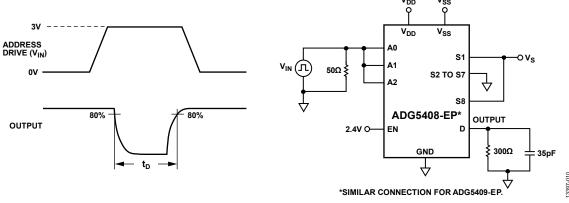


Figure 31. Break-Before-Make Delay, t_D

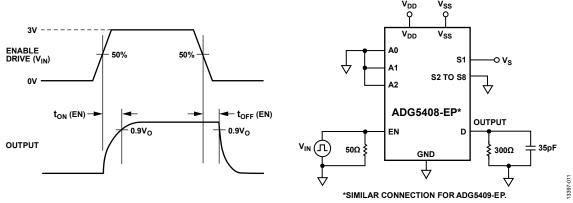


Figure 32. Enable Delay, ton (EN), toff (EN)

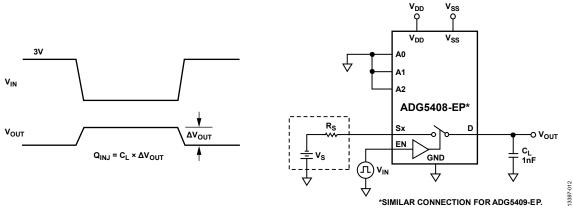
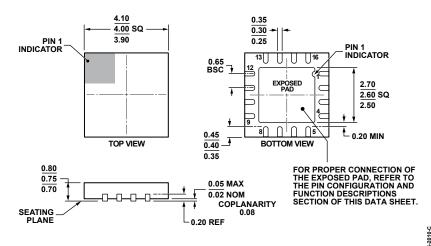



Figure 33. Charge Injection Rev. 0 | Page 17 of 18

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-16-17) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5408TCPZ-EP-RL7	−55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5408TCPZ-EP	−55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5409TCPZ-EP-RL7	−55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5409TCPZ-EP	−55°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

¹ Z = RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR
HEF4053BT.653 ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
LTC4305IDHD#PBF CD4053BPWRG4 74HC4053D.653 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112
74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D.112
74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ
AD7506JNZ AD7506KNZ