Data Sheet

FEATURES

Overvoltage protection up to - 55 V and +55 V
Power-off protection up to - 55 V and +55 V
Overvoltage detection on source pins
Low on resistance: 10Ω
On-resistance flatness of 0.5Ω
5.5 kV human body model (HBM) ESD rating

Latch-up immune under any circumstance
Known state without digital inputs present
V_{SS} to V_{DD} analog signal range
$\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual supply operation
8 V to 44 V single-supply operation
Fully specified at $\pm 15 \mathrm{~V}, \pm \mathbf{2 0} \mathrm{V}, \mathbf{+ 1 2} \mathrm{V}$, and $+\mathbf{3 6} \mathrm{V}$

APPLICATIONS

Analog input/output modules

Process control/distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems
Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG5412F

NOTES

1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.

Figure 2. ADG5413F

GENERAL DESCRIPTION

The ADG5412F and ADG5413F contain four independently controlled single-pole/single-throw (SPST) switches. The ADG5412F has four switches that turn on with Logic 1 inputs. The ADG5413F has two switches that turn on and two switches that turn off with Logic 1 inputs. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. The digital inputs are compatible with 3 V logic inputs over the full operating supply range.
When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. Under normal operating conditions, if the analog input signal levels on any $S x$ pin exceed $V_{D D}$ or $V_{S S}$ by a threshold voltage, V_{T}, the switch turns off. Input signal levels up to +55 V or -55 V relative to ground are blocked, in both the powered and unpowered condition.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 5
12 V Single Supply. 7
36 V Single Supply 9
Continuous Current per Channel, Sx or Dx 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 14
REVISION HISTORY
10/2017—Rev. B to Rev. C
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 1 3
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 2 7
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 4 9
Updated Outline Dimensions 28
Changes to Ordering Guide 28
1/2016-Rev. A to Rev. B
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Changes to Table 4 9
Changes to Switch Architecture Section 25
Test Circuits 19
Terminology 23
Theory of Operation 25
Switch Architecture 25
Fault Protection 26
Applications Information 27
Power Supply Rails 27
Power Supply Sequencing Protection 27
Signal Range 27
Low Impedance Channel Protection 27
High Voltage Surge Suppression 27
Intelligent Fault Detection 27
Large Voltage, High Frequency Signals 27
Outline Dimensions 28
Ordering Guide 28
3/2015-Rev. 0 to Rev. A
Added 16-Lead LFCSP Universal
Changes to Drain Leakage Current, $\mathrm{I}_{\mathrm{D}} /$ With Overvoltage Parameter, Table 3 7
Changes to Drain Leakage Current, $\mathrm{I}_{\mathrm{D}} /$ With Overvoltage Parameter, Table 4 9
Changes to Table 6 12
Added Figure 4, Renumbered Sequentially 13
Changes to Table 7 13
Changes to Figure 19 16
Changes to Figure 35 19
Changes to Figure 50 25
Changes to Applications Information Section 27
Updated Outline Dimensions 28
Changes to Ordering Guide 28
7/2014—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{C}_{\text {DECOUPLING }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 1.

[^0]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {DECOUPLING }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 2.

[^1]
12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {decoupling }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 3.

[^2]
36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{Dd}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Cdecoupling $=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 4.

[^3]
CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{aligned} & \text { 16-LEAD TSSOP } \\ & \theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 83 \\ & 64 \end{aligned}$	$\begin{aligned} & 59 \\ & 48 \end{aligned}$	$\begin{aligned} & 39 \\ & 29 \end{aligned}$	mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}}+4.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \text { 16-LEAD LFCSP } \\ & \theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 152 \\ & 118 \end{aligned}$	$\begin{aligned} & 99 \\ & 80 \end{aligned}$	$\begin{aligned} & 61 \\ & 52 \end{aligned}$	mA max mA max	$\begin{aligned} & \mathrm{V}_{S}=\mathrm{V}_{S S}+4.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	48 V
Vod to GND	-0.3 V to +48 V
$\mathrm{V}_{\text {ss }}$ to GND	-48 V to +0.3 V
Sx Pins	-55 V to +55 V
Sx to V $\mathrm{V}_{\text {d }}$ or $\mathrm{V}_{S S}$	80 V
V_{s} to V_{D}	80 V
Dx Pins ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.7 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs	GND -0.7 V to +48 V or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins	288 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, Sx or Dx Pins	Data ${ }^{2}+15 \%$
Digital Output	GND - 0.7 V to 6 V or 30 mA , whichever occurs first
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\text {JA }}$	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020
ESD (HBM: ANSI/ESD STM5.1-2007)	
I/O Port to Supplies	5.5 kV
I/O Port to I/O Port	5.5 kV
All Other Pins	5.5 kV

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. TSSOP Pin Configuration

NOTES:

1. THE EXPOSED PAD IS INTERNALLY CONNECTED. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE CONNECTED TO THE LOWEST SUPPLY VOLTAGE, $\mathrm{V}_{\text {SS }}$.

Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. This pin can be an input or an output.
3	1	S1	Overvoltage Protected Source Terminal. This pin can be an input or an output.
4	2	VSS	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Overvoltage Protected Source Terminal. This pin can be an input or an output.
7	5	D4	Drain Terminal. This pin can be an input or an output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. This pin can be an input or an output.
11	9	S3	Overvoltage Protected Source Terminal. This pin can be an input or an output.
12	10	FF	Fault Flag Digital Output. This pin has a high output when the device is in normal operation or a low 13
	11	Vhen a fault condition occurs on any of the Sx inputs.	
14	12	S2	Most Positive Power Supply Potential.
15	13	D2	Overvoltage Protected Source Terminal. This pin can be an input or an output.
16	14	IN2	Drain Terminal. This pin can be an input or an output.
	EP	Exposed Control Input.	The exposed pad is internally connected. For increased reliability of the solder joints and maximum
		Pad	thermal capability, it is recommended that the pad be connected to the lowest supply voltage, VSS.

Table 8. ADG5412F Truth Table

INx	Switch Condition (S1 to S4)
1	On
0	Off

Table 9. ADG5413F Truth Table

$\mathbf{I N x}$	Switch Condition	
	S1, S4	S2, S3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. RoN as a Function of V_{S}, V_{D} (Dual Supply)

Figure 6. Ron as a Function of V_{S}, V_{D} (12 V Single Supply)

Figure 7. Ron as a Function of V_{S}, V_{D} (36 V Single Supply)

Figure 8. Ron as a Function of V_{S}, V_{D} for Different Temperatures, ± 15 V Dual Supply

Figure 9. Ron as a Function of V_{S}, V_{D} for Different Temperatures, ± 20 V Dual Supply

Figure 10. Ron as a Function of V_{S}, V_{D} for Different Temperatures, 12 V Single Supply

Figure 11. Ron as a Function of V_{s}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 12. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 13. Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 14. Leakage Current vs. Temperature, 12 V Single Supply

Figure 15. Leakage Current vs. Temperature, 36 V Single Supply

Figure 16. Overvoltage Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 17. Overvoltage Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 18. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply

Figure 19. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply

Figure 20. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 21. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 22. Charge Injection vs. Source Voltage (Vs), Single Supply

Figure 23. Charge Injection vs. Source Voltage (Vs), Dual Supply

Figure 24. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 25. THD + N vs. Frequency, ± 15 V Dual Supply

Figure 26. Bandwidth vs. Frequency

Figure 27. ton, $t_{\text {off }}$ Times vs. Temperature

Figure 28. Threshold Voltage $\left(V_{T}\right)$ vs. Temperature

Figure 29. Drain Output Response to Positive Overvoltage

[^5]

Figure 31. Large Voltage Signal Tracking vs. Frequency

TEST CIRCUITS

Figure 32. On Resistance

Figure 33. Off Leakage

Figure 34. On Leakage

Figure 35. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{S}}$

Figure 36. Channel-to-Channel Crosstalk

Figure 37. Switch Overvoltage Leakage

Figure 38. Switch Unpowered Leakage

Figure 39. Bandwidth

Figure 41. Overvoltage Response Time, $t_{\text {RESPONSE }}$

*INCLUDES TRACK CAPACITANCE
Figure 42. Overvoltage Recovery Time, $t_{\text {RECOVERY }}$

Figure 43. Interrupt Flag Response Time, $t_{\text {DIGRESP }}$

Figure 48. Charge Injection, QiNJ

TERMINOLOGY

$I_{D D}$
$I_{\text {DD }}$ represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on the Dx pins and the Sx pins, respectively.
Ron
Ron represents the ohmic resistance between the Dx pins and the Sx pins.

Δ Ron

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat(ON) }}$
$\mathrm{R}_{\text {FLat(ON) }}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{ς} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), C_{s} (On)
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
C_{IN} is the digital input capacitance.
ton
ton represents the delay between applying the digital control input and the output switching on (see Figure 47).
$\mathbf{t}_{\text {off }}$
toff represents the delay between applying the digital control input and the output switching off (see Figure 47).
$t_{\text {D }}$
t_{D} represents the off time measured between the 90% point of both switches when switching from one address state to another.
$\boldsymbol{t}_{\text {digresp }}$
tdigresp is the time required for the FF pin to go low (0.3 V), measured with respect to voltage on the source pin exceeding the supply voltage by 0.5 V .

$t_{\text {digrec }}$

$t_{\text {Digrec }}$ is the time required for the FF pin to return high, measured with respect to voltage on the Sx pin falling below the supply voltage plus 0.5 V .
$\mathbf{t}_{\text {Response }}$
$\mathrm{t}_{\text {Response }}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 90% of the supply voltage.
$\mathbf{t}_{\text {Recovery }}$
$t_{\text {recovery }}$ represents the delay between an overvoltage on the Sx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 10% of the supply voltage.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
Total Harmonic Distortion Plus Noise (THD + N)
$\mathrm{THD}+\mathrm{N}$ is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

V_{T}

V_{T} is the voltage threshold at which the overvoltage protection circuitry engages. See Figure 28.

THEORY OF OPERATION

SWITCH ARCHITECTURE

Each channel of the ADG5412F/ADG5413F consists of a parallel pair of N -channel diffused metal-oxide semiconductor (NDMOS) and P-channel DMOS (PDMOS) transistors. This construction provides excellent performance across the signal range. The ADG5412F/ADG5413F channels operate as standard switches when input signals with a voltage between $V_{s s}$ and $V_{\text {DD }}$ are applied. For example, the on resistance is 10Ω typically and the appropriate control pin, INx, controls the opening or closing of the switch.
Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on the source pin with $V_{D D}$ and $V_{S S}$. A signal is considered overvoltage if it exceeds the supply voltages by the voltage threshold, V_{T}. The threshold voltage is typically 0.7 V , but can range from 0.8 V at $-40^{\circ} \mathrm{C}$ down to 0.6 V at $+125^{\circ} \mathrm{C}$. See Figure 28 to see the change in V_{T} with operating temperature.
The maximum voltage that can be applied to any source input is +55 V or -55 V . When the device is powered using the single supply of 25 V or greater, the maximum signal level reduces from -55 V to -40 V at $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}$ to remain within the 80 V maximum rating. Construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.

Figure 49. Switch Channel and Control Function
When an overvoltage condition is detected on a source pin, the switch is automatically opened regardless of the digital logic state, INx. The source and drain pins both become high impedance and ensure that no current flows through the switch. In Figure 29, the voltage on the drain pin can be seen to follow the voltage on the source pin until the switch has turned off completely and the drain voltage discharges through the load. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the pin. The ADG5412BF/ADG5413BF are pin-compatible devices that are overvoltage protected on both the source and drain pins.

During overvoltage conditions, the leakage current into and out of the source pins is limited to tens of microamperes and only nanoamperes for the drain pins. This limit protects the switch and connected circuitry from overstresses as well as restricting the current drawn from the signal source. When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

ESD Performance

The ADG5412F/ADG5413F have an ESD rating of 5.5 kV for the human body model (HBM).
The drain pins have ESD protection diodes to the rails and the voltage at these pins must not exceed supply voltage. The source pins have specialized ESD protection that allow the signal voltage to reach $\pm 55 \mathrm{~V}$ regardless of supply voltage level. See Figure 49 for switch channel overview.

Trench Isolation

In the ADG5412F and ADG5413F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances. These devices pass a JESD78D latchup test of $\pm 500 \mathrm{~mA}$ for 1 sec , which is the harshest test in the specification.

Figure 50. Trench Isolation

ADG5412F/ADG5413F

FAULT PROTECTION

When the voltages at the source inputs exceed V_{DD} or $\mathrm{V}_{S S}$ by V_{T}, the switch turns off or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state or the load resistance and the output acts as a virtual open circuit. Signal levels up to +55 V and -55 V are blocked in both the powered and unpowered condition as long as the 80 V limitation between the source and supply pins is met.

Power-On Protection

The following three conditions must be satisfied for the switch to be in the on condition:

- V_{DD} to $\mathrm{V}_{\mathrm{SS}} \geq 8 \mathrm{~V}$
- Input signal is between $V_{S S}-V_{T}$ and $V_{D D}+V_{T}$
- Digital logic control input, INx, is turned on

When the switch is turned on, signal levels up to the supply rails are passed.
The switch responds to an analog input that exceeds $V_{D D}$ or $V_{S S}$ by a threshold voltage, V_{T}, by turning off. The absolute input voltage limits are -55 V and +55 V , while maintaining an 80 V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between $V_{D D}$ and $V_{S S}$.

The fault response time ($\mathrm{t}_{\text {RESPONSE }}$) when powered by $\pm 15 \mathrm{~V}$ dual supply is typically 460 ns and the fault recovery time (trecovery) is 720 ns. These vary with supply voltages and output load conditions.
Exceeding $\pm 55 \mathrm{~V}$ on any source input may damage the ESD protection circuitry on the device.
The maximum stress across the switch channel is 80 V , therefore, the user must pay close attention to this limit if using the device in a multiplexed configuration and one channel is on while another channel is in a fault condition.

For example, consider the case where the device is set up in a multiplexer configuration as shown in Figure 51.

- $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 22 \mathrm{~V}, \mathrm{~S} 1=22 \mathrm{~V}$, all switches are on
- D1 is externally multiplexed with D2; therefore, D1 and $\mathrm{D} 2=22 \mathrm{~V}$
- S2 has a -55 V fault and S 3 has $\mathrm{a}+55 \mathrm{~V}$ fault
- The voltage between S 2 and D 1 or between S 2 and $\mathrm{D} 2=$ $+22 \mathrm{~V}-(-55 \mathrm{~V})=+77 \mathrm{~V}$
- The voltage between S3 and D3 $=55 \mathrm{~V}-0 \mathrm{~V}=55 \mathrm{~V}$

These calculations are all within device specifications: 55 V maximum fault on source inputs and a maximum of 80 V across the off switch channel.

Figure 51. ADG5413F in Multiplexer Configuration under Overvoltage Conditions

Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.
The switch remains off regardless of whether the $V_{D D}$ and $V_{S S}$ supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to $\pm 55 \mathrm{~V}$ are blocked in the unpowered condition.

Digital Input Protection

The ADG5412F and the ADG5413F can tolerate digital input signals being present on the device without power. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.

The digital inputs are protected against positive faults up to 44 V . The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

Overvoltage Interrupt Flag

The voltages on the source inputs of the ADG5412F and the ADG5413F are continuously monitored and the state of the switch is indicated by an active low digital output pin, FF.
The voltage on the FF pin indicates if any of the source input pins are experiencing a fault condition. The output of the FF pin is a nominal 3 V when all source pins are within normal operating range. If any source pin voltage exceeds the supply voltage by V_{T}, the FF output reduces to below 0.8 V .

APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

POWER SUPPLY RAILS

To guarantee correct operation of the device, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.
The ADG5412F and the ADG5413F can operate with bipolar supplies between $\pm 5 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. The supplies on VDD and VSS need not be symmetrical but the VDD to VSS range must not exceed 44 V . The ADG5412F and the ADG5413F can also operate with single supplies between 8 V and 44 V with VSS connected to GND.

These devices are fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V supply ranges.

POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the device is unpowered and signals from -55 V to +55 V can be applied without damaging the device. Only when the supplies are connected, a suitable digital control signal is placed on the INx pin, and the signal is within normal operating range does the switch channel close. Placing the ADG5412F/ADG5413F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

SIGNAL RANGE

The ADG5412F/ADG5413F switches have overvoltage detection circuitry on their inputs that compares the voltage levels at the source terminals with $V_{\text {DD }}$ and $V_{\text {ss. }}$. To protect downstream circuitry from overvoltages, supply the ADG5412F/ADG5413F with voltages that match the intended signal range. The low on-resistance switch allows signals up to the supply rails to be passed with very little distortion. A signal that exceeds the supply rail by the threshold voltage is then blocked. This signal block offers protection to both the device and any downstream circuitry.

LOW IMPEDANCE CHANNEL PROTECTION

The ADG5412F/ADG5413F can be used as protective elements in signal chains that are sensitive to both channel impedance and overvoltage signals. Traditionally, series resistors are used to limit the current during an overvoltage condition to protect susceptible components.

These series resistors affect the performance of the signal chain and reduce the precision that can be reached. A compromise must be reached on the value of the series resistance that is high enough to sufficiently protect sensitive components but low enough that the precision performance of the signal chain is not sacrificed.

The ADG5412F/ADG5413F enable the designer to remove these resistors and retain the precision performance without compromising the protection of the circuit.

HIGH VOLTAGE SURGE SUPPRESSION

The ADG5412F/ADG5413F are not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V . In applications where the inputs are likely to be subject to overvoltages exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar.

INTELLIGENT FAULT DETECTION

The ADG5412F/ADG5413F digital output pin, FF, can interface with a microprocessor or control system and be used as an interrupt flag. This feature provides real-time diagnostic information on the state of the device and the system to which it connects.

The control system can use the digital interrupt to start a variety of actions, such as

- Initiating investigation into the source of the overvoltage fault
- Shutting down critical systems in response to the overvoltage
- Data recorders marking data during these events as unreliable or out of specification

For systems that are sensitive during a start-up sequence, the active low operation of the flag allows the system to ensure that the ADG5412F/ADG5413F are powered on and that all input voltages are within normal operating range before initiating operation.
The FF pin is a weak pull-up, which allows the signals to be combined into a single interrupt for larger modules that contain multiple devices.

The recovery time, tigrec, can be decreased from a typical $60 \mu \mathrm{~s}$ to 600 ns by using a $1 \mathrm{k} \Omega$ pull-up resistor.

LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 31 illustrates the voltage range and frequencies that the ADG5412F/ADG5413F can reliably convey. For signals that extend across the full signal range from $V_{s s}$ to $V_{D D}$, keep the frequency below 3 MHz . If the required frequency is greater than 3 MHz , decrease the signal range appropriately to ensure signal integrity.

ADG5412F/ADG5413F

OUTLINE DIMENSIONS

Figure 52. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 53.16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5412FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5412FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5412FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-16-17$
EVAL-ADG5412FEBZ		Evaluation Board	
ADG5413FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5413FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5413FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-16-17$

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at the Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^5]: Figure 30. Drain Output Response to Negative Overvoltage

