FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: $\mathbf{8 k V}$
Low on resistance: 13.5Ω $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
$V_{\text {DD }}$ to $V_{s s}$ analog signal range

APPLICATIONS

High voltage signal routing
 Automatic test equipment
 Analog front-end circuits
 Precision data acquisition
 Industrial instrumentation
 Amplifier gain select
 Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 0 INPUT
Figure 1. ADG5421

SWITCHES SHOWN FOR A LOGIC 0 INPUT $\stackrel{\text { og }}{\text { I }}$
Figure 2. ADG5423

GENERAL DESCRIPTION

The ADG5421/ADG5423 are monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switches containing two independent latch-up immune single-pole/single-throw (SPST) switches. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. Both ADG5421 switches are turned on with a Logic 1 input, whereas the ADG5423 has one switch turned on and one switch turned off for a Logic 1 input. The ADG5423 exhibits break-before-make action for use in multiplexer applications.
The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Low Ron of 13.5Ω.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5421/ADG5423 can operate from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5421/ADG5423 can operate from a single-rail power supply up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\text {INH }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.
7. Available in 10 -lead MSOP and 10 -lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply6
REVISION HISTORY
1/15—Rev. 0 to Rev. A
Added 10-Lead LFCSP Package Universal
Changes to Table 5 7
Added Figure 3, Renumbered Sequentially; Changes to Table 7..... 9
Changes to Figure 5 10
Changes to Figure 30 14
Updated Outline Dimensions 17
Changes to Ordering Guide 17
Continuous Current per Channel, Sx or Dx7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics. 10
Test Circuits 13
Terminology 15
Applications Information 16
Trench Isolation 16
Outline Dimensions 17
Ordering Guide 17

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]
ADG5421/ADG5423

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.1 \\ & 0.8 \\ & 2.3 \\ & 2.7 \\ & \hline \end{aligned}$	18 1.3 3.3	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 22 \\ & 1.4 \\ & 3.7 \\ & \hline \end{aligned}$	Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { see Figure } 25 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $\mathrm{I}_{0}(\mathrm{On})$, $\mathrm{Is}(\mathrm{On})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	± 1 ± 1 ± 4	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 20 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbf{N H}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, linl or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{I}	0.002		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	\vee min \checkmark max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS` ton tofF Break-Before-Make Time Delay, to (ADG5423 Only) Charge Injection, QiNJ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss CS (Off) CD (Off) CD(On), Cs (On)```	$\begin{aligned} & 168 \\ & 199 \\ & 156 \\ & 184 \\ & 65 \\ & 120 \\ & \\ & -55 \\ & \\ & -85 \\ & 0.01 \\ & \\ & 250 \\ & -0.8 \\ & 11 \\ & 12 \\ & 44 \end{aligned}$	243 204	$\begin{aligned} & 276 \\ & 218 \\ & 38 \end{aligned}$	ns typ   ns max ns typ ns max ns typ ns min pC typ   dB typ   dB typ   \% typ   MHz typ   dB typ   pF typ   pF typ   pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see   Figure 30   $V_{S}=10 \mathrm{~V}$; see Figure 30   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 30   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 32   $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see   Figure 31   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 26   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see   Figure 29   $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz ; see Figure 27   $R_{L}=50 \Omega, C_{L}=5 p F$; see Figure 28   $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$;   see Figure 28 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS   ldo Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		110   1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   $V$ min/V max	$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$   Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ $\mathrm{GND}=0 \mathrm{~V}$

[^1]
## 12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range   On Resistance, Ron   On-Resistance Match Between Channels, $\Delta$ Ron   On-Resistance Flatness, Relat (on)	$\begin{aligned} & 26 \\ & 30 \\ & 0.1 \\ & 1 \\ & 5.5 \\ & 6.8 \end{aligned}$	38 1.5 8.3	0 V to $\mathrm{V}_{\mathrm{DD}}$   44   1.6   12.3	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see   Figure 25 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, $I_{0}$ (Off)   Channel On Leakage, Io (On), Is (On)	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\pm 1$ $\pm 1$ $\pm 4$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 20 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; see } \end{aligned}$   Figure 24   $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$ to 1 V ; see Figure 24 $V_{S}=V_{D}=1 \mathrm{~V} \text { to } 10 \mathrm{~V} \text {; see Figure } 23$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{NH}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{N L}}$ Input Current, linl or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	$\vee$ min   $V$ max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS' ton toff Break-Before-Make Time Delay, to (ADG5423 Only) Charge Injection, Qim Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss Cs (Off) CD (Off) CD (On), Cs (On)```	295   370   192   235   142   55   -55   -85   0.03   290   -1.7   14   15   38	470 273	540   295   78	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ   MHz typ dB typ   pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 30   $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 30   $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$   $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=8 \mathrm{~V}$; see Figure 32   $\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see   Figure 31   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 26   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see   Figure 29   $R_{L}=1 \mathrm{k} \Omega, 6 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to   20 kHz ; see Figure 27   $R_{L}=50 \Omega, C_{L}=5 p F$; see Figure 28   $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see   Figure 28 $\begin{aligned} & V_{s}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS lod $V_{D D}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 65 \\ & 9 / 40 \\ & \hline \end{aligned}$	μA typ $\mu \mathrm{A}$ max $V \min / V \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$

[^2]
36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Relat (on)	$\begin{aligned} & 14.5 \\ & 16 \\ & 0.1 \\ & \\ & 0.8 \\ & 3.5 \\ & 4.3 \\ & \hline \end{aligned}$	20 1.3 5.5	0 V to V_{DD} 24 1.4 6.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 25 \\ & \mathrm{~V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, Io (Off) Channel On Leakage, Io (On), Is (On)	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	± 1 ± 1 ± 4	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; see } \end{aligned}$ Figure 24 $\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V}$ to 1 V ; see Figure 24 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V} \text {; see Figure } 23$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, $\mathrm{V}_{\mathbb{N L}}$ Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	0.002		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
```DYNAMIC CHARACTERISTICS \({ }^{1}\) ton toff Break-Before-Make Time Delay, to (ADG5423 Only) Charge Injection, Qinj Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss \(\mathrm{C}_{\mathrm{s}}\) (Off) \(\mathrm{C}_{\mathrm{D}}\) (Off) \(\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})\)```	$\begin{aligned} & 181 \\ & 210 \\ & 170 \\ & 192 \\ & 66 \\ & \\ & 110 \\ & -55 \\ & -85 \\ & 0.01 \\ & 260 \\ & -0.9 \\ & 13 \\ & 16 \\ & 38 \\ & \hline \end{aligned}$	245 205	280 220 37	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ   MHz typ dB typ   pF typ pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=18 \mathrm{~V} \text {; see Figure } 32 \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 18 \mathrm{~V}, \mathrm{p}, \mathrm{f}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \hline \end{aligned}$
POWER REQUIREMENTS ID $V_{D D}$	$\begin{aligned} & 80 \\ & 100 \end{aligned}$		$\begin{aligned} & 130 \\ & 9 / 40 \\ & \hline \end{aligned}$	$\mu A$ typ   $\mu \mathrm{A}$ max   $V$ min $/ V$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$

[^3]CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx
Table 5.

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					$\theta_{J A}=133.1^{\circ} \mathrm{C} / \mathrm{W}$
$10-L e a d ~ M S O P$					
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	84	58	39	mA maximum	
$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	89	60	41	mA maximum	
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	67	47	32	mA maximum	
$V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	87	59	40	mA maximum	
$10-L e a d$ LFCSP				$\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$	
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	129	80	48	mA maximum	
$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	135	83	50	mA maximum	
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	103	37	43	mA maximum	
$V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	132	82	49	mA maximum	

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 6.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins	300 mA (pulsed at 1 ms , $10 \%$ duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\mathrm{JA}}$	
10-Lead MSOP (4-Layer Board)	$133.1{ }^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead LFCSP	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



## NOTES

 1. NC = NO CONNECT. NOT INTERNALLY CONNECTED.Figure 3. MSOP Pin Configuration


NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 1. EXPOSED PAD TIED TO SUBSTRATE, $V_{\text {SS }}$.

Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

MSOP Pin No. ${ }^{1}$	LFCSP Pin No.	Mnemonic	Description
1	1	S1	Source Terminal 1. This pin can be an input or output.
2	2	S2	Source Terminal 2. This pin can be an input or output.
3	3	NC	No Connect. Not internally connected.
4	4	GND	Ground (0 V) Reference.
5	5	VDD 2	Most Positive Power Supply Potential.
6	6	IN2	Logic Control Input.
7	7	IN1	Logic Control Input.
8	8	V $_{\text {SS }}$	Most Negative Power Supply Potential.
9	9	D2	Drain Terminal 2. This pin can be an input or output.
10	10	D1	Drain Terminal 1.This pin can be an input or output.
N/A	EPAD		Exposed Pad. The exposed pad is tied to substrate, VSS.

${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

Table 8. ADG5421 Truth Table

INx	Switch Conditions
0	Off
1	On

Table 9. ADG5423 Truth Table

INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
1	On	Off

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 5. On Resistance as a Function of $V_{S}, V_{D}$ (Dual Supply: $\pm 10 \mathrm{~V}, \pm 15 \mathrm{~V}$ )


Figure 6. On Resistance as a Function of $V_{S}, V_{D}$ (Dual Supply: $\pm 20 \mathrm{~V}$ )


Figure 7. On Resistance as a Function of $V_{S}, V_{D}$ (Single Supply: $10 \mathrm{~V}, 12 \mathrm{~V}$ )


Figure 8. On Resistance as a Function of $V_{S}, V_{D}$ (Single Supply: 36 V )


Figure 9. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 15$ V Dual Supply


Figure 10. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, $\pm 20$ V Dual Supply


Figure 11. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply


Figure 12. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply


Figure 13. Leakage Currents as a Function of Temperature, $\pm 15$ V Dual Supply


Figure 14. Leakage Currents as a Function of Temperature, $\pm 20$ V Dual Supply


Figure 15. Leakage Currents as a Function of Temperature, 12 V Single Supply


Figure 16. Leakage Currents as a Function of Temperature, 36 V Single Supply


Figure 17. Off Isolation vs. Frequency


Figure 18. Crosstalk vs. Frequency


Figure 19. Charge Injection vs. Source Voltage (Vs)


Figure 20. $T H D+N$ vs. Frequency


Figure 21. Bandwidth


Figure 22. $t_{\text {TRANSITION }}$ Times vs. Temperature

## TEST CIRCUITS




Figure 31. Charge Injection


Figure 32. Break-Before-Make Time Delay

## TERMINOLOGY

## IdD

IdD represents the positive supply current.
Iss
Iss represents the negative supply current.

## $V_{D}, V_{s}$

$\mathrm{V}_{\mathrm{D}}$ and $\mathrm{V}_{\mathrm{S}}$ represent the analog voltage on Terminal D and Terminal S, respectively.

## Ron

Ron is the ohmic resistance between Terminal D and Terminal S.
$\Delta$ Ron
$\Delta \mathrm{R}_{\mathrm{ON}}$ represents the difference between the $\mathrm{R}_{\mathrm{ON}}$ of any two channels.
$\mathrm{R}_{\text {flat (on) }}$
$\mathrm{R}_{\text {FLat (ON) }}$ represents the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$I_{s}$ (Off)
Is (Off) is the source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
$\mathrm{I}_{\mathrm{D}}$ (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{s}}(\mathrm{On})$ represent the channel leakage currents with the switch on.

VINL
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
$\mathrm{C}_{\mathrm{D}}$ (Off)
$C_{D}$ (Off) represents the off switch drain capacitance, which is measured with reference to ground.

## Cs (Off)

Cs (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{d}}$ (On), Cs (On)
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.

## Cin

$\mathrm{C}_{\mathrm{IN}}$ represents digital input capacitance.
ton
ton represents the delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition.
$\mathbf{t}_{\text {off }}$
$t_{\text {off }}$ represents the delay time between the $50 \%$ and $90 \%$ points of the digital input and switch off condition.

## t

$t_{D}$ represents the off time measured between the $80 \%$ point of both switches when switching from one address state to another.

## Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

## Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB from its dc level.

## Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD +N .

## APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5421/ ADG5423 high voltage switches allow single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5421/ADG5423 (as well as other select devices within this family) achieve an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

## TRENCH ISOLATION

In the ADG5421/ADG5423, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.


Figure 33. Trench Isolation

## OUTLINE DIMENSIONS



Figure 34. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin, Dual Lead
(CP-10-9)
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 35. 10-Lead Mini Small Outline Package [MSOP]
(RM-10)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG5421BCPZ-RL7 $^{2}-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	BN	
ADG5421BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package $[$ MSOP $]$	RM-10	S47
ADG5421BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S47
ADG5423BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	BM
ADG5423BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S3D
ADG5423BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S3D

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF


[^0]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]:    ${ }^{1}$ Overvoltages at the $\mathrm{INx}, \mathrm{Sx}$, and Dx pins are clamped by internal diodes.
    Limit current to the maximum ratings given.
    ${ }^{2}$ See Table 5.

