Data Sheet

FEATURES

Overvoltage fault protection up to $\pm 60 \mathrm{~V}$ on S 1 and $\mathbf{S 2}$ pins Power-off protection up to $\pm 60 \mathrm{~V}$ on S 1 and S 2 pins
Known state without digital inputs present
Low on resistance of 11Ω typical
Ultraflat, on resistance
Latch-up immune under any circumstance
3.5 kV human body model (HBM) ESD rating
V_{sS} to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ signal range
Fully specified at $\pm \mathbf{1 5} \mathrm{V}, \pm \mathbf{2 0} \mathrm{V}, \mathbf{+ 1 2} \mathrm{V}$, and $+\mathbf{3 6} \mathrm{V}$
$\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
8 V to 44 V single-supply operation
10-lead, $3 \mathrm{~mm} \times 2 \mathrm{~mm}$, LFCSP

APPLICATIONS

Analog input and output modules

Process control and distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems

Relay replacement

GENERAL DESCRIPTION

The ADG5421F is a dual SPST, low on resistance switch that features overvoltage protection, power-off protection, and overvoltage detection on the source pins.

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. When powered, if the analog input signal levels on either of the Sx pins exceed V_{DD} or V_{SS} by the threshold voltage, V_{T}, both switches turn off together, and the open-drain fault flag (FF) pin pulls to a logic low. Input signal levels up to +60 V or -60 V relative to ground are blocked in both the powered and unpowered condition.

The switches turn on with a Logic 1 input and conduct equally well in both directions. The digital input is compatible with 1.8 V logic inputs over the full operating supply range.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

COMPANION PRODUCTS
Precision 24-Bit ADC: AD7768-1
Precision 16-Bit, 2 MSPS SAR ADC: AD4000

PRODUCT HIGHLIGHTS

1. Source pins are protected against voltages greater than the supply rails, up to -60 V and +60 V in both powered and unpowered state.
2. Overvoltage detection with digital output indicates operating state of switches.
3. Trench isolation guards against latch-up.
4. The ADG5421F can operate from a dual supply of $\pm 5 \mathrm{~V}$ up to $\pm 22 \mathrm{~V}$ or a single power supply of +8 V up to +44 V .
5. Negative channel metal oxide semiconductor (NMOS) only architecture requires 2 V headroom towards V_{DD} and provides low Ron and low Ron flatness across the signal range of $\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$.

ADG5421F

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Companion Products 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 5
12 V Single Supply 8
36 V Single Supply 11
Continuous Current per Channel, S or D 13
Absolute Maximum Ratings 14
Thermal Resistance 14
Electrostatic Discharge (ESD) Ratings 14
ESD Caution 14
Pin Configuration and Function Descriptions 15
Typical Performance Characteristics 16
Test Circuits 21
Terminology 25
Theory of Operation 26
Switch Architecture 26
Overvoltage Fault Protection 27
Applications Information 28
Power Supply Rails 28
Power Supply Recommendations 28
Power Supply Sequencing Protection 28
Signal Range 28
Intelligent Fault Detection 28
Switch in a Known State 28
High Voltage Surge Suppression 29
Related Products 30
Outline Dimensions 31
Ordering Guide 31

REVISION HISTORY

10/2020-Revision 0: Initial Version

SPECIFICATIONS

Table 1. Operating Supply Voltages

Parameter	Min	Typ	Max
SUPPLY VOLTAGE			Unit
Dual	± 5	± 22	
Single	8		V

± 15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, and GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
-3 dB Bandwidth	630			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}$, see Figure 38
Insertion Loss	-0.95			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 38
Source Off Capacitance, Cs (Off)	7			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain Off Capacitance, CD (Off)	5			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain On Capacitance and Source On Capacitance, $\mathrm{C}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$	11			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain On Capacitance and Source On Capacitance Flatness, Cdflat (On) and $\mathrm{C}_{\text {sflat }}$ (On)	2.5			pF typ	$\mathrm{V}_{S}=\mathrm{V}_{S S}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Capacitance Matching, $\mathrm{C}_{\text {MATCH }}$ (On)	0.3			pF typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \\ & \text { digital inputs }=0 \mathrm{~V} \text { or }+5 \mathrm{~V} \end{aligned}$
Normal Mode					
Positive Supply Current, IDD	130			$\mu \mathrm{A}$ typ	
	205		205	$\mu \mathrm{A}$ max	
GND Current, IGND	55			$\mu \mathrm{A}$ typ	
	90		90	$\mu \mathrm{A}$ max	
Negative Supply Current, Iss	75			$\mu \mathrm{A}$ typ	
	115		115	$\mu \mathrm{A}$ max	
Fault Mode					$\mathrm{V}_{\mathrm{s}}= \pm 60 \mathrm{~V}$
IDD	185			$\mu \mathrm{A}$ typ	
	270		270	$\mu \mathrm{A}$ max	
IGnd	155			$\mu \mathrm{A}$ typ	
	210		210	$\mu \mathrm{A}$ max	
Iss	55			$\mu \mathrm{A}$ typ	
	90		90	$\mu \mathrm{A}$ max	

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%$, and GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					$\mathrm{V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V}$
Analog Signal Range	$\begin{aligned} & V_{S S} \text { to } \\ & V_{D D}-2 \end{aligned}$			V	
Ron	11.5			Ω typ	$\begin{aligned} & V_{s}=V_{s s} \text { to } 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}, \\ & \text { see Figure } 31 \end{aligned}$
	14	17.5	20.5	Ω max	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to 15 V , $\mathrm{l}=10 \mathrm{~mA}$
	11			Ω typ	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to $13.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
	13.5	17	20	Ω max	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to $13.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
$\mathrm{Rflat}_{\text {(ON) }}$	0.6			Ω typ	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to 15 V , $\mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
	0.7	0.8	0.9	Ω max	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to 15 V , $\mathrm{l}=10 \mathrm{~mA}$
	0.02			Ω typ	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to $13.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
	0.06	0.1	0.1	Ω max	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to $13.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
RMATCH (ON)	0.02			Ω typ	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to 15 V , $\mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}$
	0.2	0.35	0.45	Ω max	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ss }}$ to 15 V , $\mathrm{l}=10 \mathrm{~mA}$

ADG5421F

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \pm 10 \%$, and $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
DIGITAL INPUTS AND OUTPUTS $\mathrm{V}_{\mathrm{INH}}$ $\mathrm{V}_{\text {INL }}$ linz or linh Cin VoL	0.7 5 0.4		1.3 0.8 1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ V max	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{FF}}=2 \mathrm{~mA} \end{aligned}$
DYNAMIC CHARACTERISTICS					
ton	5.3	6.3	6.3	$\mu \mathrm{styp}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{s}}=8 \mathrm{~V}, \\ & \text { see Figure } 45 \end{aligned}$
	6.3			μs max	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{S}=8 \mathrm{~V}$
$\mathrm{t}_{\text {OFF }}$	200			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V},$ see Figure 45
t_{0}	240	240	240	ns max $\mu \mathrm{styp}$ $\mu \mathrm{s}$ min	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$
	4.5				$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$
	3.5	3.4	3.4		$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$
$t_{\text {RESPONSE }}$					
Positive	210			ns typ	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF}, \text { see Figure } 40 \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$
	250	250	250	ns max ns typ	
Negative	600				Reuluup $=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, see Figure 41
	700	700	700	ns max $\mu \mathrm{styp}$	$\mathrm{R}_{\text {PuLLup }}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
$\mathrm{trecoverr}^{\text {r }}$	5.3				$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=5 \mathrm{pF}$, see Figure 42
	6.2	6.5	6.6	$\mu \mathrm{s}$ max ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
toigresp	110				$R_{\text {PuLLup }}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$, VPUL_UP $=5 \mathrm{~V}$, see Figure 43
	130	130	130	ns max $\mu \mathrm{styp}$	Reuluep $=1 \mathrm{k} \Omega, \mathrm{CL}_{\text {L }}=12 \mathrm{pF}, \mathrm{V}_{\text {PuLL_UP }}=5 \mathrm{~V}$
$t_{\text {digrec }}$	1.6				$R_{\text {PuLLup }}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$, VPULL_UP $=5 \mathrm{~V}$, see Figure 44
	2.1	2.4	2.4	μs max	Reuluep $=1 \mathrm{k} \Omega, \mathrm{C}_{\text {L }}=12 \mathrm{pF}, \mathrm{V}_{\text {PULL_UP }}=5 \mathrm{~V}$
Qins	-75			pC typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see Figure 46
Off Isolation	-69			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 36
Channel to Channel Crosstalk	-78			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ see Figure 37
THD + N	0.0018			\% typ	$\begin{aligned} & \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V} \mathrm{p}-\mathrm{p}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {, see Figure } 39 \end{aligned}$
-3 dB Bandwidth	570			MHz typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 38
Insertion Loss	-0.95			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see Figure 38
$\mathrm{Cs}_{\text {(}}$ (Off)	8			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	7			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}(\mathrm{On}), \mathrm{Cs}$ (On)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {dFlat }}(\mathrm{On}), \mathrm{C}_{\text {SFLat }}(\mathrm{On})$	2			pF typ	$\mathrm{V}_{S}=\mathrm{V}_{S S}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Смmatch (On)	0.4			pF typ	$\mathrm{V}_{S}=\mathrm{V}_{S S}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V} \pm 10 \%$, and GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 5.

ADG5421F

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \\ & \text { digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$
Normal Mode					
ldo	125		200	$\mu \mathrm{A}$ typ	
	200			$\mu \mathrm{A}$ max	
IGnd	45			$\mu \mathrm{A}$ typ	
	80		80	$\mu \mathrm{A}$ max	
Iss	80			$\mu \mathrm{A}$ typ	
	120		120	$\mu \mathrm{A}$ max	
Fault Mode					$\mathrm{V}_{\mathrm{s}}=+60 \mathrm{~V}$ and $\mathrm{V}_{s}=-40 \mathrm{~V}$
IDD	185			$\mu \mathrm{A}$ typ	
	270		270	$\mu \mathrm{A}$ max	
$I_{\text {gnd }}$	155			$\mu \mathrm{A}$ typ	
	210		210	$\mu \mathrm{A}$ max	
Iss	55			$\mu \mathrm{A}$ typ	
	90		90	$\mu \mathrm{A}$ max	

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 6.

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S OR D					
$\theta_{\mathrm{JA}}=170^{\circ} \mathrm{C} / \mathrm{W}$	88	61	41	mA max	$\mathrm{V}_{S}=\mathrm{V}_{S S}$ to $V_{D D}-5 \mathrm{~V}$
	81	57	39	mA max	$\mathrm{V}_{S}=\mathrm{V}_{S S}$ to $V_{D D}-2 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Value
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	60 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	-28 V to +0.3 V
Sx Pins	-60 V to +60 V
Sx to VDD	80 V
Sx to Vss	80 V
V_{s} to VD	80 V
Dx Pins ${ }^{1}$	$\mathrm{V}_{S S}-0.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs	GND - 0.7 V to 6 V or 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins	278 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Digital Output	GND - 0.7 V to 6 V or 30 mA , whichever occurs first
Temperature	
Operating Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak, Pb-Free	As per JEDEC J-STD-020

${ }^{1}$ Overvoltages at the Dx pins are clamped by the internal diodes. Limit current to the maximum ratings given.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JA} is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.
θ_{JC} is the junction to case thermal resistance.
Table 8. Thermal Resistance

Package Type 1	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{JC}}$	Unit
$\mathrm{CP}-10-16$	170	58.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
ESD Ratings for ADG5421F
Table 9. ADG5421F, 10-Lead LFCSP

ESD Model	Withstand Threshold (kV)	Class
HBM 1	3.5	2

${ }^{1}$ This is the HBM for the input and output port to supplies, the input and output port to the input and output port, and for all other pins.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Overvoltage Protected Source Terminal. S1 can be an input or an output.
2	S2	Overvoltage Protected Source Terminal. S2 can be an input or an output.
3	FF	Fault Flag Digital Output. The FF pin is an open-drain output that requires an external pull-up resistor. This digital output pulls low when a fault condition occurs on either of the Sx inputs.
4	GND	Ground (0 V) Reference.
5	VDD	Most Positive Power Supply Potential.
6	V $_{\text {SS }}$	Most Negative Power Supply Potential.
7	IN2	Logic Control Input.
8	IN1	Logic Control Input.
9	D2	Drain Terminal. D1 can be an input or an output.
10	D1	Drain Terminal. D2 can be an input or an output.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of $V_{s,}, V_{D}$ (Dual Supply)

Figure 4. On Resistance as a Function of V_{S}, V_{D} (12 V Single Supply)

Figure 5. On Resistance as a Function of V_{S}, V_{D} (36 V Single Supply)

Figure 6. On Resistance as a Function of V_{S}, V_{D} for Different Temperatures, ± 15 V Dual Supply

Figure 7. On Resistance as a Function of V_{S}, V_{D} for Different Temperatures, ± 20 V Dual Supply

Figure 8. On Resistance as a Function of V_{S}, V_{D} for Different Temperatures, 12 V Single Supply

Figure 9. On Resistance as a Function of V_{S}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 10. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 11. Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 12. Leakage Current vs. Temperature, 12 V Single Supply

Figure 13. Leakage Current vs. Temperature, 36 V Single Supply

Figure 14. Dx Leakage Current vs. Temperature During Overvoltage, ± 15 V Dual Supply

Figure 15. Dx Leakage Current vs. Temperature During Overvoltage, ± 20 V Dual Supply

Figure 16. Dx Leakage Current vs. Temperature During Overvoltage, 12 V Single Supply

Figure 17. Dx Leakage Current vs. Temperature During Overvoltage, 36 V Single Supply

Figure 18. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 19. Qins vs. VS

Figure 20. AC Power Supply Rejection Ratio (PSRR) vs. Frequency, ± 15 V Dual Supply

Figure 21. $T H D+N$ vs. Frequency

Figure 22. Insertion Loss vs. Frequency, ± 15 V Dual Supply

Figure 23. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 24. ton, $t_{\text {off }}$ Times vs. Temperature for Various Supplies

Figure 25. V_{T} Vs. Temperature, ± 15 V Dual Supply

Figure 26. Pin Capacitance vs. VS

Figure 27. Pin Capacitance Matching vs. V_{S}

Figure 28. Drain Output Response to Positive Overvoltage

Figure 29. Drain Output Response to Negative Overvoltage

Figure 30. Large Voltage Signal Voltage vs. Frequency

TEST CIRCUITS

Figure 31. On Resistance (IDs Is the Drain to Source Current.)

Figure 32. Off Leakage

Figure 33. On Leakage

Figure 34. Switch Overvoltage Leakage

Figure 35. Switch Unpowered Leakage

Figure 36. Off Isolation (Vout Is the Output Voltage)

Figure 37. Channel to Channel Crosstalk

Figure 38. Bandwidth

Figure 39. $T H D+N$

Figure 40. Positive Overvoltage Response Time, tresponse

Figure 41. Negative Overvoltage Response Time, Single-Supply, $t_{\text {RESPONSE }}$

Figure 42. Overvoltage Recovery Time, $t_{R E C O V E R Y}$

Figure 43. Interrupt Flag Response Time, $t_{\text {DIGRESP }}\left(V_{F F}\right.$ Is the Fault Flag Voltage)

Figure 44. Interrupt Flag Recovery Time, $t_{\text {DIGREC }}$

Figure 45. Switching Times, ton and toff

Figure 46. Charge Injection, $Q_{I N J}$

TERMINOLOGY

$I_{D D}$

IDD represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{s} represent the analog voltage on the Dx pins and the Sx pins, respectively.

Ron

Ron represents the ohmic resistance between the Dx pins and the Sx pins.

$\mathbf{R}_{\text {flat (ON) }}$

$\mathrm{R}_{\text {flat (on) }}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{S} (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
$\mathrm{I}_{\mathrm{D}}(\mathrm{Off})$ is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch Dx pin capacitance, which is measured with reference to ground.

Cs (Off)
C_{s} (Off) represents the off switch Sx pin capacitance, which is measured with reference to ground.
C_{D} (On), $\mathrm{Cs}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
C_{IN} is the digital input capacitance.
ton
ton represents the delay between applying the digital control input and the output switching on.
$\mathbf{t}_{\text {off }}$
toff represents the delay between applying the digital control input and the output switching off.
$t_{\text {digresp }}$
$t_{\text {digresp }}$ is the time required for the FF pin to go low (0.3 V), measured with respect to voltage on the $S x$ pin exceeding the source voltage by 0.5 V .
toigrec
$t_{\text {digrec }}$ is the time required for the FF pin to return high, measured with respect to voltage on the Sx pin falling below the source voltage plus 0.5 V .
tresponse
$t_{\text {RESPONSE }}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 90% of the supply voltage.
trecovery $^{\text {ren }}$
$t_{\text {recovery }}$ represents the delay between an overvoltage on the Sx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 10% of the supply voltage.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
THD + N
THD +N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)

AC PSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. AC PSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pins to the output of the switch (see Figure 20). The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.
V_{T}
V_{T} is the voltage threshold at which the overvoltage protection circuitry engages.

ADG5421F

THEORY OF OPERATION

SWITCH ARCHITECTURE

The ADG5421F consists of two switch channels of N channel diffused metal-oxide semiconductor (NDMOS) transistors. This construction provides excellent performance in a small area. The ADG5421F operates as a standard switch when input signals with a voltage between $\mathrm{V}_{\text {Ss }}$ and $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ are applied. For example, the on resistance is 11Ω typically, and the INx pins controls when the switches open or close.
Additional internal circuitry enables the switches to detect overvoltage inputs by comparing the voltage on both the S 1 and S2 pins with the $V_{D D}$ and $V_{S S}$ pins. A signal is considered overvoltage when the signal exceeds the supply voltages by V_{T}. V_{T} is typically 0.7 V but can range from 0.76 V at $-40^{\circ} \mathrm{C}$ down to 0.5 V at $+125^{\circ} \mathrm{C}$. See Figure 25 to see the change in V_{T} with the operating temperature.
When an overvoltage condition is detected on either the S1 or S2 pins, both switches automatically open regardless of the digital logic state (INx). The S1 to D1 and S2 to D2 become high impedance and ensure that no current flows through the switches. In Figure 28, the voltage on the Dx pin follows the voltage on the Sx pins until the main channel switch turns off completely, and the drain voltage discharges through the load. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the Dx pins.

The maximum voltage that can be applied to any source input is +60 V or -60 V . When the ADG5421F is powered using a single supply of 25 V or greater, the maximum negative signal level reduces to remain within the 80 V maximum rating. For example, at $\mathrm{V}_{\mathrm{DD}}=+40 \mathrm{~V}$, the maximum negative signal drops from -60 V to -40 V . Construction of the process allows the channel to withstand 80 V across either switch when the switches are open. Note that these overvoltage limits apply whether the power supplies are present or not.

During overvoltage conditions, the leakage current into and out of the Sx pins is limited to tens of microamperes and nanoamperes only for the Dx pins. This limit protects the switches and connected circuitry from overstresses and restricts the current drawn from the signal source.

ESD Performance

The ADG5421F has an ESD rating of 3.5 kV for the HBM.
The Dx pins have ESD protection diodes to the rails, and the voltage at these pins must not exceed the supply voltage. The Sx pins have specialized ESD protection that allow the signal voltage to reach $\pm 60 \mathrm{~V}$ regardless of the supply voltage level. See Figure 47 for the switch channel overview.

Figure 47. Switch Channel and Control Function

Trench Isolation

In the ADG5421F, an insulating oxide layer (trench) is placed between the NDMOS and the P-channel DMOS (PDMOS) transistors in the circuit. Parasitic junctions that occur between the transistors in the junction isolated switches are eliminated, and the result is a switch that is latch-up immune under all circumstances. These devices pass the JESD78D latch-up test.

Figure 48. Trench Isolation

OVERVOLTAGE FAULT PROTECTION

When the voltage at the $S x$ inputs exceed $V_{D D}$ or $V_{S S}$ by V_{T}, both switches turn off, or, if the device is unpowered, the switches remain off. Both switch inputs remain high impedance regardless of the digital input state or the load resistance, and the output acts as a virtual open circuit. Signal levels up to +60 V and -60 V are blocked in both the powered and unpowered condition as long as the +80 V absolute maximum rating limitation between the $S x$ pins and $V_{D D}$ or $V_{\text {SS }}$ pins is met (see Figure 49). For example with a +40 V single-supply, the overvoltage protection is +60 V and -40 V .

Figure 49. Sx to $V_{D D}$ or $V_{S S}$ Maximum Rating

Power-On Protection

To activate the switches, the three following conditions must be meet:

- The minimum supply operating conditions in Table 1.
- The input signal must be between $\mathrm{V}_{S S}-\mathrm{V}_{\mathrm{T}}$ and $\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{T}}$.
- The digital logic control input, INx, is on.

When the switches are on, signal levels from $V_{s s}$ up to $V_{D D}-2 \mathrm{~V}$ are passed.

The switches respond to a voltage on either of the $S x$ pins that exceeds V_{DD} or $\mathrm{V}_{\text {Ss }}$ by V_{T} by turning off. The absolute input voltage limits are -60 V and +60 V , while maintaining an +80 V limit between the Sx pins and the supply rails. The switches remain off until the voltage at the $S x$ pins return to between VDD and $V_{S S}$.

When powered by the $\pm 15 \mathrm{~V}$ dual supply, the positive $\mathrm{t}_{\text {Response }}$ is typically 160 ns , and trecovery is $9.8 \mu \mathrm{~s}$. These values vary with different supply voltage and output load conditions.
Exceeding $\pm 60 \mathrm{~V}$ on either Sx input may damage the ESD protection circuitry on the ADG5421F.

Power-Off Protection

When no power supplies are present, the switches remain in an off state, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switches or downstream circuitry. The switch outputs are a virtual open circuit.

The switches remain off regardless of whether the $V_{D D}$ and $V_{s s}$ supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to $\pm 60 \mathrm{~V}$ are blocked when powered off.

Overvoltage Interrupt Flag

The voltages on the Sx inputs of the ADG5421F are continuously monitored, and the active low digital output pin, FF , indicates the fault state.

The voltage on the FF pin indicates if either of the Sx pins are experiencing a fault condition. The FF pin is an open-drain output that requires an external pull-up resistor. The output of the FF pin is high when both the $S x$ pins are within the normal operating range. If either of the $S x$ pin voltages exceeds the supply voltage (V_{DD} or V_{SS}) by V_{T}, the FF output provides a low impedance path to GND.

APPLICATIONS INFORMATION

The ADG5421F overvoltage protected switches provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments where overvoltage signals can be present, and the system must remain operational both during and after an overvoltage occurs.

POWER SUPPLY RAILS

To guarantee correct operation of the device, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required on both $V_{D D}$ and $V_{S S}$ to GND.
The ADG5421F can operate with bipolar supplies between $\pm 5 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. Note that the V_{DD} and $\mathrm{V}_{\text {ss }}$ supplies do not have to be symmetrical, but the supply range must not exceed 44 V . The ADG5421F can also operate with single supplies between 8 V and 44 V with Vss connected to GND.

The ADG5421F is fully specified at the $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V supply ranges.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.
An example of a bipolar power solution is shown in Figure 50. The ADP5070 (dual switching regulator) generates a positive and negative supply rail for the ADG5421F amplifier and/or a precision converter in a typical signal chain. Also shown in Figure 50 are two optional LDOs, ADP7118 and ADP7182, positive and negative low dropout (LDOs) regulators, respectively, that can be used to reduce the output ripple of the ADP5070 in ultralow noise sensitive applications.

Figure 50. Bipolar Power Solution
Table 11. Recommended Power Management Devices

Product	Description
ADP5070	$1 \mathrm{~A} / 0.6 \mathrm{~A}$, dc-to-dc switching regulator with
	independent positive and negative outputs
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO linear regulator
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, LDO linear regulator

POWER SUPPLY SEQUENCING PROTECTION

When the ADG5421F is off, the switch channels remain open and signals from -60 V to +60 V can be applied without damaging the device. The switch channels only close when the supplies are connected, a suitable digital control signal is placed on the INx pins, and the signal is within the normal operating range. Note that placing the ADG5421F between external connectors and sensitive components offers protection in systems where a signal is presented to the Sx pins before the supply voltages are available.

SIGNAL RANGE

The ADG5421F switches have overvoltage detection circuitry on the $S 1$ and $S 2$ pins that compares the voltage levels with $V_{D D}$ and $\mathrm{V}_{\text {ss. }}$. To protect downstream circuitry from overvoltages, supply the ADG5421F with voltages that match the intended signal range. The NDMOS only architecture used in this switch allows signals up to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ to be passed with little distortion. A signal that exceeds the supply rail by V_{T} is then blocked. This signal block offers protection to both the device and any downstream circuitry.

INTELLIGENT FAULT DETECTION

The ADG5421F digital output pin (FF) can interface with a microprocessor or control system and be used as an interrupt flag. This feature provides real-time diagnostic information on the state of the device and the system to which the device connects.

The control system can use the digital interrupt to start a variety of actions, such as the following:

- Initiating investigation into the source of the overvoltage fault
- Shutting down critical systems in response to the overvoltage
- Data recorders marking data during these events as unreliable or out of specification

For systems that are sensitive during a start-up sequence, the active low operation of the flag allows the system to ensure that the ADG5421F powers on and that all input voltages are within the normal operating range before initiating operation.

The FF pin is an open drain that requires an external pull-up resistor, which allows signals to be combined into a single interrupt for larger modules that contain multiple devices.

SWITCH IN A KNOWN STATE

If no digital inputs are present on the switch control lines, INx , the switches remain in an off state to prevent any unwanted signals passing through the switch.

ADG5421F

HIGH VOLTAGE SURGE SUPPRESSION

To achieve protection from high voltage transients, such as IEC 61000-4-2 ESD, IEC 61000-4-4 electrical fast transient (EFT), and IEC 61000-4-5 surge, implement the circuit shown in Figure 51 by using discrete resistor and a transient voltage suppression (TVS) device.

Figure 51. High Voltage Transient Protection

Table 12 details the results achieved by using the discrete protection circuit shown in Figure 51. To replicate the harshest environments, the surge test was performed by striking the Sx pins directly through a 40Ω resistor and a $0.5 \mu \mathrm{~F}$ capacitor coupling network. The EFT test was performed by striking the Sx pins directly without any capacitive coupling through cables.

Table 12. High Voltage Transient Protection

IEC 61000-4 Transient	Protection Level (kV)
ESD (Contact)	± 8
EFT	± 4
Surge	± 1

ADG5421F

RELATED PRODUCTS

Table 13. Related Products to the ADG5421F

Device(s)	Configuration	Fault Limit	Fault Indicator	Package	Function
ADG5401F	SPST	Voltage rails	General flag	LFCSP	$\pm 60 \mathrm{~V}$ fault protection, 6Ω Ron, SPST switch with $0.6 \mathrm{k} \Omega$ feedback channel $\pm 55 \mathrm{~V}$ fault protection and detection, 10Ω Ron, quad SPST switches $\pm 55 \mathrm{~V}$ bidirectional fault protection and detection, 10Ω Ron, quad SPST switches
ADG5412BF/ADG5413BF	Quad SPST	Voltage rails	General flag	TSSOP/LFCSP	Voltage rails

OUTLINE DIMENSIONS

Figure 52. 10-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-10-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5421FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-$ Lead Lead Frame Chip Scale Package [LFCSP] Evaluation Board	CP-10-16

${ }^{1} Z=$ RoHS Compliant Part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

