FEATURES

Overvoltage protection up to -55 V and +55 V
Power-off protection up to -55 V and +55 V
Overvoltage detection on source pins
Interrupt flags indicate fault status
Low on resistance: 10Ω (typical)
On-resistance flatness of 0.5Ω (maximum)
6 kV human body model (HBM) ESD rating Latch-up immune under any circumstance
Known state without digital inputs present
$V_{s S}$ to $V_{D D}$ analog signal range
$\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual supply operation
8 V to 44 V single-supply operation
Fully specified at $\pm 15 \mathrm{~V}, \pm \mathbf{2 0} \mathrm{V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$

APPLICATIONS

Analog input/output modules

Process control/distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems
Relay replacement

GENERAL DESCRIPTION

The ADG5436F is an analog multiplexer, containing two independently selectable single-pole, double-throw (SPDT) switches. An EN input is used to disable all the switches. For use in multiplexer applications, both switches exhibit break-beforemake switching action.
Each channel conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. The digital inputs are compatible with 3 V logic inputs over the full operating supply range.
When no power supplies are present, the switch remains in the off condition, and the channel inputs are high impedance. Under normal operating conditions, if the analog input signal level on any $S x x$ pin exceeds $V_{D D}$ or $V_{S S}$ by a threshold voltage, V_{T}, the channel turns off and that Sxx pin becomes high impedance. If the channel is on, the drain pin reacts according to the drain response (DR) input pin. If the $D R$ pin is left floating or pulled high, the drain remains high impedance and floats. If the DR pin is pulled low, the drain pulls to the exceeded rail. Input signal levels of up to +55 V or -55 V relative to ground are blocked, in both the powered and unpowered conditions. The low on

[^0]FUNCTIONAL BLOCK DIAGRAM

$$
\begin{aligned}
& \text { NOTES } \\
& \text { 1. SWITCHES SHOWN FOR A LOGIC } 1 \text { INPUT. 牟 } \\
& \text { Figure } 1 .
\end{aligned}
$$

resistance of the ADG5436F, combined with the on-resistance flatness over a significant portion of the signal range, makes it an ideal solution for data acquisition and gain switching applications where excellent linearity and low distortion are critical.
Note that, throughout this data sheet, the dual function pin names are referenced only by the relevant function where applicable. See the Pin Configurations and Function Descriptions section for full pin names and function descriptions.

PRODUCT HIGHLIGHTS

1. Source pins are protected against voltages greater than the supply rails, up to -55 V and +55 V .
2. Source pins are protected against voltages between -55 V and +55 V in an unpowered state.
3. Overvoltage detection with digital output indicates the operating state of the switches.
4. Trench isolation guards against latch-up.
5. Optimized for low on resistance and on-resistance flatness.
6. The ADG5436F operates from a dual supply of $\pm 5 \mathrm{~V}$ up to $\pm 22 \mathrm{~V}$, or a single power supply of 8 V up to 44 V .

ADG5436F

TABLE OF CONTENTS

Features 1
Applications
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 5
12 V Single Supply 7
36 V Single Supply 9
Continuous Current per Channel, Sxx or Dx 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Truth Tables for Switches 14
Typical Performance Characteristics 15
REVISION HISTORY
10/2017—Rev. B to Rev. C
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 1 3
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 2 7
Changes to Fault Drain Leakage Current With Overvoltage Parameter, Table 4 9
Updated Outline Dimensions 30
Changes to Ordering Guide 30
1/2016-Rev. A to Rev. B
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Changes to Table 4 9
Changes to ESD Performance Section 26
Test Circuits 20
Terminology 24
Theory of Operation 26
Switch Architecture 26
Fault Protection 27
Applications Information 28
Power Supply Rails 28
Power Supply Sequencing Protection 28
Signal Range 28
Low Impedance Channel Protection 28
Power Supply Recommendations. 28
High Voltage Surge Suppression 28
Intelligent Fault Detection 29
Large Voltage, High Frequency Signals 29
Outline Dimensions 30
Ordering Guide 30
5/2015-Rev. 0 to Rev. A
Added 16-Lead LFCSP Package Universal
Changes to Table 1 3
Changes to Table 25
Changes to Table 3 7
Changes to Table 4 9
Changes to Table 5 11
Changes to Table 6 12
Added Figure 3; Renumbered Sequentially 13
Changes to Table 7 13
Added Figure 53 30
Updated Outline Dimensions 30
Changes to Ordering Guide 30

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{C}_{\mathrm{DECOUPLING}}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	400	555	570	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}$
	540			ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 46
ton (EN)	435			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	515	530	550	ns max	$\mathrm{V}_{s}=10 \mathrm{~V}$, see Figure 45
toff (EN)	165			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	210	215	220	ns max	$\mathrm{V}_{S}=10 \mathrm{~V}$, see Figure 45
Break-Before-Make Time Delay, t_{D}	320			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			190	ns min	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 44
Overvoltage Response Time, tresponse	510			ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=2 \mathrm{pF}$, see Figure 39
	680	725	750	ns max	
Overvoltage Recovery Time, trecovery $^{\text {then }}$	820			ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$, see Figure 40
	1100	1150	1200	ns max	
Interrupt Flag Response Time, tolgresp	85		115	ns typ	$C_{L}=12 \mathrm{pF}$, see Figure 41
Interrupt Flag Recovery Time, tigrec	60		85	μs typ	$C_{L}=12 \mathrm{pF}$, see Figure 42
	600			ns typ	$\mathrm{C}_{L}=12 \mathrm{pF}$, $\mathrm{R}_{\text {PULLU }}=1 \mathrm{k} \Omega$, see Figure 43
Charge Injection, Qinj	-724			pC typ	$V_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$, see Figure 47
Off Isolation	-71			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 33
Channel-to-Channel Crosstalk	-73			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 34
Total Harmonic Distortion Plus Noise, THD + N	0.001			\% typ	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=15 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , see Figure 38
-3 dB Bandwidth	169			MHz typ	$R_{L}=50 \Omega, C_{L}=5 p F$, see Figure 37
Insertion Loss	-0.8			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 37
Source Capacitance (C_{s}), Off	12			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain Capacitance (CD), Off	24			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$	37			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, digital inputs $=0 \mathrm{~V}$, 5 V , or V_{DD}
Normal ModeIDD					
	0.9			mA typ	
	1.2		1.3	mA max	
$\mathrm{I}_{\text {GND }}$	0.4			mA typ	
	0.55		0.6	mA max	
Iss	0.5		0.7	mA typ	
	0.65			mA max	
Fault Mode ldo	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$				$\mathrm{V}_{S}= \pm 55 \mathrm{~V}$
				mA typ	
			1.8	mA max	
$\mathrm{I}_{\text {GND }}$	0.8			mA typ	
	1.0		1.1	mA max	
Iss	0.5			mA typ	$\text { Digital inputs = } 5 \mathrm{~V}$
	1.0		1.8	$m A \max$	$V_{S}= \pm 55 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			± 5	V min	$\mathrm{GND}=0 \mathrm{~V}$
			± 22	V max	$\mathrm{GND}=0 \mathrm{~V}$

[^1]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {DECOUPLING }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	405	555	570	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}$
	540			ns max	$V_{S}=10 \mathrm{~V}$, see Figure 46
$\mathrm{t}_{\text {ON }}(\mathrm{EN})$	430			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	535	560	585	ns max	$\mathrm{V}_{s}=10 \mathrm{~V}$, see Figure 45
toff (EN)	170			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	205	210	215	ns max	$\mathrm{V}_{S}=10 \mathrm{~V}$, see Figure 45
Break-Before-Make Time Delay, t_{D}	330			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			205	ns min	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 44
Overvoltage Response Time, $\mathrm{t}_{\text {RESPONSE }}$	430			ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$, see Figure 39
	560	605	630	ns max	
Overvoltage Recovery Time, $\mathrm{t}_{\text {RECOVERY }}$	930			ns typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$, see Figure 40
	1300	1500	1700	ns max	
Interrupt Flag Response Time, tbigresp	85		115	ns typ	$\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$, see Figure 41
Interrupt Flag Recovery Time, tdigrec	60		85	μs typ	$C_{L}=12 \mathrm{pF}$, see Figure 42
	600			ns typ	$\mathrm{C}_{L}=12 \mathrm{pF}$, RPULLup $=1 \mathrm{k} \Omega$, see Figure 43
Charge Injection, Qinj	-737			pC typ	$V_{S}=0 V, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$, see Figure 47
Off Isolation	-72			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 33
Channel-to-Channel Crosstalk	-73			dB typ	$R_{L}=50 \Omega, C_{L}=5 p F, f=1 M H z$, see Figure 34
Total Harmonic Distortion Plus Noise, THD + N	0.001			\% typ	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{s}}=20 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz , see Figure 38
-3 dB Bandwidth	171			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, see Figure 37
Insertion Loss	-0.8			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$, see Figure 37
C_{s} (Off)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	23			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	36			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V}$, digital inputs $=$ $0 \mathrm{~V}, 5 \mathrm{~V}$, or V_{DD}
Normal Mode					
IDD	0.9			mA typ	
	1.2		1.3	mA max	
IGND	0.4			mA typ	
	0.55		0.6	mA max	
Iss	0.5			mA typ	
	0.65		0.7	mA max	
Fault Mode ldo					$\mathrm{V}_{\mathrm{S}}= \pm 55 \mathrm{~V}$
	1.2			mA typ	
	1.6		1.8	mA max	
$\mathrm{I}_{\text {GND }}$	0.8			mA typ	
	1.0		1.1	mA max	
Iss	0.5			mA typ	Digital inputs $=5 \mathrm{~V}$
	1.0		1.8	mA max	$\mathrm{V}_{S}= \pm 55 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			± 5	$V_{\text {min }}$	$\mathrm{GND}=0 \mathrm{~V}$
			± 22	V max	$\mathrm{GND}=0 \mathrm{~V}$

[^2]ADG5436F

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {decoupling }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 3.

[^3]
36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\text {decoupling }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 4.

[^4]Data Sheet ADG5436F

CONTINUOUS CURRENT PER CHANNEL, Sxx OR Dx

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{aligned} & \text { 16-Lead TSSOP } \\ & \theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 113 \\ & 88 \end{aligned}$	$\begin{aligned} & 77 \\ & 61 \end{aligned}$	$\begin{aligned} & 50 \\ & 42 \end{aligned}$	mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}}+4.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
16-Lead LFCSP $\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & 207 \\ & 161 \end{aligned}$	$\begin{aligned} & 125 \\ & 103 \end{aligned}$	$\begin{aligned} & 68 \\ & 61 \end{aligned}$	mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{S S}+4.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=\mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{s s}$ to GND	-48 V to +0.3 V
Sxx to GND	-55 V to +55 V
Sxx to V ${ }_{\text {DD }}$ or $V_{S S}$	80 V
V_{s} to V_{D}	80 V
Dx Pin ${ }^{1}$ to GND	$\mathrm{V}_{S S}-0.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs to GND	GND - 0.7 V to 48 V or 30 mA , whichever occurs first
Peak Current, Sxx or Dx Pins	288 mA (pulsed at 1 ms , 10% duty cycle maximum)
Continuous Current, Sxx or Dx	Data ${ }^{2}+15 \%$
Digital Output	GND - 0.7 V to 6 V or 30 mA , whichever occurs first
Dx Pin, Overvoltage State, DR = GND, Load Current	1 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020
ESD Rating, HBM: ESDA/JEDEC JS-001-2011	
Input/Output (I/O) Port to Supplies	6 kV
I/O Port to I/O Port	6 kV
All Other Pins	6 kV

[^5]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	IN1/F1	Logic Control Input 1 (IN1). See Table 8. Decoder Pin (F1). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 9.
2	16	S1A	Overvoltage Protected Source Terminal 1A. This pin can be an input or output.
3	1	D1	Drain Terminal 1. This pin can be an input or output.
4	2	S1B	Overvoltage Protected Source Terminal 1B. This pin can be an input or output.
5	3	Vss	Most Negative Power Supply Potential.
6	4	GND	Ground (0V) Reference.
7	7	NIC	No Internal Connection.
8	5	DR	Drain Response Digital Input. Tying this pin to GND enables the drain to pull to $V_{D D}$ or $V_{S S}$ during an overvoltage fault condition. The default condition of the drain is open-circuit when the pin is left floating or if it is tied to $V_{D D}$.
9	6	IN2/F2	Logic Control Input 2 (IN2). See Table 8. Decoder Pin (F2). This pin is used together with the specific fault pin (SF) to indicate which input is in a fault condition. See Table 9.
10	8	S2A	Overvoltage Protected Source Terminal 2A. This pin can be an input or output.
11	9	D2	Drain Terminal 2. This pin can be an input or output.
12	10	S2B	Overvoltage Protected Source Terminal 2B. This pin can be an input or output.
13	11	VD	Most Positive Power Supply Potential.
14	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the INx logic inputs determine the on switches.
15	13	FF	Fault Flag Digital Output. This pin has a high output when the device is in normal operation or a low output when a fault condition occurs on any of the Sxx inputs. The FF pin has a weak internal pull-up that allows the signals to be combined into a single interrupt for larger modules that contain multiple devices.
16	14	SF	Specific Fault Digital Output. This pin has a high output when the device is in normal operation, or a low output when a fault condition is detected on a specific pin, depending on the state of F1 and F2 per Table 9.
	EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the lowest supply voltage, $\mathrm{V}_{5 s}$.

ADG5436F

TRUTH TABLES FOR SWITCHES

Table 8. Truth Table

$\mathbf{I N x}$	SxA	SxB
0	Off	On
1	On	Off

Table 9. Fault Diagnostic Output Truth Table

Switch in Fault ${ }^{1}$	State of Specific Fault Pin (SF) with Decoder Pins (F2, F1)				State of Fault Flag (FF)
	F2 = 0, F1 $=0$	F2 = 0, F1 = 1	F2 = 1, F1 = 0	$F 2=1, F 1=1$	
None	1	1	1	1	1
S1A	0	1	1	1	0
S1B	1	0	1	1	0
S2A	1	1	1	0	0
S2B	1	1	0	1	0
S1A, S1B	0	0	1	1	0
S1A, S2A	0	1	1	0	0
S1A, S2B	0	1	0	1	0
S1B, S2A	1	0	1	0	0
S1B, S2B	1	0	0	1	0
S2A, S2B	1	1	0	0	0
S1A, S1B, S2A	0	0	1	0	0
S1A, S1B, S2B	0	0	0	1	0
S1A, S2A, S2B	0	1	0	0	0
S1B, S2A, S2B	1	0	0	0	0
S1A, S1B, S2A, S2B	0	0	0	0	0

[^6]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of V_{S} and V_{D}, Various Dual Supplies

Figure 5. Ron as a Function of V_{S} and $V_{D}, 12 V$ Single Supply

Figure 6. RoN as a Function of V_{S} and $V_{D,} 36 V$ Single Supply

Figure 7. Ron as a Function of V_{S} and V_{D} for Different Temperatures, ± 15 V Dual Supply

Figure 8. Ron as a Function of V_{S} and V_{D} for Different Temperatures, ± 20 V Dual Supply

Figure 9. Ron as a Function of V_{S} and V_{D} for Different Temperatures, 12 V Single Supply

Figure 10. Ron as a Function of V_{S} and V_{D} for Different Temperatures, 36 V Single Supply

Figure 11. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 12. Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 13. Leakage Current vs. Temperature, 12 V Single Supply

Figure 14. Overvoltage Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 15. Overvoltage Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 16. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply

Figure 17. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply

Figure 18. Off Isolation vs. Frequency

Figure 19. Channel-to-Channel Crosstalk vs. Frequency

Figure 20. Charge Injection vs. Source Pin Voltage $\left(V_{s}\right)$, Single Supply

Figure 21. Charge Injection vs. Source Pin Voltage (Vs), Dual Supply

Figure 22. ACPSRR vs. Frequency

Figure 23. THD $+N$ vs. Frequency

Figure 24. Bandwidth vs. Frequency

Figure 25. trtansition $^{\text {Vs. Temperature }}$

Figure 26. Threshold Voltage $\left(V_{T}\right)$ vs. Temperature

Figure 27. Drain Output Response to Positive Overvoltage (DR Pin = Floating or High)

Figure 28. Drain Output Response to Negative Overvoltage (DR Pin = Floating or High)

Figure 29. Large Signal Voltage Tracking vs. Frequency

TEST CIRCUITS

Figure 30. On Resistance

Figure 31. Off Leakage

Figure 32. Channel On Leakage

Figure 33. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

Figure 34. Channel-to-Channel Crosstalk

Figure 35. Switch Overvoltage Leakage

Figure 36. Switch Unpowered Leakage

Figure 37. Bandwidth

Figure 38. $T H D+N$

Figure 39. Overvoltage Response Time, tresponse

Figure 40. Overvoltage Recovery Time, $t_{\text {RECOVERY }}$

Figure 41. Interrupt Flag Response Time, tDIGRESP

Figure 42. Interrupt Flag Recovery Time, tDIGREC

Figure 43. Interrupt Flag Recovery Time, $t_{\text {DIGREC, }}$ with a 1 k Ω Pull-Up Resistor

Figure 44. Break-Before-Make Time Delay, t_{D}

Figure 45. Enable Delay, ton (EN), toff (EN)

Figure 47. Charge Injection, $Q_{\text {INJ }}$

TERMINOLOGY

I_{DD}
$I_{D D}$ represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{s} represent the analog voltage on the Dx pins and the Sxx pins, respectively.
Ron
Ron represents the ohmic resistance between the Dx pins and the Sxx pins.

Δ Ron

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat(on) }}$
$\mathrm{R}_{\text {FLat(on) }}$ is the flatness defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
VinL
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{S} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), C_{s} (On)
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
C_{IN}
C_{IN} is the digital input capacitance.
ton
$t_{\text {on }}$ represents the delay between applying the digital control input and the output switching on (see Figure 45).
$\mathbf{t}_{\text {off }}$
toff represents the delay between applying the digital control input and the output switching off (see Figure 45).
t_{D}
t_{D} represents the off time measured between the 90% point of both switches when switching from one address state to another.
$t_{\text {DIGRESP }}$
tdigresp is the time required for the FF pin to go low (0.3 V), measured with respect to the voltage on the source pin exceeding the supply voltage by 0.5 V .
$t_{\text {digrec }}$
$t_{\text {DIGREC }}$ is the time required for the FF pin to return high, measured with respect to the voltage on the Sxx pin falling below the supply voltage plus 0.5 V .
$t_{\text {Response }}$
$t_{\text {RESPONSE }}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 90% of the supply voltage.

trecovery $^{\text {ren }}$

$t_{\text {recovery }}$ represents the delay between an overvoltage on the Sxx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 10% of the supply voltage.
Off Isolation
Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

Channel-to-channel crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

-3 dB bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
Total Harmonic Distortion Plus Noise (THD + N)
THD +N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.
Data Sheet ADG5436F

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of the signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.
V_{T}
V_{T} is the voltage threshold at which the overvoltage protection circuitry engages (see Figure 26).

THEORY OF OPERATION

SWITCH ARCHITECTURE

Each channel of the ADG5436F consists of a parallel pair of NDMOS and PDMOS transistors. This construction provides excellent performance across the signal range. The ADG5436F channels operate as standard switches when input signals with a voltage between $V_{s s}$ and $V_{D D}$ are applied. For example, the on resistance is 10Ω typically and the appropriate control pin, INx , controls the opening or closing of the switch.
Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on the source pin with $V_{D D}$ and $V_{\text {Ss }}$. A signal is considered overvoltage if it exceeds the supply voltages by the voltage threshold, V_{T}. The threshold voltage is typically 0.7 V , but can range from 0.8 V at $-40^{\circ} \mathrm{C}$ down to 0.6 V at $+125^{\circ} \mathrm{C}$. See Figure 26 to see the change in V_{T} with operating temperature.

The maximum voltage that can be applied to any source input is -55 V or +55 V . When the device is powered using a single supply of greater than 25 V , the maximum undervoltage signal level reduces down from -55 V . For example, the undervoltage signal reduces to -40 V at $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}$ to remain within the 80 V maximum rating. The construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.

Figure 48. Switch Channel and Control Function
When an overvoltage condition is detected on a source pin (Sxx), the switch automatically opens and the source pin (Sxx) becomes high impedance and ensures that no current flows through the switch. If the DR pin is driven low, the drain pin, Dx , is pulled to the supply that was exceeded. For example, if the source voltage exceeds $V_{D D}$, the drain output pulls to $V_{D D}$. The same is true for $\mathrm{V}_{\text {ss }}$. If the DR pin is allowed to float or is driven high, the Dx pin also becomes open circuit. The voltage on the Dx pin follows the voltage on the source pin, Sxx, until the switch turns off completely and the drain voltage discharges through the load. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the pin.

During overvoltage conditions, the leakage current into and out of the source pins (Sxx) is limited to tens of microamperes. If the DR pin is allowed to float or is driven high, only nanoamperes of leakage are seen on the drain pin (Dx). If the DR pin is driven low, the drain pin (Dx) is pulled to the rail. The device that pulls the drain pin to the rail has an impedance of approximately $40 \mathrm{k} \Omega$; therefore, the Dx pin current is limited to about 1 mA during a shorted load condition. This internal impedance also determines the minimum external load resistance required to ensure that the drain pin is pulled to the desired voltage level during a fault.

When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

ESD Performance

The ADG5436F has an ESD (HBM) rating of 6 kV .
The drain pins (Dx) have ESD protection diodes to the supply rails, and the voltage at these pins must not exceed the supply voltage.

The source pins (Sxx) have specialized ESD protection that allows the signal voltage to reach $\pm 55 \mathrm{~V}$ with a $\pm 22 \mathrm{~V}$ dual supply, and from -40 V to +55 V with $\mathrm{a}+40 \mathrm{~V}$ single supply. See Figure 48 for the switch channel overview. Exceeding $\pm 55 \mathrm{~V}$ on any source input may damage the ESD protection circuitry on the device.

Trench Isolation

In the ADG5436F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances. This device passes a JESD78D latch-up test of $\pm 500 \mathrm{~mA}$ for 1 sec , the strictest test in the specification.

Figure 49. Trench Isolation

FAULT PROTECTION

When the voltages at the source inputs exceed V_{DD} or $\mathrm{V}_{\text {ss }}$ by V_{T}, the switch turns off, or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state or the load resistance, and the output acts as a virtual open circuit. Signal levels up to +55 V and -55 V are blocked in both the powered and unpowered conditions as long as the 80 V limitation between the source and supply pins is met.

Power-On Protection

The following three conditions must be satisfied for the switch to be in the on condition:

- $V_{\text {DD }}$ to $\mathrm{V}_{\text {SS }} \geq 8 \mathrm{~V}$.
- The input signal is between $V_{S S}-V_{T}$ and $V_{D D}+V_{T}$.
- The digital logic control input, INx , is turned on.

When the switch is turned on, the signal levels up to the supply rails are passed.
The switch responds to an analog input that exceeds $V_{D D}$ or $V_{S S}$ by a threshold voltage, V_{T}, by turning off. The absolute input voltage limits are -55 V and +55 V , while maintaining an 80 V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between V_{DD} and V_{ss}.
The fault response time (tresponse) when powered by a $\pm 15 \mathrm{~V}$ dual supply is typically 510 ns , and the fault recovery time (trecovery) is 820 ns . These vary with supply voltages and output load conditions.
Exceeding $\pm 55 \mathrm{~V}$ on any source input may damage the ESD protection circuitry on the device.
The maximum stress across the switch channel is 80 V . Therefore, the user must pay close attention to this limit when using the device with a 40 V single supply. In this case, the maximum undervoltage condition is -40 V to maintain the 80 V across the switch channel.

For undervoltage and overvoltage conditions, consider the case where the device is set up as shown in Figure 50.

- $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 22 \mathrm{~V}$.
- S1A and S2A $=22 \mathrm{~V}$, and are both on. Therefore, D1 and $\mathrm{D} 2=22 \mathrm{~V}$.
- S1B has a -55 V fault and S2B has a +55 V fault.
- The voltage between S 1 B and $\mathrm{D} 1=22 \mathrm{~V}-(-55 \mathrm{~V})=+77 \mathrm{~V}$.
- The voltage between S2B and D2 $22 \mathrm{~V}-55 \mathrm{~V}=-33 \mathrm{~V}$.

These calculations are all within device specifications: a 55 V maximum fault on source inputs and a maximum of 80 V across the off switch channel.
FF is low due to the fault conditions. The specific switches in fault can be deduced by cycling through F2 and F1 and noting the state of SF. In this example, SF is low (asserted) when F2 $=0$ and $\mathrm{F} 1=1$; it is also low when $\mathrm{F} 2=1$ and $\mathrm{F} 1=0$. This signifies a fault on S1B and S2B. See Table 9 for details on how to decode SF by F2 and F1.

Figure 50. ADG5436F Under Example Overvoltage Conditions

Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.
The switch remains off regardless of whether the $V_{D D}$ and $V_{S S}$ supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to $\pm 55 \mathrm{~V}$ are blocked in the unpowered condition.

Digital Input Protection

The ADG5436F can tolerate unpowered digital input signals present on the device. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.
The digital inputs are protected against positive faults up to 44 V . The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

Overvoltage Interrupt Flag

The voltages on the source inputs of the ADG5436F are continuously monitored, and the state of the switches is indicated by an active low digital output pin, FF.
The voltage on the FF pin indicates if any of the source input pins are experiencing a fault condition. The output of the FF pin is a nominal 3 V when all source pins are within normal operating range. If any source pin voltage exceeds the supply voltage by V_{T}, the FF output reduces to below 0.8 V .
Use the specific fault digital output pin, SF, to decode which inputs are experiencing a fault condition. The SF pin reduces to below 0.8 V when a fault condition is detected on a specific pin, depending on the state of F1 and F2 (see Table 9). The specific fault feature also works with the switches disabled (EN pin low), which allows the user to cycle through and check the fault conditions without connecting the fault to the drain output.

APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

POWER SUPPLY RAILS

To guarantee correct operation of the device, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.
The ADG5436F can operate with bipolar supplies between $\pm 5 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. The supplies on V_{DD} and $\mathrm{V}_{\text {SS }}$ do not need to be symmetrical, but the V_{DD} to $\mathrm{V}_{\text {ss }}$ range must not exceed 44 V . The ADG5436F can also operate with single supplies between 8 V and 44 V , with Vss connected to GND.

The ADG5436F is fully specified at the $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V}, 12 \mathrm{~V}$, and +36 V supply ranges.

POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the device is unpowered and signals from -55 V to +55 V can be applied without damaging the device. The switch channel closes only when the supplies are connected, a suitable digital control signal is placed on the INx pins, and the signal is within the normal operating range. Placing the ADG5436F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

SIGNAL RANGE

The ADG5436F has overvoltage detection circuitry on the inputs that compares the voltage levels at the source terminals with $V_{D D}$ and $V_{\text {Ss. }}$. To protect downstream circuitry from overvoltage conditions, supply the ADG5436F with voltages that match the intended signal range. The low on-resistance switch allows signals to the supply rails to be passed with very little distortion. A signal that exceeds the supply rail by the threshold voltage is then blocked. This signal block offers protection to both the device and any downstream circuitry.

LOW IMPEDANCE CHANNEL PROTECTION

The ADG5436F can be used as a protective element in signal chains that are sensitive to both channel impedance and overvoltage signals. Traditionally, series resistors limit the current during an overvoltage condition to protect susceptible components.

These series resistors affect the performance of the signal chain and reduce the signal chain precision. A compromise must be reached on the value of the series resistance that is high enough to sufficiently protect sensitive components, but low enough that the precision performance of the signal chain is not sacrificed.
The ADG5436F enables the designer to remove these resistors and retain precision performance without compromising the protection of the circuit.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a bipolar power solution is shown in Figure 51. The ADP7118 and ADP7182 can be used to generate clean positive and negative rails from the dual switching regulator output. These rails can be used to power the ADG5436F, amplifier, and/or precision converter in a typical signal chain.

Figure 51. Bipolar Power Solution
Table 10. Recommended Power Management Devices

Product	Description
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7142	$40 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, linear regulator

HIGH VOLTAGE SURGE SUPPRESSION

The ADG5436F is not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V . In applications where the inputs are likely to be subject to overvoltage conditions exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar devices.

INTELLIGENT FAULT DETECTION

The ADG5436F digital output pin, FF, can interface with a microprocessor or control system and can be used as an interrupt flag. This feature provides real-time diagnostic information on the state of the device and the system to which it connects.

The control system can use the digital interrupt, FF, to start a variety of actions, as follows:

- Initiating an investigation into the source of an overvoltage fault.
- Shutting down critical systems in response to the overvoltage condition.
- Using data recorders to mark data during these events as unreliable or out of specification.

For systems sensitive during a start-up sequence, the active low operation of the flag allows the system to ensure that the ADG5436F is powered on and that all input voltages are within the normal operating range before initiating operation.

The FF pin is a weak pull-up, which allows the signals to combine into a single interrupt for larger modules that contain multiple devices.

The recovery time, tigrec, can be decreased from a typical $60 \mu \mathrm{~s}$ to 600 ns by using a $1 \mathrm{k} \Omega$ pull-up resistor.
The specific fault digital output, SF decodes which inputs are experiencing a fault condition. The SF pin reduces to below 0.8 V when a fault condition is detected on a specific pin, depending on the state of F1 and F2 (see Table 9). The specific fault feature also works with the switches disabled (EN pin low), which allows the user to cycle through and check the fault conditions without connecting the fault to the drain output.

LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 29 shows the voltage range and frequencies that the ADG5436F can reliably convey. For signals extending across the full signal range from $V_{S s}$ to $V_{D D}$, keep the frequency below 3 MHz . If the required frequency is greater than 3 MHz , decrease the signal range appropriately to ensure signal integrity.

OUTLINE DIMENSIONS

Figure 52. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5436FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5436FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5436FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-17

[^7]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: Rev. C
 Document Feedback
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1}$ Guaranteed by design. Not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design. Not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design. Not subject to production test.

[^4]: ${ }^{1}$ Guaranteed by design. Not subject to production test.

[^5]: ${ }^{1}$ Overvoltages at the Dx pin are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^6]: ${ }^{1}$ Note that more than one pin can be in fault at any one time. See the Applications Information section for more details.

[^7]: ${ }^{1} Z=$ RoHS Compliant Part.

