
1 pC Charge Injection, 100 pA Leakage, CMOS, $\pm 5 V/5 V/3 V$, Quad SPST Switches

Enhanced Product

FEATURES

ADG613-EP

FUNCTIONAL BLOCK DIAGRAM

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range: -55°C to +125°C Controlled manufacturing baseline 1 assembly site 1 test site 1 fabrication site Enhanced product change notification Qualification data available on request

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Communications systems Sample-and-hold systems Audio signal routing Relay replacement Avionics

GENERAL DESCRIPTION

The ADG613-EP is a monolithic CMOS device containing four independently selectable switches. This switch offers ultralow charge injection of 1 pC over the full input signal range and typical leakage currents of 0.01 nA at 25°C.

The device is fully specified for ± 5 V, 5 V, and 3 V supplies. It contains four independent single-pole, single-throw (SPST) switches. The ADG613-EP contains two switches with digital control logic that turns on with logic low and two switches in which the logic is inverted.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patients or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patient or patient rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. ADG613-EP IN1 IN2 IN2 IN2 IN2 IN3 IN4 Figure 1.

ADG613-EP exhibits break-before-make switching action.

The ADG613-EP is available in a small, 16-lead TSSOP package.

The ADG613-EP is also a TTL-compatible device.

Additional application and technical information can be found in the ADG613 data sheet.

PRODUCT HIGHLIGHTS

- 1. Ultralow charge injection (1 pC typically).
- 2. Dual ± 2.7 V to ± 5.5 V or single 2.7 V to 5.5 V operation.
- 3. Temperature range: -55°C to +125°C.
- 4. Small, 16-lead TSSOP.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	.1
Enhanced Product Features	.1
Applications	.1
Functional Block Diagram	.1
General Description	.1
Product Highlights	.1
Revision History	.2
Specifications	.3
Dual-Supply Operation	.3

Single-Supply Operation	4
Absolute Maximum Ratings	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Typical Performance Characteristics	8
Test Circuits	10
Outline Dimensions	12
Ordering Guide	12

REVISION HISTORY

10/2016—Rev. 0 to Rev. A
Changes to Features Section and Enhanced Product
Features Section1

6/2016—Revision 0: Initial Revision

SPECIFICATIONS dual-supply operation

 $V_{DD} = 5 V \pm 10\%$, $V_{SS} = -5 V \pm 10\%$, GND = 0 V, unless otherwise noted. V_S is the source voltage. V_D is the drain voltage.

Parameter	25°C	-55°C to +125℃	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{ss} to V _{DD}	v	
On Resistance, R _{on}	85	- 33 00 000	Ωtyp	$V_s = \pm 3 V$, $I_s = -1 mA$; see Figure 14
	115	160	Ωmax	$V_s = \pm 3 V$, $I_s = -1 mA$; see Figure 14
On-Resistance Match Between Channels, ΔR_{ON}	2	100	Ωtyp	$V_{s} = \pm 3 V_{r} V_{s} = -1 \text{ mA}$
on hesistance material between channels, Anon	4	6.5	$\Omega \max$	$V_{s} = \pm 3 V, I_{s} = -1 mA$
On-Resistance Flatness, R _{FLAT(ON)}	25	0.5	Ωtyp	$V_{s} = \pm 3 V, I_{s} = -1 \text{ mA}$
Off the sistance mattless, the ar(on)	40	60	$\Omega \max$	$V_{s} = \pm 3 V_{r} I_{s} = -1 mA$
LEAKAGE CURRENTS	40	00	1211107	$V_{\text{DD}} = +5.5 \text{ V}, V_{\text{SS}} = -5.5 \text{ V}$
	10.01		n A turn	
Source Off Leakage, I _{S(OFF)}	±0.01		nA typ	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \mp 4.5 \text{ V}; \text{ see Figure 15}$
	±0.1	±2	nA max	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 15}$
Drain Off Leakage, I _{D(OFF)}	±0.01		nA typ	$V_{D} = \pm 4.5 \text{ V}, V_{S} = \mp 4.5 \text{ V}; \text{ see Figure 15}$
	±0.1	±2	nA max	$V_{D} = \pm 4.5 \text{ V}, V_{S} = \mp 4.5 \text{ V}; \text{ see Figure 15}$
Channel On Leakage, $I_{D(ON)}$, $I_{S(ON)}$	±0.01		nA typ	$V_D = V_S = \pm 4.5$ V; see Figure 16
	±0.1	±6	nA max	$V_D = V_s = \pm 4.5$ V; see Figure 16
DIGITALINPUTS				-
Input High Voltage, V _{№H}		2.4	Vmin	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, Inc or Inh	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
•		±0.1	µA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Digital Input Capacitance, C _№	2		pF typ	
DYNAMIC CHARACTERISTICS ¹			1 /1	
Delay from Digital Control Input and Output Switching On, t_{on}	45		ns typ	R_{L} = 300 Ω, C_{L} = 35 pF, V_{S} = 3.0 V; see Figure 17
-	65	90	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_s = 3.0 \text{ V}$; see Figure 17
Delay from Digital Control Input and Output Switching Off, t _{OFF}	25		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_S = 3.0 \text{ V}$; see Figure 17
	40	50	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_s = 3.0 V$; see Figure 17
Break-Before-Make Time Delay, t _{BBM}	15		nstyp	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 1
		10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 1
Charge Injection	-0.5		pCtyp	$V_s = 0 V, R_s = 0 \Omega, C_L = 1 nF$; see Figure 19
OffIsolation	-65		dBtyp	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 10 MHz$; see Figure 20
Channel to Channel Crosstalk	-90		dBtyp	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
–3 dB Bandwidth	680		MHz typ	
Off Switch Source Capacitance, C _{S(OFF)}	5		pF typ	f=1 MHz
Off Switch Drain Capacitance, C _{D(OFF)}	5		pF typ	f=1 MHz
On Switch Capacitance, $C_{D(ON)}$, $C_{S(ON)}$	5		pF typ	f = 1 MHz
POWER REQUIREMENTS	Ť		P: 9P	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Positive Supply Current, I _{DD}	0.001		μA typ	$v_{DD} = +9.5 v, v_{SS} = -9.5 v$ Digital inputs = 0 V or 5.5 V
· Ostive Supply Current, IDD	0.001	1.0	μΑ τyp μΑ max	Digital inputs = 0 V or 5.5 V
Nagativo Supply Current L	0.001	1.0		Digital inputs = 0 V or 5.5 V
Negative Supply Current, Iss	0.001	1.0	µA typ	
		1.0	µA max	Digital inputs = 0 V or 5.5 V
V _{DD} /V _{SS}		±2.7	Vmin	
		±5.5	V max	
Power Consumption	11		nW typ	
	11		µW max	

¹ Guaranteed by design; not subject to production test.

SINGLE-SUPPLY OPERATION

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. V_S is the source voltage. V_D is the drain voltage.

Table 2.	

Parameter	25°C	-55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH			1	
Analog Signal Range		0 to V _{DD}	V	
On Resistance, R _{ON}	210		Ωtyp	$V_{s} = 3.5 V$, $I_{s} = -1 mA$; see Figure 14
	290	380	Ωmax	$V_{s} = 3.5 V$, $I_{s} = -1 mA$; see Figure 14
On-Resistance Match	3		Ωtyp	$V_{s} = 3.5 V, I_{s} = -1 mA$
Between Channels, ΔR_{ON}				
	10	13	Ωmax	$V_{s} = 3.5 V$, $I_{s} = -1 mA$
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$
Source Off Leakage, I _{S(OFF)}	±0.01		nA typ	V_{S} = 1 V or 4.5 V, V_{D} = 4.5 V or 1 V; see Figure 15
	±0.1	±2	nA max	$V_S = 1 V$ or 4.5 V, $V_D = 4.5 V$ or 1 V; see Figure 15
Drain Off Leakage, I _{D(OFF)}	±0.01		nA typ	$V_S = 1 V$ or 4.5 V, $V_D = 4.5 V$ or 1 V; see Figure 15
	±0.1	±2	nA max	$V_S = 1 V$ or 4.5 V, $V_D = 4.5 V$ or 1 V; see Figure 15
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.01		nA typ	$V_s = V_D = 1$ V or 4.5 V; see Figure 16
	±0.1	±6	nA max	$V_s = V_D = 1$ V or 4.5 V; see Figure 16
DIGITAL INPUTS			1	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
		±0.1	µA max	$V_{\rm IN} = V_{\rm INL} \text{ or } V_{\rm INH}$
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
t _{oN}	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
	100	150	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
t _{OFF}	25		ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_S = 3.0 \text{ V}; \text{ see Figure 17}$
	40	50	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
Break-Before-Make Time Delay, t _{BBM}	25		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
		10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
Charge Injection	1		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 19
Off Isolation	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel to Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
-3 dB Bandwidth	680		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5		pF typ	f = 1 MHz
C _D (off)	5		pF typ	f = 1 MHz
$C_{D(ON)}$, $C_{S(ON)}$	5		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 5.5 V$
IDD	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	Digital inputs = $0 \text{ V or } 5.5 \text{ V}$
V _{DD}	1	2.7	V min	
		5.5	V max	
Power Consumption	5.5		nW typ	
	5.5		μW max	

¹ Guaranteed by design; not subject to production test.

 V_{DD} = 3 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. V_S is the source voltage. V_D is the drain voltage.

Table 3.				
Parameter	25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance, R _{ON}	380	460	Ωtyp	$V_s = 1.5 V$, $I_s = -1 mA$; see Figure 14
LEAKAGE CURRENTS				$V_{DD} = 3.3 V$
Source Off Leakage, I _{S(OFF)}	±0.01		nA typ	$V_{S} = 1 V \text{ or } 3 V$, $V_{D} = 3 V \text{ or } 1 V$; see Figure 15
	±0.1	±2	nA max	$V_{S} = 1 V \text{ or } 3 V$, $V_{D} = 3 V \text{ or } 1 V$; see Figure 15
Drain Off Leakage, ID(OFF)	±0.01		nA typ	$V_s = 1 V \text{ or } 3 V$, $V_D = 3 V \text{ or } 1 V$; see Figure 15
	±0.1	±2	nA max	$V_S = 1 V \text{ or } 3 V$, $V_D = 3 V \text{ or } 1 V$; see Figure 15
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.01		nA typ	$V_S = V_D = 1 V \text{ or } 3 V$; see Figure 16
	±0.1	±6	nA max	$V_S = V_D = 1 V \text{ or } 3 V$; see Figure 16
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	130		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
	185	260	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
t _{OFF}	40		ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_S = 2 \text{ V}; \text{see Figure 17}$
	55	65	ns max	$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_S = 2 \text{ V}; \text{see Figure 17}$
Break-Before-Make Time Delay, t _{BBM}	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 2 V$; see Figure 18
		10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 2 V$; see Figure 18
Charge Injection	1.5		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 19
Off Isolation	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel to Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
–3 dB Bandwidth	680		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5		pF typ	f = 1 MHz
C _{D(OFF)}	5		pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)}	5		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 3.3 V
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 3.3 V
		1.0	μA max	Digital inputs = 0 V or 3.3 V
V _{DD}		2.7	V min	
		5.5	V max	
Power Consumption	3.3		nW typ	
•	3.3		μW max	

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted

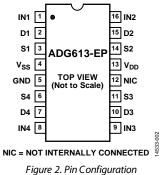
Table 4.

Tuble 1.					
Parameter	Rating				
V _{DD} to V _{SS} ¹	13 V				
V _{DD} to GND ¹	–0.3 V to +6.5 V				
V _{SS} to GND ¹	+0.3 V to -6.5 V				
Analog Inputs ²	$V_{SS}-0.3VtoV_{DD}+0.3V$				
Digital Inputs ²	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first				
Peak Current, Sx or Dx	20 mA (pulsed at 1 ms, 10% duty cycle maximum)				
Continuous Current, Sx or Dx	10 mA				
3 V Operation, 85℃ to 125℃	7.5 mA				
Operating Temperature Range	–55℃ to +125℃				
Storage Temperature Range	–65℃ to +150℃				
Junction Temperature	150℃				
θ _{JA} Thermal Impedance					
16-Lead TSSOP	150.4°C/W				
Lead Soldering					
Lead Temperature, Soldering (10 sec)	300℃				
IR Reflow, Peak Temperature (<20 sec)	220℃				
Pb-Free Soldering					
Reflow, Peak Temperature	260 (+0/−5)℃				
Time at Peak Temperature	20 sec to 40 sec				

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

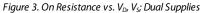
¹ Tested at -55° C to $+125^{\circ}$ C.

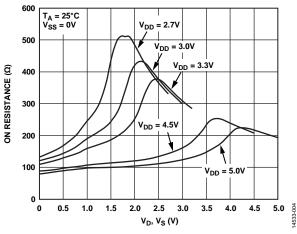
 2 Overvoltages at INx, Sx, or Dx are clamped by internal diodes. Limit the current to the maximum ratings given. Tested at –55°C to +125°C.

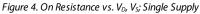
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Switch 1 Digital Control Input.
2	D1	Drain Terminal of Switch 1. This pin can be an input or output.
3	S1	Source Terminal of Switch 1. This pin can be an input or output.
4	V _{ss}	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal of Switch 4. This pin can be an input or output.
7	D4	Drain Terminal of Switch 4. This pin can be an input or output.
8	IN4	Switch 4 Digital Control Input.
9	IN3	Switch 3 Digital Control Input.
10	D3	Drain Terminal of Switch 3. This pin can be an input or output.
11	S3	Source Terminal of Switch 3. This pin can be an input or output.
12	NIC	Not Internally Connected.
13	V _{DD}	Most Positive Power Supply Terminal.
14	S2	Source Terminal of Switch 2. This pin can be an input or output.
15	D2	Drain Terminal of Switch 2. This pin can be an input or output.
16	IN2	Switch 2 Digital Control Input.


Table 6. Truth Table


Logic	S1 and S4	S2 and S3
0	Off	On
1	On	Off


ADG613-EP

TYPICAL PERFORMANCE CHARACTERISTICS

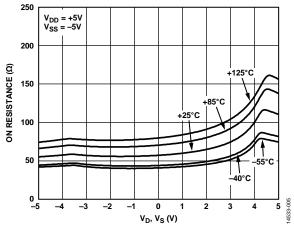


Figure 5. On Resistance vs. V_D, V_S for Various Temperatures, Dual Supplies

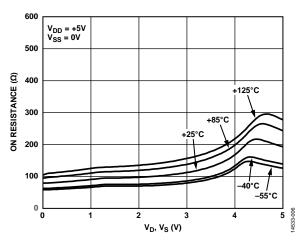


Figure 6. On Resistance vs. V_D, V_S for Various Temperatures, Single Supply

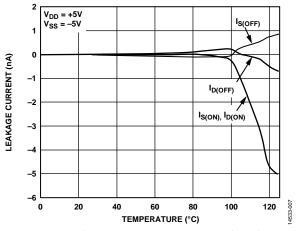


Figure 7. Leakage Current vs. Temperature, Dual Supplies

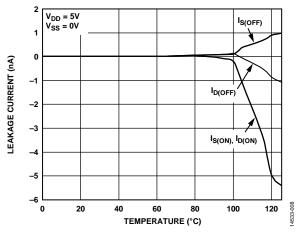
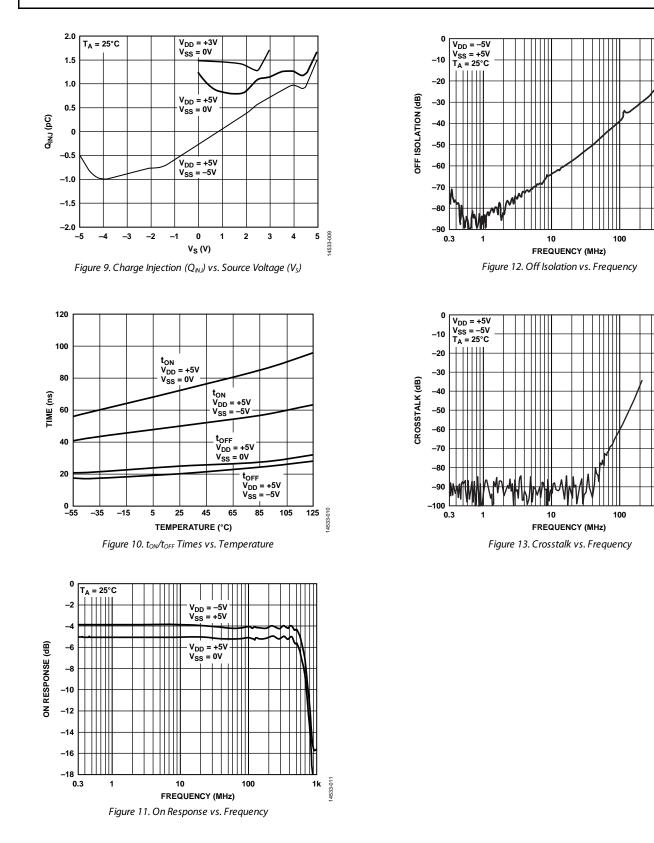
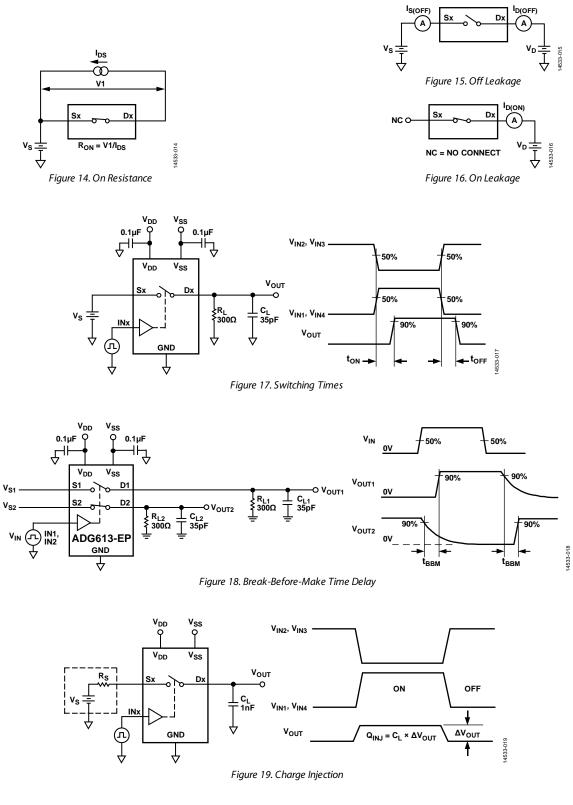


Figure 8. Leakage Current vs. Temperature, Single Supply

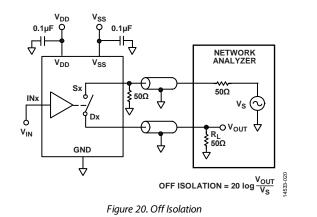

Enhanced Product

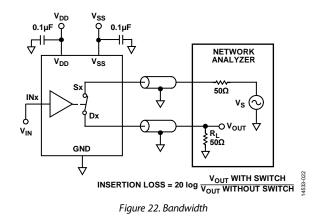
ADG613-EP

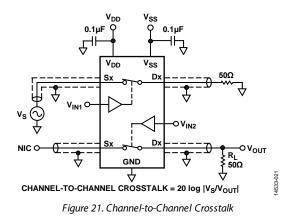
14533-012


1k

1k 14533-013

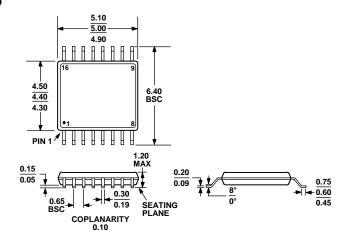

ADG613-EP


TEST CIRCUITS



Enhanced Product

ADG613-EP



ADG613-EP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE			
Model ¹	Temperature Range	Package Description	Package Option
ADG613SRUZ-EP	−55℃ to +125℃	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613SRUZ-EP-RL7	−55℃ to +125℃	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = RoHS Compliant Part.

www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN#PBF 74LV4066DB,118 FSA2275AUMX