

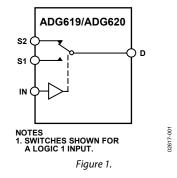
FEATURES

6.5 Ω (maximum) on resistance 0.8 Ω (maximum) on-resistance flatness 2.7 V to 5.5 V single supply ±2.7 V to ±5.5 V dual supply Rail-to-rail operation 8-lead SOT-23, 8-lead MSOP Typical power consumption (<0.1 μW) TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems Avionics Relay replacement Battery-powered systems

GENERAL DESCRIPTION


The ADG619/ADG620 are monolithic, CMOS single-pole double-throw (SPDT) switches. Each switch conducts equally well in both directions when the device is on.

The ADG619/ADG620 offer a low on resistance of 4 Ω , which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action.

The ADG619/ADG620 are available in an 8-lead SOT-23 and an 8-lead MSOP.

CMOS, ±5 V/+5 V, 4 Ω, Single SPDT Switches ADG619/ADG620

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Low on resistance (R_{ON}): 4 Ω typical.
- 2. Dual ± 2.7 V to ± 5.5 V or single 2.7 V to 5.5 V supplies.
- 3. Low power dissipation.
- 4. Fast t_{ON}/t_{OFF} .
- 5. Tiny, 8-lead SOT-23 and 8-lead MSOP.

Table 1. Truth Table for the ADG619/ADG620

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	5

REVISION HISTORY

3/07—Rev. B to Rev. C	
Changes to Specifications	3
1/06—Rev. A to Rev. B	
Changes to Ron Values in Table 2	2
Updated Outline Dimensions	13
Changes to Ordering Guide	13

6/03—Rev. 0 to Rev. A.

Edits to Specifications	2
Changes to Ordering Guide	4
Updated Outline Dimensions	8

Absolute Maximum Ratings6
ESD Caution
Pin Configurations and Function Descriptions7
Typical Performance Characteristics8
Terminology10
Test Circuits 11
Outline Dimensions
Ordering Guide14

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V ± 10%, V_{SS} = -5 V ± 10%, GND = 0 V. All specifications -40°C to +85°C, unless otherwise noted.

Table 2.

	B Version ¹				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		Vss to VDD	V	$V_{DD} = +4.5 \text{ V}, \text{V}_{SS} = -4.5 \text{ V}$	
On Resistance (R _{ON})	4		Ωtyp	$V_{s} = \pm 4.5 V$, $I_{Ds} = -10 mA$; see Figure 15	
	6.5	8.5	Ωmax		
R_{ON} Match Between Channels (ΔR_{ON})	0.7		Ωtyp	$V_{s} = \pm 4.5 V$, $I_{Ds} = -10 mA$	
	1.1	1.35	Ωmax		
On-Resistance Flatness (R _{FLAT (ON)})	0.7	0.8	Ωtyp	$V_{s} = \pm 3.3 \text{ V}, I_{Ds} = -10 \text{ mA}$	
	1.35	1.4	Ωmax		
LEAKAGE CURRENTS				$V_{DD} = +5.5 V, V_{SS} = -5.5 V$	
Source Off Leakage, Is (Off)	±0.01		nA typ	$V_s = \pm 4.5 V$, $V_D = \mp 4.5 V$; see Figure 16	
	±0.25	±1	nA max		
Channel On Leakage, I _D , I _s (On)	±0.01		nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 17	
	±0.25	±1	nA max		
DIGITAL INPUTS					
Input High Voltage, VINH		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
		±0.1	µA max		
Digital Input Capacitance, C _{IN}	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
ADG619					
t _{on}	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
	120	155	ns max	$V_s = 3.3 V$; see Figure 18	
toff	45		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
	75	90	ns max	Vs = 3.3 V; see Figure 18	
Break-Before-Make Time Delay, t _{BBM}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
		10	ns min	$V_{S1} = V_{S2} = 3.3 V$; see Figure 19	
ADG620					
ton	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	65	85	ns max	$V_s = 3.3 V$; see Figure 18	
toff	200		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	330	400	ns max	$V_s = 3.3 V$; see Figure 18	
Make-Before-Break Time Delay, t _{MBB}	160		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
		10	ns min	$V_s = 0 V$; see Figure 20	
Charge Injection	110		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 21	
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22	
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23	
Bandwidth –3 dB	190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24	
Cs (Off)	25		pF typ	f = 1 MHz	
C _D , C _S (On)	95		pF typ	f = 1 MHz	

	B Version ¹				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
POWER REQUIREMENTS				$V_{DD} = +5.5 V, V_{SS} = -5.5 V$	
I _{DD}	0.001		μA typ	Digital inputs = $0 V \text{ or } 5.5 V$	
		1.0	µA max		
I _{SS}	0.001		µA typ	Digital inputs = $0 V \text{ or } 5.5 V$	
		1.0	µA max		

 1 Temperature range for B version is $-40^\circ C$ to $+85^\circ C.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V. All specifications -40°C to +85°C, unless otherwise noted.

Table 3.

		4		
+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
	0 V to V _{DD}	V	$V_{DD} = 4.5 V, V_{SS} = 0 V$	
7		Ωtyp	$V_s = 0 V$ to 4.5 V, $I_{Ds} = -10 \text{ mA}$; see Figure 1	
10	12.5	Ωmax		
0.8		Ωtyp	$V_{s} = 0 V$ to 4.5 V, $I_{Ds} = -10 mA$	
1.1	1.3	Ωmax		
0.5	0.5	Ωtyp	$V_s = 1.5 V$ to 3.3 V, $I_{Ds} = -10 \text{ mA}$	
	1.2	Ωmax		
			$V_{DD} = 5.5 V$	
±0.01		nA typ	$V_{s} = 1 V/4.5 V$, $V_{D} = 4.5 V/1 V$; see Figure 16	
	+1			
			$V_{s} = V_{D} = 1 V/4.5 V$; see Figure 17	
	+1			
10.25		платах		
	24	Vmin		
0.005	0.0	-		
0.005	1		$V_{IN} = V_{INL} \text{ or } V_{INH}$	
2	±0.1			
2		р⊦ тур		
-		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
220	280	ns max	$V_s = 3.3 V$; see Figure 18	
50		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
75	110	ns max	Vs = 3.3 V; see Figure 18	
70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
	10	ns min	$V_{S1} = V_{S2} = 3.3 V$; see Figure 19	
50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$	
85	110	ns max	Vs = 3.3 V; see Figure 18	
210		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
340	420	ns max	V _s = 3.3 V; see Figure 18	
170		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
	10	ns min	$V_s = 3.3 V$; see Figure 20	
6		pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 21	
			$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure	
			22	
-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23	
190		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 24	
			f = 1 MHz	
			f = 1 MHz	
		F* -7 P	$V_{DD} = 5.5 V$	
0.001		μA typ	Digital inputs = 0 V or 5.5 V	
_	$+25^{\circ}C$ 7 10 0.8 1.1 0.5 ± 0.01 ± 0.25 ± 0.01 ± 0.25 ± 0.01 ± 0.25 20 0.005 2 120 220 50 75 70 50 85 210 340 170 6 -67 -67	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	+25°C -40°C to +85°C Unit 7 0 V to V _{DD} V 7 12.5 Ω max 0.8 0 V to V _{DD} Ω typ 1.1 1.3 Ω max 0.5 Ω typ Ω max 0.5 Ω typ Ω max ±0.01 ±1 Π max ±0.01 ±1 nA max ±0.01 ±1 nA max ±0.01 ±1 nA max 0.005 ±1 nA max 0.005 ±1 nA max 0.005 ±1 ns typ 120 24 V min 220 280 ns max 50 110 ns typ 70 10 ns typ 10 ns typ ns max 70 10 ns typ 340 420 ns typ 10 ns typ ns typ 340 420 ns typ 70 10	

¹ Temperature range for B version is -40°C to +85°C. ² Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

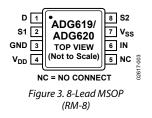
Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	–0.3 V to +6.5 V
V _{ss} to GND	+0.3 V to -6.5 V
Analog Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA (whichever occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
MSOP	
θ_{JA} Thermal Impedance	206°C/W
θ_{JC} Thermal Impedance	44°C/W
SOT-23	
θ_{JA} Thermal Impedance	229.6°C/W
θ_{JC} Thermal Impedance	91.99°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature	220°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at a time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

D 1 S1 2 GND 3 V _{DD} 4	ADG619/ ADG620 TOP VIEW (Not to Scale)	8 S2 7 V _{SS} 6 IN 5 NC	12617-002
N	C = NO CONNEC	т	0261
Figu	ıre 2. 8-Lead S((RJ-8)	OT-23	

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. Can be an input or output.
2	S1	Source Terminal. Can be an input or output.
3	GND	Ground (0 V) Reference.
4	V _{DD}	Most Positive Power Supply.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	Vss	Most Negative Power Supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.
8	S2	Source Terminal. Can be an input or output.

TYPICAL PERFORMANCE CHARACTERISTICS

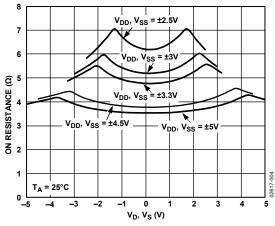


Figure 4. On Resistance vs. V_D, V_s (Dual Supply)

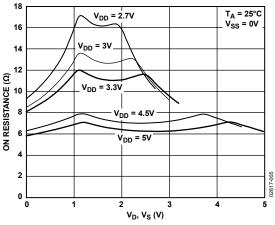


Figure 5. On Resistance vs. V_D, V_s (Single Supply)

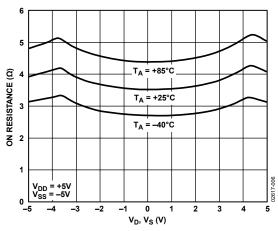


Figure 6. On Resistance vs. V_D, V_S for Different Temperatures (Dual Supply)

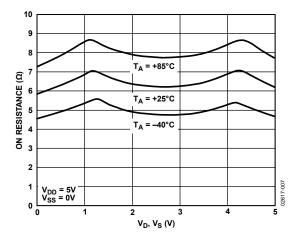


Figure 7. On Resistance vs. V_D, V_S for Different Temperatures (Single Supply)

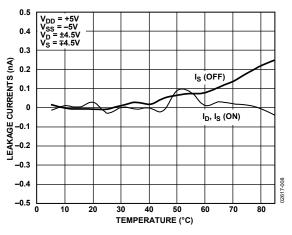


Figure 8. Leakage Currents vs. Temperature (Dual Supply)

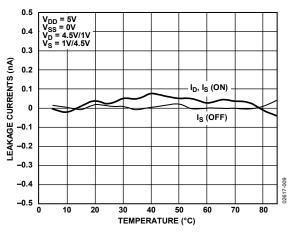


Figure 9. Leakage Currents vs. Temperature (Single Supply)

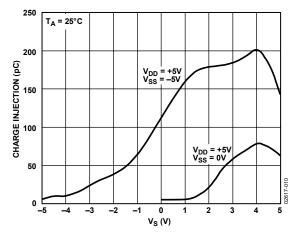
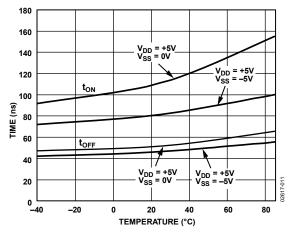
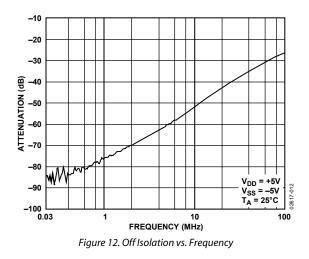
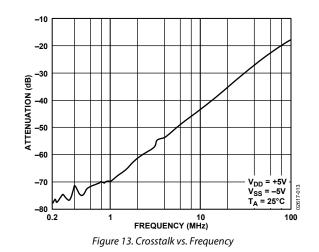





Figure 10. Charge Injection vs. Source Voltage

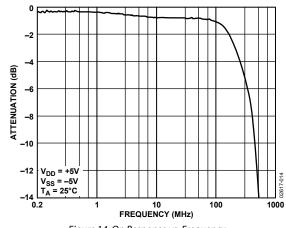


Figure 14. On Response vs. Frequency

TERMINOLOGY

 \mathbf{I}_{DD}

Positive supply current.

Iss Negative supply current.

R_{ON} Ohmic resistance between D and S terminals.

 ΔR_{ON} On resistance match between any two channels.

$R_{\rm FLAT \ (ON)}$

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off) Source leakage current with the switch off.

I_D, I_s (On) Channel leakage current with the switch on.

 $\mathbf{V}_{D}, \mathbf{V}_{S}$ Analog voltage on Terminal D and Terminal S.

V_{INL} Maximum input voltage for Logic 0.

 \mathbf{V}_{INH} Minimum input voltage for Logic 1.

I_{INL}, I_{INH} Input current of the digital input.

Cs (Off) Off switch source capacitance. C_D, C_s (On) On switch capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

 $\mathbf{t}_{\mathrm{MBB}}$

On time is measured between the 80% points of both switches, when switching from one address state to another.

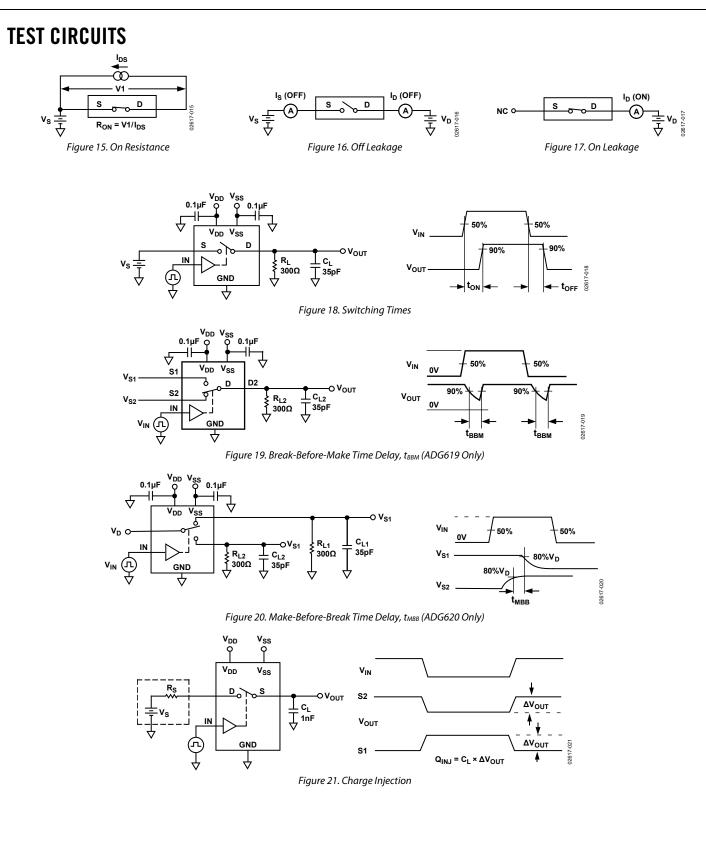
t_{BBM}

Off time or on time is measured between the 90% points of both switches, when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk


A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

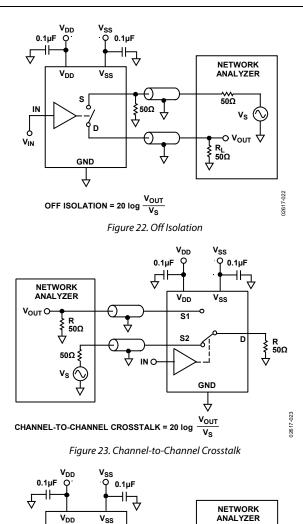


Figure 24. Bandwidth

INSERTION LOSS = 20 log $\frac{V_{OUT}$ WITH SWITCH V_S WITHOUT SWITCH

 \diamond

ϯ

Ε.

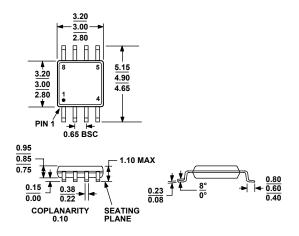
-OV_{OUT} φ

vs(V)

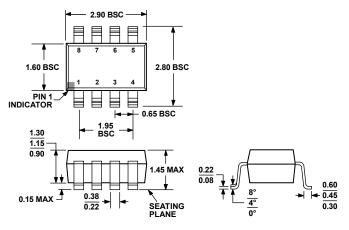
02617-024

 V_{SS}

VDD


IN

s


GND Ą

D

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 25. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-BA Figure 26. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG619BRM	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL	–40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRM-REEL7	–40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SVB
ADG619BRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL ²	–40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRMZ-REEL7 ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SCC
ADG619BRT-REEL	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-REEL7	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRT-500RL7	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SVB
ADG619BRTZ-REEL ²	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-REEL7 ²	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG619BRTZ-500RL7 ²	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SCC
ADG620BRM	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRM-REEL7	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	SWB
ADG620BRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package (MSOP)	RM-8	S21
ADG620BRT-REEL	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRT-REEL7	-40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	SWB
ADG620BRTZ-REEL7 ²	–40°C to +85°C	8-Lead Small Outline Transistor Package (SOT-23)	RJ-8	S21

 $^{\rm 1}$ Branding on SOT-23 and MSOP is limited to three characters due to space constraints. $^{\rm 2}$ Z = RoHS Compliant Part.

NOTES

NOTES

www.analog.com

©2001–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02617-0-3/07(C)

Rev. C | Page 16 of 16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN#PBF