FEATURES

5.5Ω (maximum) on resistance
0.9Ω (typical) on resistance flatness
2.7 V to 5.5 V single supply
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply
Rail-to-rail operation
10-lead MSOP package
Typical power consumption: <0.01 $\boldsymbol{\mu W}$
TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment

Power routing

Communication systems

Data acquisition systems

Sample-and-hold systems
Avionics
Relay replacements

Battery-powered systems

GENERAL DESCRIPTION

The ADG621 is a monolithic, CMOS, single-pole, single-throw (SPST) switch. The ADG621 conducts equally well in both directions when on. The ADG621 contains two independent switches. The ADG621 is a normally open switch.
The ADG621 offers low on resistance of 4Ω, which is matched to within 0.25Ω between channels. The ADG621 also provides low power dissipation yet offers high switching speeds.

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS compatibility when using single +5 V or dual $\pm 5 \mathrm{~V}$ supplies. The ADG621 is available in a 10 -lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. SWITCHES SHOWN FOR A LOGIC 0 INPUT

Figure 1.

PRODUCT HIGHLIGHTS

1. Low on resistance, Ron (4Ω typical).
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +2.7 V to +5.5 V .
3. Low power dissipation; CMOS construction ensures low power dissipation.
4. Tiny 10-lead MSOP package.

TABLE OF CONTENTS

Features 1
Applications
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
5/2017—Rev. B to Rev. C
Deleted ADG622 and ADG623 Universal
Changes to Features Section and General Description Section.... 1
Deleted Figure 2 and Figure 3; Renumbered Sequentially 1
Deleted Break-Before-Make Time Delay Parameter, Table 1 3
Deleted Note 1, Table 1; Renumbered Sequentially 3
Added Note 2, Table 1 3
Deleted Break-Before-Make Time Delay Parameter, Table 2 4
Deleted Note 1, Table 2; Renumbered Sequentially 4
Added Note 2, Table 2 4
Added Note 1, Table 3; Renumbered Sequentially 5
Changes to Table 3 5
Deleted Table 5; Renumbered Sequentially. 5
Moved Table 5 6
Changes to Figure 2, Table 4, and Table 5 6
Changes to Figure 11, Figure 12, and Figure 13 8
Changes to Figure 14, Figure 15, Figure 16, Figure 17, andFigure 18 9
Changes to Figure 19 and Figure 21 10
Deleted Figure 20 10
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 11
Outline Dimensions 12
Ordering Guide 12
Moved Terminology Section 11
Changes to Terminology Section 11
Changes to Ordering Guide 12
11/2009—Rev. A to Rev. B
Changes to Table 55
Changes to Ordering Guide 12
6/2007—Rev. 0 to Rev. A
Change to On Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$ Specification (Table 1) 3
Change to On Resistance Flatness, $\mathrm{R}_{\mathrm{flat}(\mathrm{ON})}$ Specification (Table 2) 4
Added Table 6 6
Changes to Terminology Section 7
Changes to Figure 13 9
Updated Outline Dimensions 12
Changes to Ordering Guide 12
11/2001-Revision 0: Initial Version

11/2001-Revision 0: Initial Version

ADG621

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflaton)	$\begin{aligned} & 4 \\ & 5.5 \\ & 0.25 \\ & 0.35 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{S S} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 7 \\ & 7 \\ & 0.4 \\ & 0.9 \\ & 1.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \text { see Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, Io, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	$\begin{aligned} & \text { nA typ } \\ & \text { nA max } \\ & \text { nA typ } \\ & \text { nA max } \\ & \text { nA typ } \\ & \text { nA max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}, \text { see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {, see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, CIN	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection, Qins Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 75 \\ & 120 \\ & 45 \\ & 70 \\ & 110 \\ & -65 \\ & -90 \\ & 230 \\ & 20 \\ & 20 \\ & 70 \end{aligned}$	$\begin{aligned} & 155 \\ & 85 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 17 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 17 \\ & V_{S}=0 \mathrm{~V}, R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 18 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 19 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 20 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, see Figure } 21 \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ${ }^{2}$ IDD Iss	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ μA typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ RoN On Resistance Flatness, Rflation)	$\begin{aligned} & 7 \\ & 10 \\ & 0.5 \\ & 0.75 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{\mathrm{DD}} \\ & 12.5 \\ & 1 \\ & 0.5 \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}, \text { see Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (Off) Drain Off Leakage I_{D} (Off) Channel On Leakage, $I_{D}, I_{s}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1 ± 1	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V} \\ & V_{S}=1 \mathrm{~V} / 4.5 \mathrm{~V}, V_{D}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {, see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection, Qinj Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & 120 \\ & 210 \\ & 50 \\ & 75 \\ & 6 \\ & -65 \\ & -90 \\ & 230 \\ & 20 \\ & 20 \\ & 70 \end{aligned}$	$\begin{aligned} & 260 \\ & 100 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; \mathrm{V}_{S}=3.3 \mathrm{~V} \text {, see Figure } 17 \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ; V_{S}=3.3 \mathrm{~V} \text {, see Figure } 17 \\ & V_{S}=0 \mathrm{~V} ; R_{S}=0 \Omega, C_{L}=1 \mathrm{nF} \text {, see Figure } 18 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz} \text {, see Figure } 19 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 20 \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, see Figure } 21 \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \\ & f=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ${ }^{2}$ IdD	0.001	1.0	μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V ${ }_{\text {d }}$ to $\mathrm{V}_{\text {Ss }}{ }^{1}$	13 V
VDD to GND	-0.3 V to +6.5 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{2}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{2}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or Dx	100 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package	
θ_{JA} Thermal Impedance	206 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ıc }}$ Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
Infrared (IR) Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$
Pb -Free Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

${ }^{1}$ The device is fully specified at $\pm 5 \mathrm{~V}$ dual supply and at +5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies ($\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$, and 2.7 V to 5.5 V); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, $\mathrm{V}_{\mathrm{INL}}, \mathrm{V}_{\mathrm{INH}}$, and switching times. The optimal power-up sequence for the device is ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and then the digital inputs, before applying the analog input signal.
${ }^{2}$ Overvoltages at INx,S, or D must be clamped by internal diodes. Limit currents to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,7	S1, S2	Source Terminals. S1 and S2 can be inputs or outputs.
2,8	D1, D2	Drain Terminals. D1 and D2 can be inputs or outputs.
3,9	IN2, IN1	Control Inputs.
4	GND	Ground (0 V) Reference.
5	VSS	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, tie this pin to ground at
		the device.
6	NIC	Not Internally Connected.
10	VDD	Most Positive Power Supply Potential.

Table 5. Truth Table

INx	Switch Sx Condition
0	Off
1	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_{D}, V_{S} (Dual Supply)

Figure 4. On Resistance vs. V_{D}, V_{S} (Single Supply)

Figure 5. On Resistance vs. V_{D}, V_{s} for Different Temperatures (Dual Supply)

Figure 6. On Resistance vs. V_{D}, V_{S} for Different Temperature (Single Supply)

Figure 7. Leakage Current vs. Temperature (Dual Supply)

Figure 8. Leakage Current vs. Temperature (Single Supply)

Figure 9. Charge Injection vs. Source Voltage (Vs)

Figure 10. ton $/ t_{\text {off }}$ Times vs. Temperature

Figure 11. Off Isolation vs. Frequency

Figure 12. Crosstalk vs. Frequency

Figure 13. Bandwidth vs. Frequency

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Switching Times (ton, toff)

Figure 18. Charge Injection

Figure 19. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

Figure 20. Channel to Channel Crosstalk

Figure 21. Bandwidth

TERMINOLOGY

$I_{D D}$
$I_{D D}$ is the positive supply current.
Iss
$I_{\text {Ss }}$ is the negative supply current.
$V_{D}\left(V_{s}\right)$
V_{D} and V_{s} are the analog voltages on Terminal D and Terminal S , respectively.

Ron
Ros is the ohmic resistance between Terminal D and Terminal S .
$\mathrm{R}_{\mathrm{Flat} \text { (on) }}$
On resistance flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\Delta R_{\text {on }}$
$\Delta \mathrm{R}_{\mathrm{on}}$ is the on resistance match between any two channels.
Is $_{s}$ (Off)
I_{s} (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ are the channel leakage currents with the switch on.
$V_{\text {INL }}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
Vinh
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ are the input currents of the digital input.
C_{s} (Off)
C_{S} (Off) is the off switch source capacitance, measured with reference to ground.
C_{D} (Off)
C_{D} (Off) is the off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ are the on switch capacitances, measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
ton
$t_{\text {on }}$ is the delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

tofr is the delay time between the 50% and the 90% points of the digital input and switch off condition.

Charge Injection

Charge injection, $\mathrm{Q}_{\mathrm{IN} J}$, is a measure of the glitch impulse transferred from the digital input to the analog output during on and off switching.

Off Isolation

Off isolation is a measure of an unwanted signal coupling through an off switch.

Crosstalk

Crosstalk is a measure of an unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

-3 dB bandwidth is the frequency at which the output is attenuated by -3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the attenuation between the input and output ports of the switch when the switch is in the on condition and is due to the on resistance of the switch.

OUTLINE DIMENSIONS

0.10

な
D
す。
Figure 22．10－Lead Mini Small Outline Package［MSOP］ （RM－10）
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding $^{\mathbf{2}}$
ADG621BRMZ $^{\text {ADG621BRMZ－REEL }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 －Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM－10	SXB\＃
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 －Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM－10	SXB\＃

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part．
${ }^{2}$ \＃denotes RoHS compliant product；may be top or bottom marked．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.
 ${ }^{2}$ The device is fully specified at $\pm 5 \mathrm{~V}$ dual supply and at +5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies ($\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply, and +2.7 V to +5.5 V single supply); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, $\mathrm{V}_{\mathbb{N L},}, \mathrm{V}_{\mathbb{I N H}}$, and switching times. The optimal power-up sequence for the device is ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and then the digital inputs, before applying the analog input signal.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.
 ${ }^{2}$ The device is fully specified at $\pm 5 \mathrm{~V}$ dual supply and at +5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies ($\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply, and +2.7 V to +5.5 V single supply); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, $\mathrm{V}_{I N L}, \mathrm{~V}_{I N H}$, and switching times. The optimal power-up sequence for the device is ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{5 S}$, and then the digital inputs, before applying the analog input signal.

