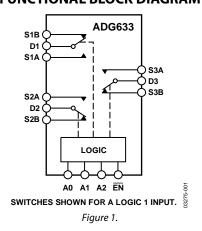
ANALOG DEVICES CMOS, ±5 V/+5 V/+3 V, Triple SPDT Switch **ADG633**

Data Sheet

FEATURES

±2 V to ±6 V dual-supply operation 2 V to 12 V single-supply operation Temperature range: -40°C to +125°C <0.2 nA leakage currents 52 Ω on resistance over full signal range **Rail-to-rail switching operation** 16-lead LFCSP and TSSOP packages Typical power consumption: <0.1 µW **TTL-/CMOS-compatible inputs** Package upgrades to 74HC4053 and MAX4053/MAX4583

APPLICATIONS


Automatic test equipment **Data acquisition systems Battery-powered systems Communications systems** Audio and video signal routing **Relay replacement** Sample-and-hold systems Industrial control systems

GENERAL DESCRIPTION

The ADG633 is a low voltage CMOS device comprising three independently selectable single-pole, double-throw (SPDT) switches. The device is fully specified for ± 5 V, ± 5 V, and ± 3 V supplies. The ADG633 switches are turned on with a logic low (or high) on the appropriate control input. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. An EN input is used to enable or disable the device. When the device is disabled, all channels are switched off.

The ADG633 is designed on an enhanced process that provides lower power dissipation, yet is capable of high switching speeds. Low power consumption and an operating supply range of 2 V to 12 V make the ADG633 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

FUNCTIONAL BLOCK DIAGRAM

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual ±5 V supplies.

The ADG633 is available in a small, 16-lead TSSOP package and a 16-lead, 4 mm × 4 mm LFCSP package.

PRODUCT HIGHLIGHTS

- Single- and dual-supply operation. The ADG633 offers 1. high performance and is fully specified and guaranteed with ± 5 V, ± 5 V, and ± 3 V supply rails.
- Temperature range: -40°C to +125°C. 2
- 3. Guaranteed break-before-make switching action.
- Low power consumption, typically <0.1 μ W. 4.
- 5. Small, 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP packages.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	. 2
Specifications	. 3
Dual-Supply Operation	. 3
Single-Supply Operation	. 4

REVISION HISTORY

2/2017—Rev. A to Rev. B	
Deleted B Version	Гhroughout
Changes to Features Section, Applications Section, and	nd Product
Highlights Section	1
Added Note 2 to Table 1; Renumbered Sequentially	
Added Note 2 to Table 2; Renumbered Sequentially	
Added Note 2 to Table 3; Renumbered Sequentially	5
Added Note 1 to Table 4; Renumbered Sequentially	6
Changes to Figure 3 and Table 6	7
Updated Outline Dimensions	14
Changes to Ordering Guide	14

11/2009—Rev. 0 to Rev. A

Changes to Table 4	6
Added Table 5; Renumbered Sequentially	7
Changes to Table 6	
Update Outline Dimensions	14
Changes to Ordering Guide	14

2/2003—Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

 V_{DD} = +5 V, V_{SS} = -5 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{ss} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance, R _{on}	52			Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure 20}$
	75	90	100	Ωmax	$V_{s} = \pm 4.5 V$, $I_{s} = 1 mA$; see Figure 20
On-Resistance Match	0.8			Ωtyp	$V_{s} = +3.5 V$, $I_{s} = 1 mA$
Between Channels, ΔR_{ON}					
	1.3	1.8	2	Ωmax	$V_{s} = +3.5 \text{ V}, I_{s} = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	9			Ωtyp	$V_{DD} = +5 V$, $V_{SS} = -5 V$, $V_{S} = \pm 3 V$, $I_{S} = 1 mA$
	12	13	14	Ωmax	$V_{DD} = +5 V, V_{SS} = -5 V, V_{S} = \pm 3 V, I_{S} = 1 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \mp 4.5 \text{ V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \mp 4.5 \text{ V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \pm 4.5 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_{\rm D} = \pm 4.5$ V, $V_{\rm S} = \mp 4.5$ V; see Figure 22
			ΞЭ		
Channel On Leakage, $I_{D(ON)}$, $I_{S(ON)}$	±0.005			nA typ	$V_D = V_S = \pm 4.5$ V; see Figure 23
	±0.2		±5	nA max	$V_D = V_S = \pm 4.5$ V; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{transition}	60			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
	90	110	130	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
t _{on} (EN)	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	95	120	135	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
t _{off} (EN)	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	40	45	50	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	40			ns typ	$R_{\rm H} = 300 \Omega, C_{\rm H} = 35 \text{pF}, V_{\rm S1} = V_{\rm S2} = 3 \text{V}; \text{see Figure 25}$
, · · · · · · · · · · · · · · · · · · ·			10	ns min	$R_{\rm H} = 300 \Omega, C_{\rm H} = 35 \text{pF}, V_{\rm S1} = V_{\rm S2} = 3 \text{V}; \text{ see Figure 25}$
Charge Injection	2			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
5 ,	4			pC max	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF;$ see Figure 27
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion, THD + N	0.025			% typ	$R_{\rm L} = 600 \Omega, 2 V p-p, f = 20 Hz to 20 Hz$
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
-3 dB Bandwidth	580			MHz typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$; see Figure 29
C _{S(OFF)}	4			pF typ	f = 1 MHz
	7			pF typ	f = 1 MHz
C _{D(OFF)} C _{D(ON)} , C _{S(ON)}	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²	12			אי יא	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	0.01			μA typ	$v_{DD} = +3.5 \text{ v}, v_{SS} = -3.5 \text{ v}$ Digital inputs = 0 V or 5.5 V
I _{DD}	0.01		1	μΑ typ μΑ max	Digital inputs = 0 V or 5.5 V
	0.01		1	•	Digital inputs = $0 \text{ V or } 5.5 \text{ V}$ Digital inputs = $0 \text{ V or } 5.5 \text{ V}$
I _{SS}	0.01		1	μA typ	
			1	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test. ² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

SINGLE-SUPPLY OPERATION

 V_{DD} = 5 V, V_{SS} = 0 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 2.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance, R _{on}	85			Ωtyp	$V_{s} = 0 V$ to 4.5 V, $I_{s} = 1 mA$; see Figure 20
	150	160	200	Ωmax	$V_{s} = 0 V$ to 4.5 V, $I_{s} = 1 mA$; see Figure 20
On-Resistance Match	4.5			Ωtyp	$V_{s} = +3.5 V$, $I_{s} = 1 mA$
Between Channels, ΔR_{ON}					
	8	9	10	Ωmax	$V_{s} = +3.5 \text{ V}, I_{s} = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	13	14	16	Ωtyp	$V_{DD} = 5 V$, $V_{SS} = 0 V$, $V_{S} = 1.5 V$ to $4 V$, $I_{S} = 1 mA$
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
,	±0.2		±5	nA max	$V_{\rm S} = 1 \text{ V}/4.5 \text{ V}, V_{\rm D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_s = V_D = 1$ V or 4.5 V; see Figure 23
	±0.2		±5	nA max	$V_s = V_D = 1$ V or 4.5 V; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			µA typ	$V_{IN} = V_{INI}$ or V_{INH}
			±1	µA max	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{TRANSITION}	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
in the second se	150	190	220	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 24
t _{on} (EN)	100			ns typ	$R_1 = 300 \Omega, C_1 = 35 \text{ pF}, V_s = 3 \text{ V}; \text{ see Figure 26}$
	150	190	220	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
t _{off} (EN)	25			ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
	35	45	50	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	90	15	50	ns typ	$R_1 = 300 \Omega, C_1 = 35 \text{ pF}, V_{S1} = V_{S2} = 3 \text{ V}; \text{ see Figure 25}$
break before make time belay, t _{BBM}	50		10	ns min	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
Charge Injection	0.5		10	pC typ	$V_s = 2.5 \text{ V}, R_s = 0 \Omega, C_1 = 1 \text{ nF}; \text{ see Figure 27}$
charge injection	1			pC typ pC max	$V_{s} = 2.5 V, R_{s} = 0 \Omega, C_{L} = 1 \text{ nF}; \text{ see Figure 27}$ $V_{s} = 2.5 V, R_{s} = 0 \Omega, C_{L} = 1 \text{ nF}; \text{ see Figure 27}$
Off Isolation	-90			dB typ	$R_{\rm I} = 50 \ \Omega$, $C_{\rm I} = 5 \ {\rm FF}$, $f = 1 \ {\rm MHz}$; see Figure 28
Channel-to-Channel Crosstalk	-90 -90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
-3 dB Bandwidth	-90 520			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $T = 1 mH2$, see Figure 30 $R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 29
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{S(OFF)} C _{D(OFF)}	8			pF typ pF typ	f = 1 MHz
	8 12			pF typ pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)}	12			pr typ	
POWER REQUIREMENTS ²	0.01			u A turo	$V_{DD} = 5.5 V$
I _{DD}	0.01		1	μA typ	Digital inputs = 0 V or 5.5 V
			1	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL} , V_{INH} , and switching times. The optimal power-up sequence for the device is: ground, V_{DD} , V_{SS} , and then the digital inputs, before applying the analog input signal.

Data Sheet

V_{DD} = 2.7 V to 3.6 V, V_{SS} = 0 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 3.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 2.7 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, R _{ON}	185			Ωtyp	$V_s = 0 V$ to 2.7 V, $I_s = 0.1 mA$; see Figure 20
	300	350	400	Ωmax	$V_s = 0 V$ to 2.7 V, $I_s = 0.1 mA$; see Figure 20
On-Resistance Match	2			Ωtyp	$V_{s} = +1.5 \text{ V}, I_{s} = 0.1 \text{ mA}$
Between Channels, ΔR_{ON}					
	4.5	6	7	Ωmax	$V_s = +1.5 V$, $I_s = 0.1 mA$
LEAKAGE CURRENTS					$V_{DD} = 3.3 V$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_s = V_D = 1 V \text{ or } 3 V$; see Figure 23
	±0.2		±5	nA max	$V_s = V_D = 1 V \text{ or } 3 V$; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.5	V max	
Input Current, I _{INI} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	µA max	$V_{\rm IN} = V_{\rm INI}$ or $V_{\rm INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{transition}	170			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 24
	300	370	400	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_s = 1.5 V$; see Figure 24
t _{on} (EN)	200			ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_s = 1.5 V$; see Figure 26
	310	380	420	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
t _{off} (EN)	30			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
-OFF ()	40	55	75	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
Break-Before-Make Time Delay, t _{RRM}	180	55		ns typ	$R_L = 300 \Omega, C_L = 35 pF, V_{S1} = V_{S2} = 1.5 V;$ see Figure 25
break before make finte belay, eggm	100		10	ns min	$R_1 = 300 \Omega, C_1 = 35 \text{ pF}, V_{S1} = V_{S2} = 1.5 \text{ V}; \text{ see Figure 25}$
Charge Injection	1			pC typ	$V_{s} = 1.5 V, R_{s} = 0 \Omega, C_{l} = 1 \text{ nF}; \text{ see Figure 27}$
charge injection	2			pC max	$V_s = 1.5 V, R_s = 0 \Omega, C_1 = 1 nF;$ see Figure 27
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
-3 dB Bandwidth	500			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 29
	5			pF typ	f = 1 MHz
C _{S(OFF)} C _{D(OFF)}	8			pF typ	f = 1 MHz
C _{D(OFF)} C _{D(ON)} , C _{S(ON)}	12			pF typ	f = 1 MHz
	12			PL UP	$V_{\text{DD}} = 3.3 \text{ V}$
	0.01			μA typ	$v_{DD} = 3.5 \text{ V}$ Digital inputs = 0 V or 3.3 V
I _{DD}	0.01		1	μΑ typ μΑ max	Digital inputs = 0 V of 3.3 V Digital inputs = 0 V or 3.3 V

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at \pm 5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (\pm 2 V to \pm 6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{NL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 4.

Parameter	Rating
V_{DD} to V_{SS}^{1}	13 V
V _{DD} to GND	–0.3 V to +13 V
V _{ss} to GND	+0.3 V to -6.5 V
Analog Inputs ²	$V_{ss} - 0.3 V \text{ to } V_{DD} + 0.3 V$
Digital Inputs ²	GND – 0.3 V to V _{DD} + 0.3 V or 10 mA, whichever occurs first
Peak Current, S or D	40 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	20 mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
16-Lead TSSOP	150.4°C/W
16-Lead LFCSP, 4-Layer Board	70°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
(Pb-Free) Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	4 kV

¹ The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL} , V_{INH} , and switching times. The optimal power-up sequence for the device is: ground, V_{DD} , V_{SS} , and then the digital inputs, before applying the analog input signal.

² Overvoltages at Ax, EN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

16 S2A 15 S2B 14 V_{DD} 13 D2

ADG633

TOP VIEW (Not to Scale)

1. THE EXPOSED PADDLE CAN BE LEFT FLOATING OR BE TIED TO V_{DD}, V_{SS}, OR GND.

Figure 3. 16-Lead LFCSP Pin Configuration

V_{SS} 5 GND 6 A2 7 A1 8 12 D1

11 S1B

10 S1A

9 A0

S3B 1

D3 2

S3A 3

EN 4

NOTES

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

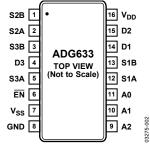


Figure 2. 16-Lead TSSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.				
TSSOP	LFCSP	Mnemonic	Description	
1	15	S2B	Source Terminal of Multiplexer 2. Can be an input or output.	
2	16	S2A	Source Terminal of Multiplexer 2. Can be an input or output.	
3	1	S3B	Source Terminal of Multiplexer 3. Can be an input or output.	
4	2	D3	Drain Terminal of Multiplexer 3. Can be an input or output.	
5	3	S3A	Source Terminal of Multiplexer 3. Can be an input or output.	
6	4	ĒN	Digital Control Input. Disables all multiplexers when set high.	
7	5	Vss	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply	
			voltages.	
8	6	GND	Ground (0 V) Reference.	
9	7	A2	Digital Control Input.	
10	8	A1	Digital Control Input.	
11	9	A0	Digital Control Input.	
12	10	S1A	Source Terminal of Multiplexer 1. Can be an input or output.	
13	11	S1B	Source Terminal of Multiplexer 1. Can be an input or output.	
14	12	D1	Drain Terminal of Multiplexer 1. Can be an input or output.	
15	13	D2	Drain Terminal of Multiplexer 2. Can be an input or output.	
16	14	V _{DD}	Most Positive Power Supply Terminal.	
Not applicable	EP	EP	Exposed Paddle. The exposed paddle can be left floating or be tied to V_{DD} , V_{SS} , or GND.	

Table 6. ADG633 Truth Table

				Switch Condition						
A2	A1	A0	EN	Switch S1A/D1	Switch S1B/D1	Switch S2A/D2	Switch S2B/D2	Switch S3A/D3	Switch S3B/D3	
X ¹	X ¹	X ¹	1	Off	Off	Off	Off	Off	Off	
0	0	0	0	On	Off	On	Off	On	Off	
0	0	1	0	Off	On	On	Off	On	Off	
0	1	0	0	On	Off	Off	On	On	Off	
0	1	1	0	Off	On	Off	On	On	Off	
1	0	0	0	On	Off	On	Off	Off	On	
1	0	1	0	Off	On	On	Off	Off	On	
1	1	0	0	On	Off	Off	On	Off	On	
1	1	1	0	Off	On	Off	On	Off	On	

 $^{\scriptscriptstyle 1}$ X means the logic state does not matter; it can be either 0 or 1.

TYPICAL PERFORMANCE CHARACTERISTICS

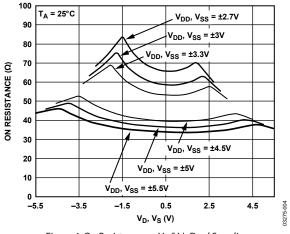
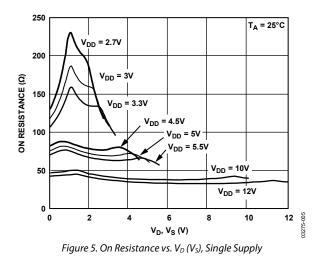



Figure 4. On Resistance vs. V_D (V_s), Dual Supplies

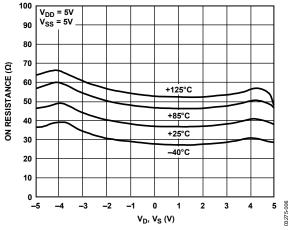


Figure 6. On Resistance vs. V_D (Vs) for Various Temperatures, Dual Supplies

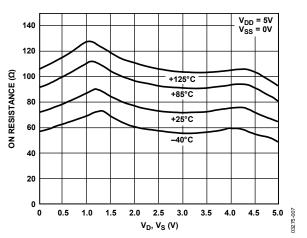


Figure 7. On Resistance vs. $V_{\text{D}}\left(V_{\text{S}}\right)$ for Various Temperatures, Single Supply

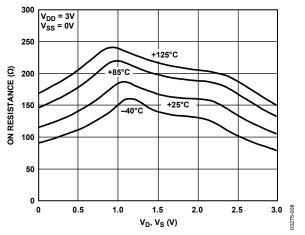
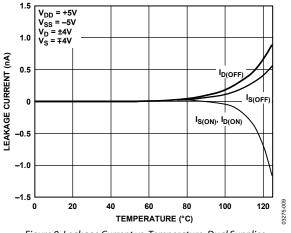
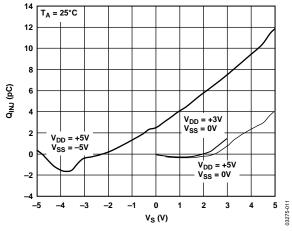
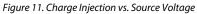


Figure 8. On Resistance vs. V_D (V_S) for Various Temperatures, Single Supply


Figure 9. Leakage Current vs. Temperature, Dual Supplies

Data Sheet

Figure 10. Leakage Current vs. Temperature, Single Supply

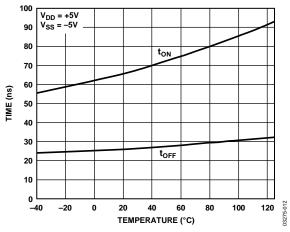


Figure 12. t_{ON}/t_{OFF} Times vs. Temperature, Dual Supplies

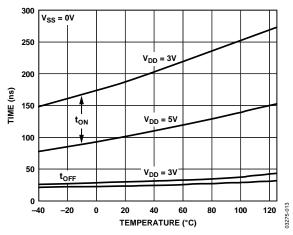
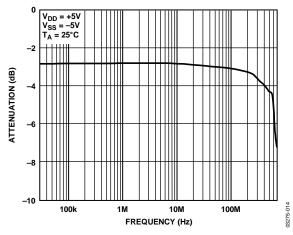
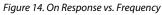




Figure 13. t_{ON}/t_{OFF} Times vs. Temperature, Single Supply

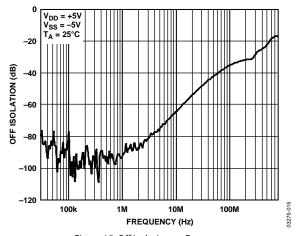
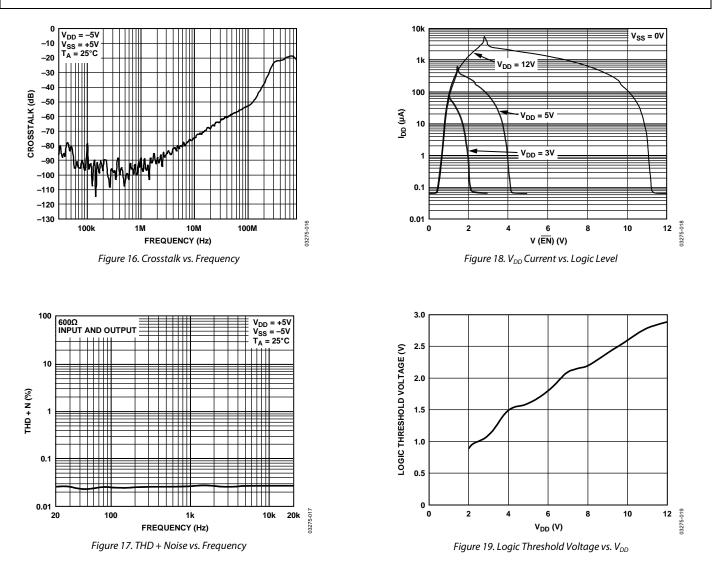



Figure 15. Off Isolation vs. Frequency

ADG633

ADG633

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

Vss

Most negative power supply potential.

I_{DD}

Positive supply current.

I_{ss}

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

A_x

Logic control input.

EN

Active low digital input. When \overline{EN} is high, the device is disabled and all switches are off. When \overline{EN} is low, the Ax logic inputs determine the on switches.

 V_D, V_s

Analog voltage on Terminal D and Terminal S.

R_{on}

Ohmic resistance between Terminal D and Terminal S.

 $\Delta R_{\rm ON}$

On-resistance match between any two channels, that is, $R_{ONMAX} - R_{ONMIN}$.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

 $I_{S(OFF)}$ Source leakage current with the switch off.

 $I_{\mbox{\tiny D(OFF)}}$ Drain leakage current with the switch off.

 $I_{D(ON)},\,I_{S(ON)}$ Channel leakage current with the switch on.

V_{INL} Maximum input voltage for Logic 0. V_{INH} Minimum input voltage for Logic 1. I_{INI} , I_{INH}

Input current of the digital input.

C_{S(OFF)}

Off switch source capacitance. Measured with reference to ground.

 $C_{\text{D}(\text{OFF})}$ Off switch drain capacitance. Measured with reference to ground.

 $C_{\mbox{\tiny D(ON)}}, C_{\mbox{\tiny S(ON)}}$ On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

 t_{ON} (EN) Delay between applying the digital control input and the output switching on (see Figure 26).

 t_{OFF} (EN) Delay between applying the digital control input and the output switching off (see Figure 26).

t_{BBM}

On time, measured between 80% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

ADG633

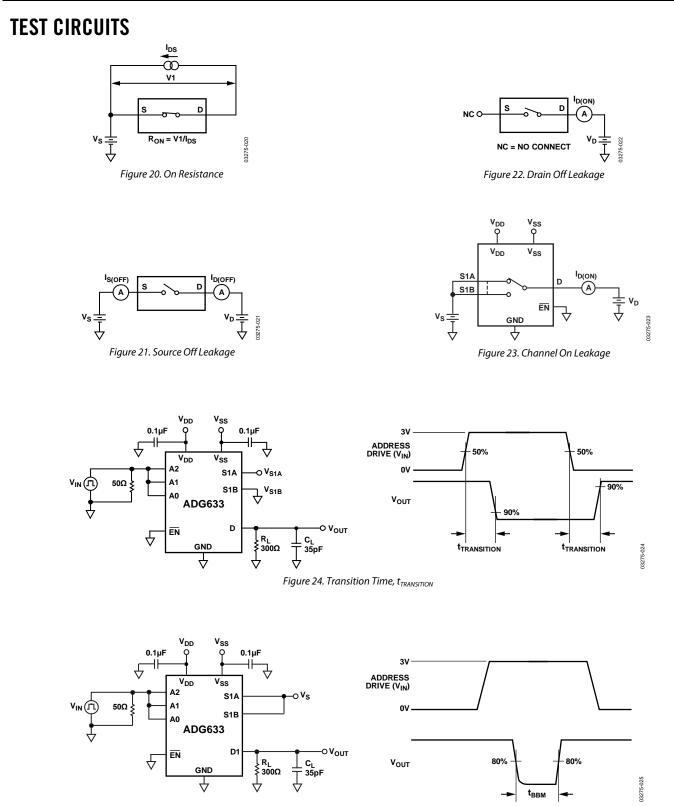
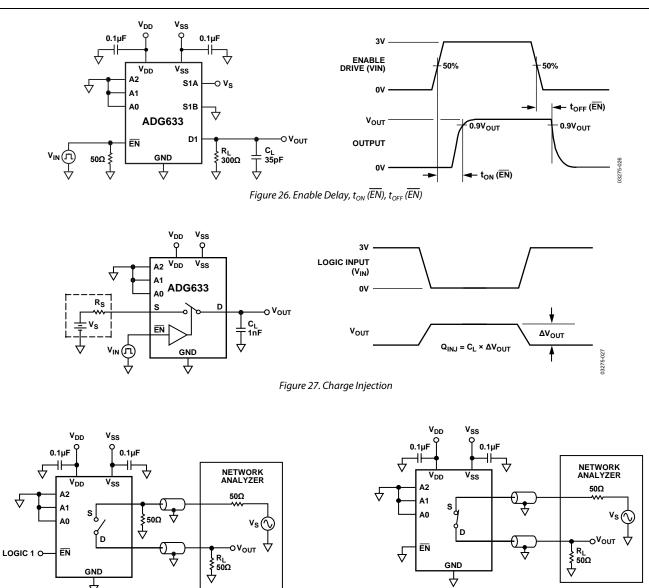
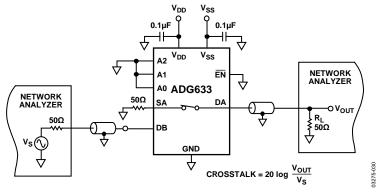



Figure 25. Break-Before-Make Delay, t_{BBM}


Data Sheet

Ą

INSERTION LOSS = 20 log $\frac{V_{OUT} \text{ WITH SWITCH}}{V_{OUT} \text{ WITHOUT SWITCH}}$

Figure 29. Bandwidth

V_{OUT} V_S 03275-028

OFF ISOLATION = 20 log

Figure 28. Off Isolation

Figure 30. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

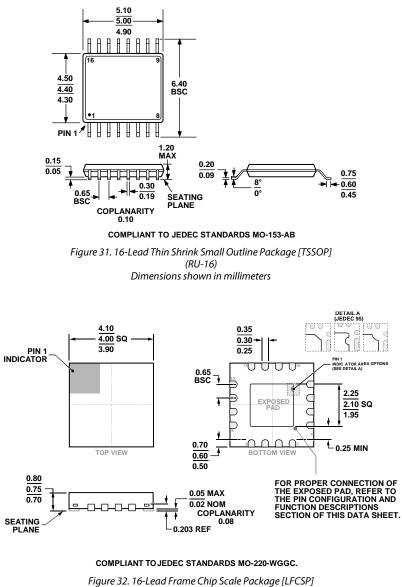


Figure 32. 16-Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters 04-15-2016

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG633YRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YCPZ	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG633YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23

 1 Z = RoHS Compliant Part.

NOTES

ADG633

NOTES

©2003–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03275-0-2/17(B)

www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN#PBF