Data Sheet

FEATURES

1.8 V to 5.5 V single supply
$\pm 2.5 \mathrm{~V}$ dual supply
3Ω on resistance
0.75Ω on resistance flatness
100 pA leakage currents
14 ns switching times
Single 8-to-1 multiplexer ADG708
Differential 4-to-1 multiplexer ADG709
16-lead TSSOP package
Low power consumption
TTL-/CMOS-compatible inputs
Qualified for automotive applications

APPLICATIONS

Data acquisition systems
Communication systems
Relay replacement
Audio and video switching
Battery-powered systems

GENERAL DESCRIPTION

The ADG708/ADG709 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG708 switches one of eight inputs (S 1 to S 8) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. The ADG709 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off.

Low power consumption and an operating supply range of 1.8 V to 5.5 V make the ADG708/ADG709 ideal for batterypowered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.

These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, and leakage currents.

On resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies.

The ADG708/ADG709 are available in a 16 -lead TSSOP.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

PRODUCT HIGHLIGHTS

1. Single-/dual-supply operation. The ADG708/ADG709 are fully specified and guaranteed with 3 V and 5 V single-supply and $\pm 2.5 \mathrm{~V}$ dual-supply rails.
2. Low Ron (3Ω typical).
3. Low power consumption $(<0.01 \mu \mathrm{~W})$.
4. Guaranteed break-before-make switching action.
5. Small 16-lead TSSOP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Technical Support ©2000-2014 Analog Devices, Inc. All rights reserved. www.analog.com

ADG708/ADG709

TABLE OF CONTENTS

\qquad
Applications. 1
General Description 1
Functional Block Diagrams 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 7
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
REVISION HISTORY
9/14-Rev. D to Rev. E
Changes to Ordering Guide 20
1/13-Rev. C to Rev. D
Changes to Ordering Guide 20
4/09-Rev. B to Rev. C
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Moved Truth Tables Section 11
Changes to Figure 7, Figure 8, and Figure 9 12
Changes to Figure 13 and Figure 14 13
Moved Terminology Section 18
Changes to Ordering Guide 20
Truth Tables 11
Typical Performance Characteristics 12
Test Circuits 15
Terminology 18
Applications Information 19
Power Supply Sequencing 19
Outline Dimensions 20
Ordering Guide 20
Automotive Products 20
8/06-Rev. A to Rev. B
Updated Format. Universal
Changes to Absolute Maximum Ratings Section. 9
Added Table 7 and Table 8 10
Updated Outline Dimensions 18
Changes to Ordering Guide 18
4/02-Rev. 0 to Rev. A
Edits to Features and Product Highlights 1
Change to Specifications 2-4
Edits to Absolute Maximum Ratings Notes 5
Edits to TPCs 2, 5, 6-9, 11, and 15 7-9
Edits to Test Circuits 9 and 10 11
Addition of Test Circuit 11 11
10/00-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG708/ADG709

Parameter	B Version			C Version			Unit	Test Conditions/ Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
Channel-to-Channel Crosstalk	-60			-60			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$
	-80			-80			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { see Figure } 29 \end{aligned}$
-3 dB Bandwidth	55			55			MHz typ	$\mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF} ;$ see Figure 30
C_{5} (Off)	13			13			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG708	85			85			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG709	42			42			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}, \mathrm{CS}^{(O n)} \mathrm{O}}$								
ADG708	96			96			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG709	48			48			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS ID	0.001	1.0	1.0	0.001	1.0	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1}$ Guaranteed by design, not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^0]
DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.

Table 3.

ADG708/ADG709

Parameter	B Version			C Version			Unit	Test Conditions/ Comments	
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			
Channel-to-Channel Crosstalk	-60			-60			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	
	-80			-80			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 29 \end{aligned}$	
-3 dB Bandwidth	55			55			MHz typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 30	
C_{5} (Off)	13			13			pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
$C_{\text {D }}$ (Off) ${ }^{\text {a }}$									
ADG708	85			85			pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
ADG709	42			42			pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{D}, \mathrm{C}_{\text {(}}(\mathrm{On})}$									
ADG708	96			96			pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
ADG709	48			48			pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
POWER REQUIREMENTS ldo	0.001			0.001				$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$	
						$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or 2.75 V		
		1.0	1.0		1.0	1.0	$\mu \mathrm{A}$ max		
Iss	0.001				0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {SS }}=-2.75 \mathrm{~V}$
		1.0	1.0		1.0	1.0	$\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 2.75 V	

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	7V
V ${ }_{\text {do }}$ to GND	-0.3 V to +7 V
Vss to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle Maximum)	100 mA
Continuous Current, S or D	30 mA
Operating Temperature	
Industrial Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package, Power Dissipation	432 mW
θ_{JA} Thermal Impedance	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лc }}$ Thermal Impedance	$27.6^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

[^2]
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG708 Pin Configuration

Figure 4. ADG709 Pin Configuration

Table 5. ADG708 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
2	EN	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
3	VSS	Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, it should be tied to GND.
4	S1	Source Terminal. Can be an input or output.
5	S2	Source Terminal. Can be an input or output.
6	S3	Source Terminal. Can be an input or output.
7	S4	Source Terminal. Can be an input or output.
8	D	Drain Terminal. Can be an input or output.
9	S8	Source Terminal. Can be an input or output.
10	S7	Source Terminal. Can be an input or output.
11	S6	Source Terminal. Can be an input or output.
12	S5	Source Terminal. Can be an input or output.
13	VDD	Most Positive Power Supply Pin.
14	GND	Ground (0 V) Reference.
15	A2	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).
16	A1	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 7).

Table 6. ADG709 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).
2	EN	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).
3	VSS	Most Negative Power Supply Pin in Dual-Supply Applications. For single-supply applications, it should be tied to GND.
4	S1A	Source Terminal. Can be an input or output.
5	S2A	Source Terminal. Can be an input or output.
6	S3A	Source Terminal. Can be an input or output.
7	S4A	Source Terminal. Can be an input or output.
8	DA	Drain Terminal. Can be an input or output.
9	DB	Drain Terminal. Can be an input or output.
10	S4B	Source Terminal. Can be an input or output.
11	S3B	Source Terminal. Can be an input or output.
12	S2B	Source Terminal. Can be an input or output.
13	S1B	Source Terminal. Can be an input or output.
14	VDD	Most Positive Power Supply Pin.
15	GND	Ground (0 V) Reference.
16	A1	Digital Input. Controls the configuration of the switch, as shown in the truth table (see Table 8).

Data Sheet

TRUTH TABLES

Table 7. ADG708 Truth Table

A2	A1	A0	EN	Switch Condition
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	7
1	1	1	8	
1				

Table 8. ADG709 Truth Table

A1	A0	EN	On Switch Pair
X^{1}	X^{1}	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4
$\mathrm{X}=$ Don't care.			

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 12. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Leakage Currents as a Function of Temperature

Figure 15. Supply Current vs. Input Switching Frequency

Figure 16. Off Isolation vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. On Response vs. Frequency

Figure 19. Charge Injection vs. Source Voltage

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Is (OFF)

*SIMILAR CONNECTION FOR ADG709.

Figure 22. ID (OFF)

Figure 23. $I_{D}(O N)$

Figure 24. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Figure 25. Break-Before-Make Delay, topen

ADG708/ADG709

*SIMILAR CONNECTION FOR ADG709.
Figure 26. Enable Delay, toN (EN), toff (EN)

*SIMILAR CONNECTION FOR ADG709.
Figure 27. Charge Injection

OFF ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{S}}$
Figure 28. Off Isolation

*SIMILAR CONNECTION FOR ADG709.
CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 29. Channel-to-Channel Crosstalk
Data Sheet ADG708/ADG709

INSERTION LOSS $=20 \log \frac{\mathrm{~V}_{\text {OUT WITH SWITCH }}}{\mathrm{v}_{\text {OUT }} \text { WITHOUT SWITCH }}$
Figure 30. Bandwidth

ADG708/ADG709

TERMINOLOGY

$V_{\text {DD }}$

Most positive power supply potential.

Vss

Most negative power supply in a dual-supply application. In single-supply applications, tie V $\mathrm{V}_{\text {ss }}$ to ground at the device.

GND

Ground (0 V) reference.
S
Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

Ax

Logic control input.

EN

Active high enable.
Ron
Ohmic resistance between D and S .
$\mathbf{R}_{\text {flat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current with the switch on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminal D and Terminal S.
C_{s} (Off)
Off switch source capacitance. Measured with reference to ground.

C_{D} (Off)

Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
$t_{\text {transition }}$
Delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {ON }}$ (EN)
Delay time between the 50% and 90% points of the EN digital input and the switch on condition.
$t_{\text {Off }}$ (EN)
Delay time between the 50% and 90% points of the EN digital input and the switch off condition.

topen

Off time measured between the 80% points of both switches when switching from one address state to another.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge

A measure of the glitch impulse transferred from injection of the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

On Loss

The loss due to the on resistance of the switch.
VinL
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
I_{DD}
Positive supply current.

Iss
Negative supply current.

APPLICATIONS INFORMATION

POWER SUPPLY SEQUENCING

When using CMOS devices, take care to ensure correct power supply sequencing. Incorrect power supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in Figure 4.

Always apply digital and analog inputs after power supplies and ground. For single-supply operation, tie $\mathrm{V}_{\text {ss }}$ to GND as close to the device as possible.

OUTLINE DIMENSIONS

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-16$)
Dimensions shown in millimeters
ORDERING GUIDE

Model ${ }^{1,2}$	Temperature Range	Package Description	Package Option
ADG708BRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG708CRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADW54008-0REEL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709CRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG709CRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADW54008 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at A, EN, S, or D are clamped by internal codes. Current should be limited to the maximum ratings given.

