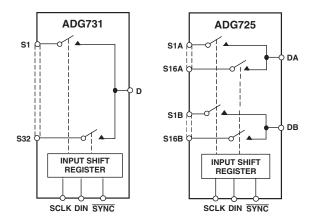
ANALOG DEVICES

16-/32-Channel, Serially Controlled 4 Ω 1.8 V to 5.5 V, \pm 2.5 V, Analog Multiplexers

ADG725/ADG731


FEATURES

3-Wire SPI Compatible Serial Interface
1.8 V to 5.5 V Single Supply
±2.5 V Dual-Supply Operation
4 Ω On Resistance
0.5 Ω On Resistance Flatness
7 mm x 7 mm 48-Lead Chip Scale Package (LFCSP) or 48-Lead TQFP Package
Rail-to-Rail Operation
Power-On Reset
42 ns Switching Times
Single 32-to-1 Channel Multiplexer
Dual/Differential 16-to-1 Channel Multiplexer
TTL/CMOS Compatible Inputs
For Functionally Equivalent Devices with Parallel Interface, See ADG726/ADG732

APPLICATIONS Optical Applications Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems Medical Instrumentation

Automatic Test Equipment

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG731/ADG725 are monolithic, CMOS, 32-channel/ dual 16-channel analog multiplexers with a serially controlled 3-wire interface. The ADG731 switches one of 32 inputs (S1–S32) to a common output, D. The ADG725 can be configured as a dual mux switching one of 16 inputs to one output, or a differential mux switching one of 16 inputs to a differential output.

These mulitplexers utilize a 3-wire serial interface that is compatible with SPI[®], QSPI^M, MICROWIRE^M, and some DSP interface standards. On power-up, the Internal Shift Register contains all zeros and all switches are in the OFF state.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed with very low on resistance and leakage currents. They operate from a single supply of 1.8 V to 5.5 V or a ± 2.5 V dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few ohms, is closely matched between switches, and is very flat over the full signal range.

These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

The ADG731 and ADG725 are serially controlled 32-channel, and dual/differential 16-channel multiplexers, respectively. They are available in either a 48-lead LFCSP or TQFP package.

PRODUCT HIGHLIGHTS

- 1. 3-Wire Serial Interface.
- 1.8 V to 5.5 V Single-Supply or ±2.5 V Dual-Supply Operation. These parts are specified and guaranteed with 5 V ±10%, 3 V ±10% single-supply, and ±2.5 V ±10% dual-supply rails.
- 3. On Resistance of 4 Ω .
- 4. Guaranteed Break-Before-Make Switching Action.
- 5. 7 mm × 7 mm 48-Lead Chip Scale Package (LFCSP) or 48-Lead TQFP Package.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

$\label{eq:additional} ADG725/ADG731 - SPECIFICATIONS^{1} (v_{\text{DD}} = 5 \text{ V} \pm 10\%, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ unless otherwise noted.})$

Parameter	B +25°C	Version -40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	v	
On Resistance (R _{ON})	4	o to v DD	Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$;
On Resistance (RON)	5.5	6	$\Omega \max$	Test Circuit 1
On Resistance Match between	5.5	0.3	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
Channels (ΔR_{ON})		0.5	$\Omega \max$	$v_{\rm S} = 0$ v to $v_{\rm DD}$, $r_{\rm DS} = 10$ mA
	0.5	0.8		$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$
On Resistance Flatness (R _{FLAT(ON)})	0.5	1	Ω typ Ω max	$v_{\rm S} = 0$ v to $v_{\rm DD}$, $I_{\rm DS} = 10$ mA
LEAKAGE CURRENTS				V _{DD} = 5.5 V
Source OFF Leakage I _S (OFF)	± 0.01		nA twn	$V_{DD} = 3.5 V$ $V_{D} = 4.5 V/1 V, V_{S} = 1 V/4.5 V;$
Source OFT Leakage IS (OFT)		+ 1	nA typ	$v_D = 4.5 v/1 v_1 v_2 = 1 v/4.5 v_3$ Test Circuit 2
Drain OFF Lookage L (OFF)	± 0.25	± 1	nA max	
Drain OFF Leakage I _D (OFF)	± 0.05	105	nA typ	$V_{\rm D} = 4.5 \text{ V/1 V}, V_{\rm S} = 1 \text{ V/4.5 V};$
ADG725	±0.5	±2.5	nA max	Test Circuit 3
ADG731	±1	±5	nA max	** ** *** ***
Channel ON Leakage I_D , I_S (ON)	±0.05		nA typ	$V_{\rm D} = V_{\rm S} = 1$ V or 4.5 V;
ADG725	±0.5	±2.5	nA max	Test Circuit 4
ADG731	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		µA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5	µA max	
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	42		ns typ	R_L = 300 Ω , C_L = 35 pF; Test Circuit 5
	53	62	ns max	$V_{S1} = 3 V/0 V, V_{S32} = 0 V/3 V$
Break-Before-Make Time Delay, t _D	30	-	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Break Berere Make Thire Beray, ()	50	1	ns min	$V_{S} = 3 V$; Test Circuit 6
Charge Injection	5	•	pC typ	$V_{\rm S} = 2.5 \text{ V}, \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1 \text{ nF};$
Sharge Injection			be the	$V_S = 2.5 V$, $R_S = 0.22$, $C_L = 1.117$, Test Circuit 7
Off Isolation	-72		dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 1 MHz$;
			J I	Test Circuit 8
Channel-to-Channel Crosstalk	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			JP	Test Circuit 9
-3 dB Bandwidth				
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 10
ADG731	18		MHz typ	
C _s (OFF)	15		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)			r- Jr	
ADG725	170		pF typ	f = 1 MHz
ADG731	340		pF typ	f = 1 MHz
$C_{\rm D}, C_{\rm S} (\rm ON)$	540		Prtyp	1 1 IVIII2
ADG725	175		pF typ	f = 1 MHz
	350			
ADG731	550		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 5.5 V$
I _{DD}	10		µA typ	Digital Inputs = 0 V or 5.5 V
		20	µA max	- •

NOTES ¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:specifications} SPECIFICATIONS^{1} \ (v_{\text{DD}} = 3 \ \text{V} \pm 10\%, \ v_{\text{SS}} = 0 \ \text{V}, \ \text{GND} = 0 \ \text{V}, \ \text{unless otherwise noted.})$

		Version		
Parameter	+25°C	-40° C to $+85^{\circ}$ C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V_{DD}	V	
On Resistance (R_{ON})	7		Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$;
	11	12	Ω max	Test Circuit 1
On Resistance Match between		0.35	Ωtyp	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
Channels (ΔR_{ON})		1	Ω max	
On Resistance Flatness $(R_{FLAT(ON)})$		3	Ω max	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 \text{ V}$
Source OFF Leakage I_S (OFF)	± 0.01		nA typ	$V_{\rm S} = 3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3 \text{ V};$
	±0.25	± 1	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_{\rm S} = 1 \text{ V}/3 \text{ V}, V_{\rm D} = 3 \text{ V}/1 \text{ V};$
ADG725	±0.5	± 2.5	nA max	Test Circuit 3
ADG731	±1	± 5	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.05		nA typ	$V_{\rm S} = V_{\rm D} = 1 \text{ V or } 3 \text{ V};$
ADG725	±0.5	± 2.5	nA max	Test Circuit 4
ADG731	± 1	± 5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INI}		0.7	V max	
Input Current		0.1	, mun	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
INL OF INH	0.005	± 0.5	μA max	VIN VINL OF VINH
C _{IN} , Digital Input Capacitance	5	20.9	pF typ	
DYNAMIC CHARACTERISTICS ²			I JI	
	(0)			$\mathbf{P} = 200 \mathbf{O} \mathbf{C} = 25 \mathbf{r} \mathbf{F} \mathbf{T} \mathbf{r} \mathbf{C}$
t _{TRANSITION}	60	00	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; Test Circuit 4
	80	90	ns max	$V_{S1} = 2 V/0 V, V_{S32} = 0 V/2 V$
Break-Before-Make Time Delay, t_D	30	1	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		1	ns min	$V_s = 2 V$; Test Circuit 6
Charge Injection	1		pC typ	$V_{S} = 0 V, R_{S} = 0 \Omega, C_{L} = 1 nF;$
	50		10.	Test Circuit 7
Off Isolation	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	= -		10	Test Circuit 8
Channel-to-Channel Crosstalk	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 9
-3 dB Bandwidth				
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 10
ADG731	18		MHz typ	
C _s (OFF)	15		pF typ	f = 1 MHz
C _D (OFF)				
ADG725	170		pF typ	f = 1 MHz
ADG731	340		pF typ	f = 1 MHz
$C_D, C_S(ON)$			_	
ADG725	175		pF typ	f = 1 MHz
ADG731	350		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 3.3 V
I _{DD}	5		μA typ	Digital Inputs = $0 \text{ V or } 3.3 \text{ V}$
עע־		10	μA max	
		10	minan	

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:DUAL-SUPPLY SPECIFICATIONS} DUAL-SUPPLY SPECIFICATIONS^{1} (V_{DD} = +2.5 \ V \pm 10\%, \ V_{SS} = -2.5 \ V \pm 10\%, \ GND = 0 \ V, \ unless \ otherwise \ noted.)$

Devices of an		Version	T Les \$4	Test Conditional Comments
Parameter	+25°C	-40° C to $+85^{\circ}$ C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	4		Ω typ	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;
	5.5	6	Ω max	Test Circuit 1
On Resistance Match Between		0.3	Ω typ	$V_{\rm S} = V_{\rm SS}$ to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
Channels (ΔR_{ON})		0.8	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_{\rm S} = V_{\rm SS}$ to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
		1	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = +2.25 \text{ V/}-1.25 \text{ V}, V_{\rm D} = -1.25 \text{ V/}+2.25 \text{ V}$
	±0.25	±0.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_{\rm S}$ = +2.25 V/-1.25 V, $V_{\rm D}$ = -1.25 V/+2.25 V;
ADG725	±0.5	±2.5	nA max	Test Circuit 3
ADG731	±1	±5	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{S} = V_{D} = +2.25 \text{ V/}-1.25 \text{ V}$; Test Circuit 4
ADG725	±0.5	±2.5	nA max	
ADG731	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.7	V min	
Input Low Voltage, V_{INH}		0.7	V max	
Input Low Voltage, V _{INL} Input Current		0.7	v max	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
I _{INL} OI I _{INH}	0.005	±0.5	μA typ μA max	$v_{\rm IN} = v_{\rm INL}$ or $v_{\rm INH}$
C _{IN} , Digital Input Capacitance	5	±0.5	pF typ	
DYNAMIC CHARACTERISTICS ²			P- GP	
	55		no trun	$\mathbf{P} = 200 \mathbf{O} \mathbf{C} = 25 \text{ pE} \text{ Tost Circuit 5}$
t _{TRANSITION}	55 75	84	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; Test Circuit 5 $V_{S1} = 1.5 V/0 V$, $V_{S32} = 0 V/1.5 V$
Break-Before-Make Time Delay, t _D	15	04	ns max	$R_{\rm L} = 300 \ \Omega, \ C_{\rm L} = 35 \ {\rm pF}$
break-belore-make Time Delay, ID	15	1	ns typ ns min	$N_L = 500 \Omega_2$, $C_L = 55 \text{ pr}$ $V_S = 1.5 \text{ V}$; Test Circuit 6
Charge Injection	1	1	pC typ	$V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF; Test Circuit 7
Off Isolation	-72		dB typ	$R_{\rm L} = 50 \ \Omega, \ C_{\rm L} = 5 \ {\rm pF}, \ {\rm f} = 1 \ {\rm MHz};$
Oli isolation	-12		ub typ	Test Circuit 8
Channel-to-Channel Crosstalk	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Chamier-to-Chamier Crosstalk	-12		ub typ	Test Circuit 9
-3 dB Bandwidth				Test Gileant /
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 10
ADG731	18		MHz typ	
$C_{\rm S}$ (OFF)	13		pF typ	
$C_{\rm D}$ (OFF)			P- CJP	
ADG725	130		pF typ	f = 1 MHz
ADG731	260		pF typ	f = 1 MHz
$C_D, C_S(ON)$			r- Jr	
ADG725	150		pF typ	f = 1 MHz
ADG731	300		pF typ	f = 1 MHz
POWER REQUIREMENTS			- **	V _{DD} = +2.75 V
I _{DD}	10		μA typ	$V_{DD} = +2.75 V$ Digital Inputs = 0 V or 2.75 V
שט∗	10	20	μA typ μA max	Σ_{1} Σ_{1
	10	20	μA typ	$V_{SS} = -2.75 V$
I _{SS}	1 10	1		$V_{SS} \equiv -2/10$ V

NOTES

 $^{1}Temperature$ range is as follows: B Version: –40 $^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

TIMING CHARACTERISTICS^{1, 2}

Parameter	Limit at T _{MIN} , T _{MAX}	Unit	Conditions/Comments
f _{SCLK}	30	MHz max	SCLK Cycle Frequency
t ₁	33	ns min	SCLK Cycle Time
t ₂	13	ns min	SCLK High Time
t ₃	13	ns min	SCLK Low Time
t ₄	13	ns min	SYNC to SCLK Falling Edge Setup Time
t ₅	40	ns min	Minimum SYNC Low Time
t ₆	5	ns min	Data Setup Time
t ₇	4.5	ns min	Data Hold Time
t ₈	33	ns min	Minimum SYNC High Time

NOTES

¹See Figure 1.

²All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{DD}) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2. Specifications subject to change without notice.

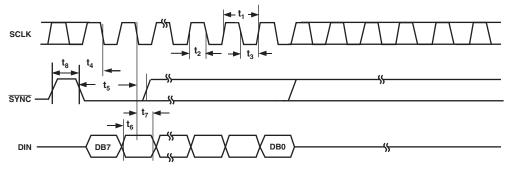


Figure 1. 3-Wire Serial Interface Timing Diagram

DB7 (N	/ISB)					DB0	(LSB)
ĒN	CSA	CSB	х	A3	A2	A1	A0
-			DATA	BITS			

Figure 2. ADG725 Input Shift Register Contents

DB7 (I	/ISB)					DB0	(LSB)
EN	CS	х	A 4	A3	A2	A1	A0
			DATA	BITS			

Figure 3. ADG731 Input Shift Register Contents

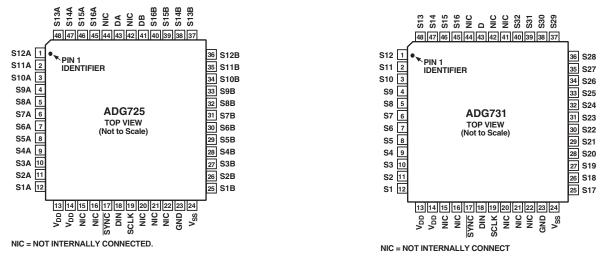
ABSOLUTE MAXIMUM RATINGS¹

$(T_A = 25^{\circ}C, \text{ unless otherwise noted.})$
V_{DD} to V_{SS}
V_{DD} to GND0.3 V to +7 V
V _{SS} to GND+0.3 V to -7 V
Analog Inputs ² $V_{SS} - 0.3$ V to V_{DD} + 0.3 V or
30 mA, Whichever Occurs First
Digital Inputs ² 0.3 V to V_{DD} + 0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D 60 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D
Operating Temperature Range
Industrial (B Version)40°C to +85°C

Storage Temperature Range65°C to +150°C
Junction Temperature
Thermal Impedance (4-Layer Board)
48-lead LFCSP 25°C/W
48-lead TQFP
Lead Temperature, Soldering (10 seconds) 300°C
IR Reflow, Peak Temperature (<20 seconds)
NOTES

NOTES

> ¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.


> ² Overvoltages at SCLK, SYNC, DIN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG725/ADG731 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS 48-Lead LFCSP and TQFP

THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, V_{SS}.

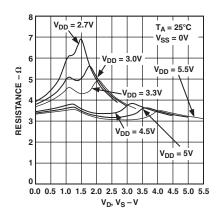
PIN FUNCTION DESCRIPTIONS

ADG725	ADG731	Mnemonic	Function
1–12, 25–40, 45–48	1–12, 25–40, 45–48	Sxx	Source. May be an input or output.
13, 14	13, 14	V _{DD}	Power Supply Input. These parts can be operated from a single supply of 1.8 V to 5.5 V and a dual supply of ± 2.5 V.
17	17	SYNC	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text{SYNC}}$ goes low, it powers on the SCLK and DIN buffers and the input Shift Register is enabled. An 8-bit counter is also enabled. Data is transferred on the falling edges of the following clocks. After eight falling clock edges, switch conditions are automatically updated. $\overline{\text{SYNC}}$ may be used to frame the signal or just pulled low for a short period of time to enable the counter and input buffers.
18	18	DIN	Serial Data Input. Data is clocked into the 8-bit Input Register MSB first on the falling edge of the serial clock input.
19	19	SCLK	Serial Clock Input. Data is clocked into the Input Shift Register on the falling edge of the serial clock input. These devices can accommodate serial input rates of up to 30 MHz.
23	23	GND	Ground Reference
24	24	V _{SS}	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect to GND.
41, 43	N/A	DA, DB	Drain. May be an input or output.
N/A	43	D Epad	Drain. May be an input or output. Exposed Pad for LFCSP. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V _{SS} .

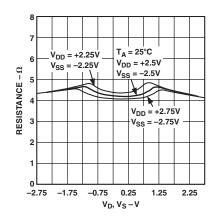
A3	A2	A1	A 0	EN	CSA	CSB	Switch Condition
X	Х	Х	Х	Х	1	1	Retains Previous Switch Condition
Х	Х	Х	Х	1	Х	Х	All Switches OFF
0	0	0	0	0	0	0	S1A – DA, S1B – DB
0	0	0	1	0	0	0	S2A – DA, S2B – DB
0	0	1	0	0	0	0	S3A – DA, S3B – DB
0	0	1	1	0	0	0	S4A – DA, S4B – DB
0	1	0	0	0	0	0	S5A – DA, S5B – DB
0	1	0	1	0	0	0	S6A – DA, S6B – DB
0	1	1	0	0	0	0	S7A – DA, S7B – DB
0	1	1	1	0	0	0	S8A – DA, S8B – DB
1	0	0	0	0	0	0	S9A – DA, S9B – DB
1	0	0	1	0	0	0	S10A – DA, S10B – DB
1	0	1	0	0	0	0	S11A – DA, S11B – DB
1	0	1	1	0	0	0	S12A – DA, S12B – DB
1	1	0	0	0	0	0	S13A – DA, S13B – DB
1	1	0	1	0	0	0	S14A – DA, S14B – DB
1	1	1	0	0	0	0	S15A – DA, S15B – DB
1	1	1	1	0	0	0	S16A – DA, S16B – DB

Table I. ADG725 Truth Table

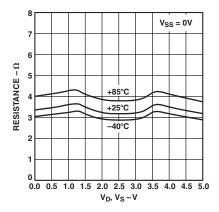
X = Don't Care

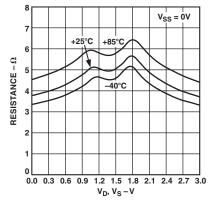

Table II. ADG731 Truth Table

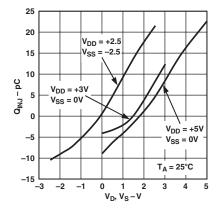
A 4	A3	A2	A1	A0	EN	CSA	Switch Condition
X	Х	Х	Х	Х	Х	1	Retains Previous Switch Condition
Х	Х	Х	Х	Х	1	Х	All Switches OFF
0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	2
0	0	0	1	0	0	0	3
0	0	0	1	1	0	0	4
0	0	1	0	0	0	0	5
0	0	1	0	1	0	0	6
0	0	1	1	0	0	0	7
0	0	1	1	1	0	0	8
0	1	0	0	0	0	0	9
0	1	0	0	1	0	0	10
0	1	0	1	0	0	0	11
0	1	0	1	1	0	0	12
0	1	1	0	0	0	0	13
0	1	1	0	1	0	0	14
0	1	1	1	0	0	0	15
0	1	1	1	1	0	0	16
1	0	0	0	0	0	0	17
1	0	0	0	1	0	0	18
1	0	0	1	0	0	0	19
1	0	0	1	1	0	0	20
1	0	1	0	0	0	0	21
1	0	1	0	1	0	0	22
1	0	1	1	0	0	0	23
1	0	1	1	1	0	0	24
1	1	0	0	0	0	0	25
1	1	0	0	1	0	0	26
1	1	0	1	0	0	0	27
1	1	0	1	1	0	0	28
1	1	1	0	0	0	0	29
1	1	1	0	1	0	0	30
1	1	1	1	0	0	0	31
1	1	1	1	1	0	0	32
							1

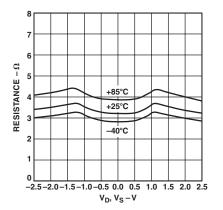

TERMINOLOGY

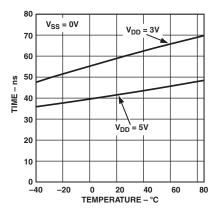
V_{DD} Most Positive Power Supply Potential. V_{SS} Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect to GND I_{DD} Positive Supply Current. I_{SS} Negative Supply Current.GNDGround (0 V) Reference.SSource Terminal. May be an input or output.DDrain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. AR_{ON} Flatness is defined as the difference between the maximum and minimum value of on resistance,
I_{DD} Positive Supply Current. I_{SS} Negative Supply Current.GNDGround (0 V) Reference.SSource Terminal. May be an input or output.DDrain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
I_{SS} Negative Supply Current. GND Ground (0 V) Reference. S Source Terminal. May be an input or output. D Drain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
GNDGround (0 V) Reference.SSource Terminal. May be an input or output.DDrain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
SSource Terminal. May be an input or output.DDrain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
DDrain Terminal. May be an input or output. $V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
$V_D(V_S)$ Analog Voltage on Terminals D, S. R_{ON} Ohmic Resistance between D and S. ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
R _{ON} Ohmic Resistance between D and S.ΔR _{ON} On Resistance Match between any Two Channels.R _{FLAT(ON)} Flatness is defined as the difference between the maximum and minimum value of on resistance,
ΔR_{ON} On Resistance Match between any Two Channels. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance,
R _{FLAT(ON)} Flatness is defined as the difference between the maximum and minimum value of on resistance,
as measured over the specified analog signal range.
I _S (OFF) Source Leakage Current with the Switch OFF.
I _D (OFF) Drain Leakage Current with the Switch OFF.
I _D , I _S (ON) Channel Leakage Current with the Switch ON.
V _{INL} Maximum Input Voltage for Logic 0.
V _{INH} Minimum Input Voltage for Logic 1.
Input Current of the Digital Input.
C _S (OFF) OFF Switch Source Capacitance. Measured with reference to ground.
C _D (OFF) OFF Switch Drain Capacitance. Measured with reference to ground.
C _D , C _S (ON) ON Switch Capacitance. Measured with reference to ground.
C _{IN} Digital Input Capacitance.
t _{TRANSITION} Delay time measured between the 50% points of the eighth clock falling edge and 90% points of the output when switching from one address state to another.
t _D OFF time measured between the 80% points of both switches when switching from one address state to another.
Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.
OFF Isolation A measure of unwanted signal coupling through an OFF switch.
Crosstalk A measure of unwanted signal is coupled through from one channel to another as a result of parasitic capacita
On Response The Frequency Response of the ON Switch.
Insertion Loss The Loss Due to the On Resistance of the Switch.

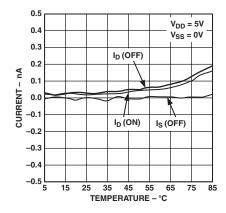

ADG725/ADG731–Typical Performance Characteristics

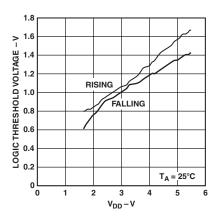

TPC 1. On Resistance vs. V_D (V_S), Single Supply


TPC 2. On Resistance vs. V_D (V_S), Dual Supply

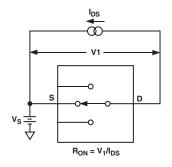

TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures, Single Supply

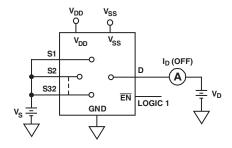

TPC 4. On Resistance vs. V_D (V_S), Single Supply

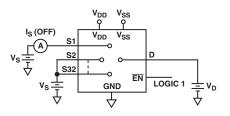

TPC 7. ADG731 Charge Injection vs. Source Voltage

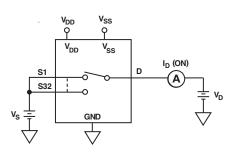

TPC 5. On Resistance vs. V_D (V_s), Dual Supply


TPC 8. Switching Times vs. Temperature

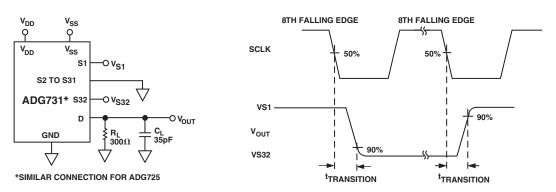

TPC 6. Leakage Currents vs. Temperature


TPC 9. Logic Threshold Voltage vs. Supply Voltage

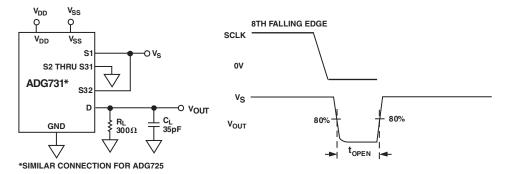

Test Circuits


Test Circuit 1. On Resistance

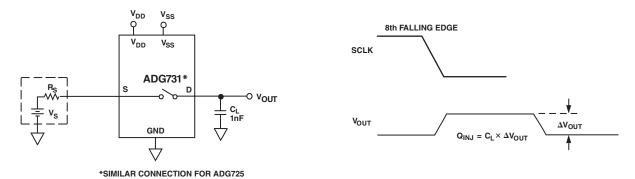
Test Circuit 3. I_D (OFF)

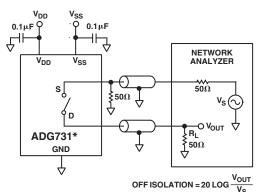


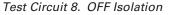
Test Circuit 2. I_S (OFF)

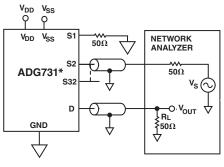


Test Circuit 4. I_D (ON)

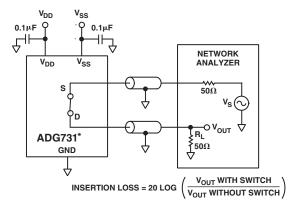

TEST CIRCUITS (continued)

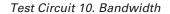

Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}


Test Circuit 6. Break-Before-Make Delay, t_{OPEN}



Test Circuit 7. Charge Injection


*SIMILAR CONNECTION FOR ADG725



***SIMILAR CONNECTION FOR ADG725**

POWER-ON RESET

On power-up of the device, all switches will be in the OFF condition. The Internal Shift Register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

The ADG725 and ADG731 have a 3-wire serial interface $(\overline{SYNC}, SCLK, \text{ and DIN})$ that is compatible with SPI, QSPI, and MICROWIRE interface standards and most DSPs. Figure 1 shows the timing diagram of a typical write sequence.

Data is written to the 8-bit Shift Register via DIN under the control of the SYNC and SCLK signals.

When SYNC goes low, the Input Shift Register is enabled. An 8-bit counter is also enabled. Data from DIN is clocked into the Shift Register on the falling edge of SCLK. Figures 2 and 3 show the contents of the Input Shift Registers for these devices. When the part has received eight clock cycles after SYNC has been pulled low, the switches are automatically updated with the new configuration and the Input Shift Register is disabled.

The ADG725 $\overline{\text{CSA}}$ and $\overline{\text{CSB}}$ data bits allow the user the flexibility to change the configuration of either or both banks of the multiplexer.

MICROPROCESSOR INTERFACING

Microprocessor interfacing to the ADG725/ADG731 is via a serial bus that uses standard protocol compatible with microcontrollers and DSP processors. The communications channel is a 3-wire interface consisting of a clock signal, a data signal, and a synchronization signal. The ADG725/ADG731 requires an 8-bit data-word with data valid on the falling edge of SCLK.

Figures 4–7 illustrate simple 3-wire interfaces with popular microcontrollers and DSPs.

ADSP-21xx to ADG725/ADG731 Interface

The ADSP-21xx family of DSPs are easily interfaced to the ADG725/ADG731 without the need for extra logic. Figure 4 shows an example of an SPI interface between the ADG725/ADG731 and the ADSP-2191M. SCK of the ADSP-2191M drives the SCLK of the mux, while the MOSI output drives the serial data line, DIN. SYNC is driven from one of the port lines, in this case SPIxSEL.

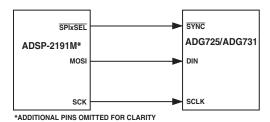


Figure 4. ADSP-2191M to ADG725/ADG731 Interface

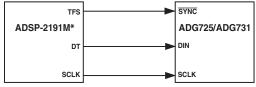
A serial interface between the ADG725/ADG731 and the ADSP-2191M SPORT is shown in Figure 5. In this interface example, SPORT0 is used to transfer data to the switch. Transmission is initiated by writing a word to the Tx Register after the SPORT has been enabled. In a write sequence, data is clocked out on each rising edge of the DSP's serial clock and clocked into the ADG725/ADG731 on the falling edge of its SCLK. The update of each switch condition takes place automatically after the eighth SCLK falling edge, regardless of the frame sync condition.

Communication between two devices at a given clock speed is possible when the following specs are compatible: frame sync delay and frame sync setup and hold, data delay and data setup and hold, and SCLK width. The ADG725/ADG31 expects a t_4 (SYNC falling edge to SCLK falling edge set-up time) of 13 ns minimum. Consult the ADSP-21xx User Manual for information on clock and frame sync frequencies for the SPORT Register.

The SPORT Control Register should be set up as follows:

TFSW = 1, Alternate Framing

INVTFS = 1, Active Low Frame Signal


DTYPE = 00, Right Justify Data

ISCLK = 1, Internal Serial Clock

TFSR = 1, Frame Every Word

ITFS = 1, Internal Framing Signal

SLEN = 0111, 8-Bit Data-Word

*ADDITIONAL PINS OMITTED FOR CLARITY

Figure 5. ADSP-2191M to ADG725/ADG731 Interface

8051 to ADG725/ADG731 Interface

A serial interface between the ADG725/ADG731 and the 8051 is shown in Figure 6. TXD of the 8051 drives SCLK of the ADG725/ADG731, while RXD drives the serial data line, DIN. P3.3 is a bit-programmable pin on the serial port and is used to drive SYNC.

The 8051 provides the LSB of its SBUF Register as the first bit in the data stream. The user will have to ensure that the data in the SBUF Register is arranged correctly as the switch expects MSB first.

When data is to be transmitted to the switch, P3.3 is taken low. Data on RXD is clocked out of the microcontroller on the rising edge of TXD and is valid on the falling edge. As a result, no glue logic is required between the ADG725/ADG731 and microcontroller interface.

*ADDITIONAL PINS OMITTED FOR CLARITY

Figure 6. 8051 to ADG725/ADG731 Interface

MC68HC11 Interface to ADG725/ADG731

Figure 7 shows an example of a serial interface between the ADG725/ADG731 and the MC68HC11 microcontroller. SCK of the 68HC11 drives the SCLK of the mux, while the MOSI output drives the serial data line, DIN. SYNC is driven from one of the port lines, in this case PC7. The 68HC11 is configured for Master Mode: MSTR = 1, CPOL = 0, and CPHA = 1. When data is transferred to the part, PC7 is taken low, and data is transmitted MSB first. Data appearing on the MOSI output is valid on the falling edge of SCK.

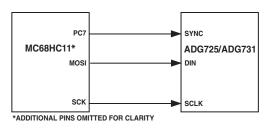


Figure 7. MC68HC11 Interface to ADG725/ADG731

APPLICATION CIRCUITS

ADG725/ADG731 in an Optical Network Control Loop The ADG725/ADG731 can be used in optical network applications that have higher port counts and greater multiplexing requirements. The ADG725/ADG731 are well suited to these applications because they allow a single control circuit to connect a higher number of channels without increasing board size and design complexity.

In the circuit shown in Figure 8, the 0 V to 5 V outputs of the AD5532HS are amplified to a range of 0 V to 180 V and then used to control actuators that determine the position of MEMS mirrors in an optical switch. The exact position of each mirror is measured using sensors. The sensor readings are muxed using the ADG731, a 32-channel switch, and fed back to a single-channel 14-bit ADC (AD7894).

The control loop is driven by an ADSP-2191L, a 32-bit DSP with an SPI compatible SPORT interface. It writes data to the DAC, controls the multiplexer, and reads data from the ADC via a 3-wire serial interface.

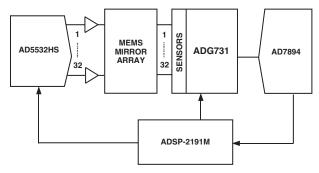
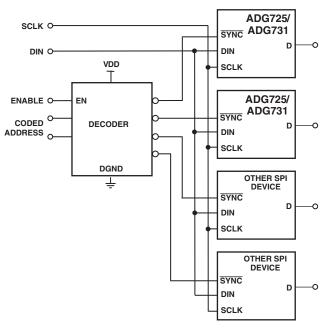
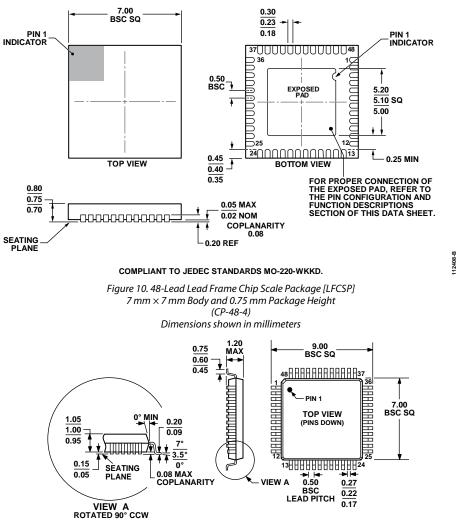



Figure 8. Optical Network Control Loop

Expand the Number of Selectable Serial Devices Using the ADG725/ADG731


The SYNC pin of the ADG725/ADG731 can be used to select one of a number of multiplexers. All devices receive the same serial clock and serial data, but only one device will receive the

SYNC signal at any one time. The mux addressed will be determined by the decoder. There will be some digital feedthrough from the digital input lines. Using a burst clock will minimize the effects of digital feedthrough on the analog signal channels. Figure 9 shows a typical circuit.

Figure 9. Addressing Multiple ADG725/ADG731s Using a Decoder

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026ABC

Figure 11. 48-Lead Thin Plastic Quad Flat Package [TQFP] (SU-48) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG725BCPZ	-40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG725BSUZ	–40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG731BCPZ	-40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG731BCPZ-REEL	-40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG731BCPZ-REEL7	-40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG731BSUZ	–40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48

 1 Z = RoHS Compliant Part.

REVISION HISTORY

9/15—Rev. A to Rev. B	
Changed NC Pin to NIC Pin	Throughout
Added Exposed Pad Notation, ADG725 I	Pin Configuration7
Updated Outline Dimensions	
Changes to Ordering Guide	

6/03—Rev. 0 to Rev. A

Edits to Ordering Guide	6
Edits to Pin Configurations	7
Edits to Pin Function Descriptions	
Changes to Test Circuit 3	11
Updated Outline Dimensions 1	16

©2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02766-0-9/15(B)

www.analog.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD#PBF CD4053BPWRG4 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4067D.112 74HC4053DB.112 74HC4067DB.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ