FEATURES

High Off Isolation -80 dB at $\mathbf{3 0} \mathbf{~ M H z}$
-3 dB Signal Bandwidth 250 MHz
+1.8 V to +5.5 V Single Supply
Low On-Resistance (15 Ω Typically)
Low On-Resistance Flatness
Fast Switching Times
$t_{\text {on }}$ Typically $8 \mathbf{n s}$
$t_{\text {off }}$ Typically 3 ns
Typical Power Consumption < $0.01 \mu \mathrm{~W}$
TTL/CMOS Compatible

APPLICATIONS

Audio and Video Switching
RF Switching
Networking Applications
Battery Powered Systems
Communication Systems
Relay Replacement
Sample-and-Hold Systems

GENERAL DESCRIPTION

The ADG752 is a low voltage SPDT (single pole, double throw) switch. It is constructed using switches in a T-switch configuration, which results in excellent Off Isolation while maintaining good frequency response in the ON condition.
High off isolation and wide signal bandwidth make this part suitable for switching RF and video signals. Low power consumption and operating supply range of +1.8 V to +5.5 V make it ideal for battery powered, portable instruments.

The ADG752 is designed on a submicron process that provides low power dissipation yet gives high switching speed and low on resistance. This part is a fully bidirectional switch and can handle signals up to and including the supply rails. Break-before-make switching action ensures the input signals are protected against momentary shorting when switching between channels.
The ADG752 is available in 6-lead SOT-23 and 8-lead μ SOIC packages.

REV. A

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. High Off Isolation -80 dB at 30 MHz .
2. -3 dB Signal Bandwidth 250 MHz .
3. Low On Resistance (15Ω).
4. Low Power Consumption, typically $<0.01 \mu \mathrm{~W}$.
5. Break-Before-Make Switching Action.
6. Tiny 6 -lead SOT-23 and 8 -lead μ SOIC packages.

	B Version		Units	Test Conditions/Comments
Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On-Resistance (R_{ON})	15		Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$;
	18	20	Ω max	Test Circuit 1
On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)	0.1		Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
	0.6	0.6	Ω max	
On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	2		Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
		3	Ω max	$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}$
LEAKAGE CURRENTS				
Source OFF Leakage $\mathrm{I}_{\text {S }}$ (OFF)	± 0.01		nA typ	$\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$;
	± 0.25	± 3.0	$n A \max$	Test Circuit 2
Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {S }}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \end{aligned}$		nA typ	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$, or 4.5 V ;
		± 3.0	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, $\mathrm{V}_{\text {INH }}$	0.8		V min	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Input Low Voltage, V ${ }_{\text {INL }}$			V max	
Input Current	0.001			
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		± 0.5	$\mu \mathrm{A}$ typ	
			$\mu \mathrm{A}$ max	
$\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$				
t_{ON}	8	13	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
			ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4
$\mathrm{t}_{\text {OFF }}$	3		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		5	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4
Break-Before-Make Time Delay	6		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		1	ns min	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5
Off Isolation	-80		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=30 \mathrm{MHz}$ Test Circuit 6
Crosstalk	-80		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=30 \mathrm{MHz}$ Test Circuit 7
-3 dB Bandwidth	250		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 8
C_{S} (OFF)	4		pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	15		pF typ	
POWER REQUIREMENTS I_{DD}	$\begin{aligned} & 0.001 \\ & 0.1 \end{aligned}$			$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$
			$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or +5.5 V
		0.5	$\mu \mathrm{A}$ max	

NOTES
${ }^{1}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

	B Version		Units	Test Conditions/Comments	
Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			
ANALOG SWITCH					
Analog Signal Range	35	0 V to V_{DD}	V		
On-Resistance (R_{ON})			Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$;	
		50	Ω max	Test Circuit 1	
On-Resistance Match Between	0.2	2.5	Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	
Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)	2.5		Ω max		
LEAKAGE CURRENTS Source OFF Leakage IS (OFF)	± 0.01			$\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$	
			nA typ	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$	
	± 0.25	± 3.0	$n A$ max	Test Circuit 2	
Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {S }}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	± 3.0	nA typ nA max	$\begin{aligned} & V_{S}=V_{D}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 3 \end{aligned}$	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$	2.0		V min	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$	0.4		V max		
Input Current					
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.001	± 0.5	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ		
$\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	2				
DYNAMIC CHARACTERISTICS ${ }^{1}$ t_{ON}	10	18			
			ns max	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4	
$\mathrm{t}_{\text {OFF }}$	4	8	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ;$	
			ns max	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4	
Break-Before-Make Time Delay	6	1	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ;$	
			ns min	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 5	
Off Isolation	-80		dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=30 \mathrm{MHz} \text {; } \\ & \text { Test Circuit } 6 \end{aligned}$	
Crosstalk	-80		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=30 \mathrm{MHz} ;$ Test Circuit 7	
-3 dB Bandwidth	250		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 8	
C_{S} (OFF)	4		pF typ		
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	15		pF typ		
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$	
I_{DD}	0.001		$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or +3.3 V	
	0.1	0.5	$\mu \mathrm{A}$ max		

NOTES

${ }^{1}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG752 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-ADG752

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

Figure 7. On Response vs. Frequency

GENERAL DESCRIPTION

The ADG752 is an SPDT switch constructed using switches in a T configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Figure 8 shows the T-switch configuration. While the switch is in the OFF state, the shunt switch is closed and the two series switches are open. The closed shunt switch provides a signal path to ground for any of the unwanted signals that find their way through the off capacitances of the series' MOS devices. This results in more improved isolation between the input and output than with an ordinary series switch. When the switch is in the ON condition, the shunt switch is open and the signal path is through the two series switches which are now closed.

Figure 8. Basic T-Switch Configuration

LAYOUT CONSIDERATIONS

Where accurate high frequency operation is important, careful consideration should be given to the printed circuit board layout and to grounding. Wire wrap boards, prototype boards and sockets are not recommended because of their high parasitic inductance and capacitance. The part should be soldered directly to a printed circuit board. A ground plane should cover all unused areas of the component side of the board to provide a low impedance path to ground. Removing the ground planes from the area around the part reduces stray capacitance.
Good decoupling is important in achieving optimum performance. V_{DD} should be decoupled with a $0.1 \mu \mathrm{~F}$ surface mount capacitor to ground mounted as close as possible to the device itself.

Figure 9. Multiplexing Between Two Video Signals

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

Test Circuit 8. Bandwidth

ADG752

OUTLINE DIMENSIONS

Figure 11. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6)
Dimensions shown in millimeters

ADG752

ORDERING GUIDE

Model 1	Temperature Range	Brand	Package Description	Package Option
ADG752BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SEB	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG752BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S1H	8-Lead Mini Small Outline Package [MSOP]	RM-8
ADG752BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SEB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SEB	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRTZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SEB\#	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6
ADG752BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SEB\#	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6

${ }^{1} Z=$ RoHS Compliant Part.

REVISION HISTORY

10/13-Rev. 0 to Rev. A
Updated Outline Dimensions .. 8
Changes to Ordering Guide .. 9

4/99—Revision 0: Initial Version

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118

