0 Hz to $4.5 \mathrm{GHz}, 40 \mathrm{~dB}$ Off Isolation at 1 GHz , 17 dBm PldB at 1 GHz SPST Switches

Data Sheet

FEATURES

ADG901 absorptive switch

ADG902 reflective switch
Enables user to pass dc signals up to 0.5 V without dc blocking capacitor
Operational from 0 Hz up to 4.5 GHz at -3 dB frequency
40 dB off isolation at $1 \mathbf{~ G H z}$ typical
0.8 dB insertion loss at $\mathbf{1 ~ G H z}$ typical

17 dBm P1dB at 1 GHz typical
Available in $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 8-lead MSOP and 8-lead LFCSP
<1 $\mu \mathrm{A}$ power consumption
CMOS/LVTTL control logic
Specified at 1.65 V to 2.75 V

APPLICATIONS

Wireless communications

General purpose RF switching
Dual-band applications
High speed filter selection
Digital transceiver front-end switch

IF switching

Tuner modules
Antenna diversity switching list

GENERAL DESCRIPTION

The ADG901/ADG902 are wideband switches that use a complementary metal-oxide semiconductor (CMOS) process to provide high isolation and low insertion loss to 1 GHz . The ADG901 is an absorptive (matched) switch with 50Ω terminated shunt legs, while the ADG902 is a reflective switch. These devices are designed such that the isolation is high over the dc to 1 GHz frequency range. These switches enable the user to pass dc signals up to 0.5 V without the use of a dc blocking capacitor. They have on-board CMOS control logic, thus eliminating the need for external controlling circuitry. The control inputs are both CMOS and LVTTL compatible. The low power consumption of these CMOS devices makes them ideally suited to wireless applications and general-purpose high frequency switching.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG901

Figure 2. ADG902

PRODUCT HIGHLIGHTS

1. 40 dB Off Isolation at 1 GHz
2. 0.8 dB Insertion Loss at 1 GHz
3. 17 dBm P1dB at 1 GHz

Figure 3. Off Isolation vs. Frequency

ADG901/ADG902

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Continous Current Per Channel 4
Absolute Maximum Ratings 5
REVISION HISTORY
11/2017—Rev. C to Rev. D
Deleted Figure 3; Renumbered Sequentially 1
Added Figure 2; Renumbered Sequentially 1
Changes to Features Section, Figure 1, General DescriptionSection, and Product Highlights Section 1
Deleted Endnote 4, Table 1; Renumbered Sequentially 3
Change to -3 dB Frequency Parameter, Table 1 3
Added Table 2; Renumbered Sequentially 4
Changes to Table 3 5
Change to Figure 4 6
Changes to Ordering Guide 12
5/2016-Rev. B to Rev. C
Changes to Figure 4 and Table 3 5
Added Figure 5; Renumbered Sequentially 5
Updated Outline Dimensions 12
Changes to Ordering Guide 13
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 7
Terminology 9
Test Circuits 10
Applications Information 11
Absorptive vs. Reflective Switches 11
ADG901/ADG902 Evaluation Board 12
Outline Dimensions 13
Ordering Guide 13
10/2005—Rev. A to Rev. B
Changes to Figure 1 1
Changes to Table 1 3
Changes to Ordering Guide 12
10/2004—Rev. 0 to Rev. A
Changes to Features 1
Changes to Product Highlights 1
Changes to Specifications 2
Changes to Ordering Guide 3
Change to ADG9xx Evaluation Board Section 9
Changes to Ordering Guide 10
8/2003-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to $2.75 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, input power $=0 \mathrm{dBm}$, all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. ${ }^{1}$
Table 1.

Parameter	Symbol	Test Conditions/Comments	B Version			Unit
			Min	Typ ${ }^{\mathbf{2}}$	Max	
AC ELECTRICAL CHARACTERISTICS						
Operating Frequency ${ }^{3}$			DC		2.5	GHz
-3 dB Frequency				4.5		GHz
Input Power		0 V dc bias			7	dBm
		0.5 V dc bias			16	dBm
Insertion Loss	$\mathrm{S}_{21}, \mathrm{~S}_{12}$	DC to $100 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%$		0.4	0.7	dB
		$500 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%$		0.5	0.8	dB
		$1000 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%$		0.8	1.25	dB
Isolation-RF1 to RF2CP Package	$\mathrm{S}_{21}, \mathrm{~S}_{12}$	100 MHz	60	61		dB
		500 MHz	43	45		dB
		1000 MHz	34	40		dB
Isolation-RF1 to RF2 RM Package	$\mathrm{S}_{21}, \mathrm{~S}_{12}$	100 MHz	51	60		dB
		500 MHz	37.5	47		dB
		1000 MHz	31	37		dB
Return Loss (On Channel)	$\mathrm{S}_{11}, \mathrm{~S}_{22}$	DC to 100 MHz	20	28		dB
		500 MHz	23	29		dB
		1000 MHz	25	28		dB
Return Loss (Off Channel)	$\mathrm{S}_{11}, \mathrm{~S}_{22}$	DC to 100 MHz	18	23		dB
		500 MHz	17	21		dB
		1000 MHz	15	19		dB
On Switching Time	ton	50\% CTRL to 90\% RF		3.6	6	ns
Off Switching Time	toff	50% CTRL to 10% RF		5.8	9.5	ns
Rise Time	$\mathrm{t}_{\text {RISE }}$	10\% to 90\% RF		3.1	5.5	ns
Fall Time	$\mathrm{t}_{\text {fall }}$	90\% to 10\% RF		6.0	8.5	ns
1 dB Compression	P1dB	1000 MHz		17		dBm
Third-Order Intermodulation Intercept	IP3	$900 \mathrm{MHz} / 901 \mathrm{MHz}, 4 \mathrm{dBm}$	28.5	36		dBm
Video Feedthrough ${ }^{4}$				2.5		mV p-p
DC ELECTRICAL CHARACTERISTICS Input High Voltage						
	$\mathrm{V}_{\text {INH }}$	$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ to 2.75 V	1.7			V
	$\mathrm{V}_{\text {INH }}$	$V_{D D}=1.65 \mathrm{~V}$ to 1.95 V	0.65 V DD			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$	$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ to 2.75 V			0.7	V
	$\mathrm{V}_{\text {INL }}$	$V_{\text {DD }}=1.65 \mathrm{~V}$ to 1.95 V			0.35	V
					VDD	
Input Leakage Current	1	$0 \leq \mathrm{V}_{\text {IN }} \leq 2.75 \mathrm{~V}$		± 0.1	± 1	$\mu \mathrm{A}$
CAPACITANCE						
RF1/RF2, RF Port On Capacitance	$\mathrm{C}_{\text {RF }}$ on	$\mathrm{f}=1 \mathrm{MHz}$		1.2		pF
CTRL Input Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		2.1		pF
POWER REQUIREMENTS						
$V_{\text {DD }}$			1.65		2.75	V
Quiescent Power Supply Current	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}		0.1	1	$\mu \mathrm{A}$

[^0]
ADG901/ADG902

CONTINOUS CURRENT PER CHANNEL

Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL						
8-Lead LFCSP						$\theta_{\mathrm{JA}}=48^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{dc}$ bias $=0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	70	7	3.85	2.8	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	56	7	3.85	2.1	mA maximum	
8-lead MSOP						$\theta_{\mathrm{JA}}=206^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{dc}$ bias $=0.5 \mathrm{~V}$
$\mathrm{V}_{\text {DD }}=2.75 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	51.1	7	3.85	2.8	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	39.9	7	3.85	2.1	mA maximum	

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 3.

Parameter	Rating
$V_{D D}$ to GND	-0.5 V to +4 V
Inputs to GND	-0.5 V to $\mathrm{VDD}+0.3 \mathrm{~V}^{1}$
Continuous Current	Data ${ }^{2}+15 \%$
Input Power ${ }^{3}$	18 dBm
Operating Temperature Range	
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA Thermal Impedance }}$ MSOP Package	
LFCSP Package	$206^{\circ} \mathrm{C} / \mathrm{W}$
\quad 2-Layer Board	$84^{\circ} \mathrm{C} / \mathrm{W}$
\quad 4-Layer Board	$48^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$
ESD	1 kV

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG901/ADG902

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

	ADG901	
$\mathrm{V}_{\mathrm{DD}} 1$	-	8 RF2
CTRL 2	W	7 GND
GND 3	(Not to Scale)	6 GND
RF1 4	--i	5 GND

NOTES

1. THE LFCSP PACKAGE HAS AN EXPOSED

PAD. THE EXPOSED PAD MUST BE TIED TO THE SUBSTRATE, GND.
Figure 4. 8-Lead LFCSP Pin Configuration
Figure 5. 8-Lead MSOP Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$V_{\text {DD }}$	Power Supply Input. These devices can be operated from 1.65 V to 2.75 V ; decouple $\mathrm{V}_{\text {DD }}$ to GND.
2	CTRL	CMOS or LVTTL Logic Level. CTRL input must not exceed $\mathrm{V}_{\text {DD }}$.
		Logic 0: RF1 isolated from RF2.
		Logic 1: RF1 to RF2.
3, 5, 6, 7	GND	Ground Reference Point for All Circuitry on the Device.
4	RF1	RF1 Port.
8	RF2	RF2 Port.
	EPAD	Exposed Pad. The LFCSP package has an exposed pad. The exposed pad must be tied to the substrate, GND.

Table 5. Truth Table

CTRL	Signal Path
0	RF1 isolated from RF2
1	RF1 to RF2

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Insertion Loss vs. Frequency over Supplies (S12 and S21)

Figure 7. Insertion Loss vs. Frequency over Supplies (S12 and S21)
(Zoomed Figure 6 Plot)

Figure 8. Insertion Loss vs. Frequency over Supplies (S12 and S21)

Figure 9. Insertion Loss vs. Frequency over Temperature (S12 and S21)

Figure 10. Off Isolation vs. Frequency over Supplies (S12 and S21)

Figure 11. Off Isolation vs. Frequency over Temperature (S12 and S21)

Figure 12. Return Loss vs. Frequency (S11)

Figure 13. Switch Timing

Figure 14. Video Feedthrough

Figure 15. IP3 vs. Frequency

Figure 16. $P_{-1 d B}$ vs. Frequency

ADG901/ADG902

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
$I_{D D}$
Positive supply current.

GND

Ground (0 V) reference.
CTRL
Logic control input.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {IN }} \mathrm{L}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
CIn
Digital input capacitance.
ton
Delay between applying the digital control input and the output switching on.
$t_{\text {off }}$
Delay between applying the digital control input and the output switching off.
$\mathrm{t}_{\text {RISE }}$
Rise time. Time for the RF signal to rise from 10% to 90% of the on level.
$\mathrm{t}_{\text {fall }}$
Fall time. Time for the RF signal to fall from 90% to 10% of the on level.

Off Isolation

The attenuation between input and output ports of the switch when the switch control voltage is in the off condition.

Insertion Loss

The attenuation between input and output ports of the switch when the switch control voltage is in the on condition.

P1dB

1 dB compression point. The RF input power level at which the switch insertion loss increases by 1 dB over its low level value. It is a measure of how much power the on switch can handle before the insertion loss increases by 1 dB .

IP3

Third-order intermodulation intercept. This is a measure of the power in false tones that occur when closely spaced tones are passed through a switch, whereby the nonlinearity of the switch causes these false tones to be generated.

Return Loss

The amount of reflected power relative to the incident power at a port. Large return loss indicates good matching. By measuring return loss the voltage standing wave ratio VSWR can be calculated from conversion charts. The VSWR indicates the degree of matching present at a switch RF port.

Video Feedthrough

The spurious signals present at the RF ports of the switch when the control voltage is switched from high to low or low to high without an RF signal present.

ADG901/ADG902

TEST CIRCUITS

Similar setups for ADG902.

Figure 17. Switching Timing: ton, $t_{\text {OFF }}$

Figure 18. Switch Timing: $t_{\text {RISE, }}$ t FALL

Figure 19. Off Isolation

Figure 22. IP3

Figure 23. P1dB

Figure 20. Insertion Loss

APPLICATIONS INFORMATION

The ADG901/ADG902 are ideal solutions for low power, high frequency applications. The low insertion loss, high isolation between ports, low distortion, and low current consumption of these parts make them excellent solutions for many high frequency switching applications.
Applications include switching between high frequency filters, ASK generators, and FSK generators.

ABSORPTIVE vs. REFLECTIVE SWITCHES

The ADG901 is an absorptive (matched) switch with 50Ω terminated shunt legs and the ADG902 is a reflective switch with 0Ω terminated shunts to ground. The ADG901 absorptive switch has a good VSWR on each port, regardless of the switch mode. Use an absorptive switch when there is a need for a good VSWR that is looking into the port but not passing the through signal to the common port. The ADG901 is therefore ideal for applications that require minimum reflections back to the RF source. It also ensures that the maximum power is transferred to the load.

The ADG902 reflective switch is suitable for applications where high off port VSWR does not matter and the switch has some other desired performance feature. It can be used in many applications, including high speed filter selection. In most cases, an absorptive switch can be used instead of a reflective switch, but not vice versa.

ADG901/ADG902 EVALUATION BOARD

The ADG901/ADG902 evaluation board allows designers to evaluate the high performance wideband switches with a minimum of effort. To prove that these devices meet user requirements, the user requires only a power supply and a network analyzer along with the evaluation board. An application note is available with the evaluation board and provides complete information on operating the evaluation board.

The RF1 port (see Figure 24) is connected through a 50Ω transmission line to the top left SMA Connector J1. RF2 is connected through a 50Ω transmission line to the top SMA Connector J2. J3 is connected to GND. A through transmission line connects J4 and J5 and this transmission line is used to estimate the loss of the PCB over the environmental conditions being evaluated.
The board is constructed of a 4-layer, FR4 material with a dielectric constant of 4.3 and an overall thickness of 0.062 inches. Two ground layers with grounded planes provide ground for the RF transmission lines. The transmission lines were designed

Figure 24. ADG901/ADG902 Evaluation Board Top View using a coplanar waveguide with ground plane model using a trace width of 0.052 inches, clearance to ground plane of 0.030 inches, dielectric thickness of 0.029 inches, and a metal thickness of 0.014 inches.

OUTLINE DIMENSIONS

Figure 25. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

Figure 26. 8-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-8-13)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG901BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1T
ADG901BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1T
ADG901BCPZ-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-13	S1T
ADG902BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1V
EVAL-ADG901EBZ		ADG901 Evaluation Board		
EVAL-ADG902EBZ		ADG902 Evaluation Board		

[^2]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: ${ }^{1}$ Temperature range for B version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, unless otherwise specified.
 ${ }^{3}$ Point at which insertion loss degrades by 1 dB .
 ${ }^{4}$ The dc transience at the output of any port of the switch when the control voltage is switched from high to low or low to high in a 50Ω test setup, measured with 1 ns rise time pulses and 500 MHz bandwidth.

[^1]: ${ }^{1}$ RF1/RF2 off port inputs to ground: -0.5 V to $\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$.
 ${ }^{2}$ See Table 2.
 ${ }^{3}$ Input power is tested with switch in both open and close position. Power is applied on RFx, while RFC is terminated to a 50Ω resistor to GND.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

